
Grant Agreement No.: 101016509Research and Innovation actionCall Topic: ICT-40-2020: Cloud Computing

Cloud for Holography and Cross Reality

D4.6: Evaluation, Validation and Showcasing Outcomes (final)
Version: v1.0

Deliverable type R (Document, report)
Dissemination level PU (Public)
Due date 30/06/2024 (Latest Amendment)
Submission date
Lead editor Antonis Protopsaltis (ORAMA)
Authors Antonis Protopsaltis (ORAMA), George Kokiadis (ORAMA), AntoniosMakris (HUA), Theodoros Theodoropoulos (HUA), Konstantinos Tserpes(HUA), Joao Rodrigues (DOTES), Mike McElligott (UTRC), MassimilianoCorsini (CNR), Massimo Coppola (CNR), Peter Gray (CS), Luis Rosa (ONE),Luis Ferreira (ONE), Luis Cordeiro (ONE), Diogo Fevereiro (ONE); TarikTaleb (ICT-FI), Nora Taleb (ICT-FI), Hao Yu (ICT-FI), Qize Guo (ICT-FI), YanChen (ICT-FI), Tarik Zakaria Benmerar (ICT-FI), Giovanni Guliani (HPE),Laura Sande (PLEXUS), Yago González (PLEXUS), Alex Roibu (HOLO3D)
Reviewers Giovanni Guliani (HPE), Antonios Makris (HUA)
Work package, Task WP4, T4.3
Keywords Evaluation, use cases

Abstract
This document reports on the outcomes of the evaluation, validation and showcasing activities. Itreports on the set of experiments, technological setups and validations, to provide feedback totechnological Work Packages (WPs) and on the impact the evaluation and validation had on thedevelopment process. A combination of different subtopics with related metrics is exploited, derivedprimarily from log data to assess individual functionalities of the platform components/services aswell as Use Case related aspects and verify the functional aspects of their intended operation. Thisdocument constitutes the final version of the validation and evaluation.

Ref. Ares(2024)4716717 - 01/07/2024

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 2 of 107

1 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

Document revision history
Version Date Description of change List of contributor(s)
v0.1 23/04/24 Initial ToC ORAMA
v0.2 25/05/24 Initial document content ORAMA
v0.3 20/05/24 Partial Content editing all
v0.4 05/06/24 Partial Content editing all
v0.5 22/06/24 Partial Content editing all
V0.6 25/06/2024 Final Content editing ONE, HPE, CNR, ORAMA
V0.7 25/06/2024 Final parse editing ORAMA
V1.0 27/06/2024 Reviewers comments addressed ORAMA, HPE, CNR, HOLO3D, CS,PLEXUS, TID, UTRC, ORBK, ONE

Disclaimer
This report contains material which is the copyright of certain CHARITY Consortium Parties and maynot be reproduced or copied without permission.
All CHARITY Consortium Parties have agreed to publication of this report, the content of which islicensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License1.
Neither the CHARITY Consortium Parties nor the European Commission warrant that the informationcontained in the Deliverable is capable of use, or that use of the information is free from risk, andaccept no liability for loss or damage suffered by any person using the information.

CC BY-NC-ND 3.0 License – 2021-2023 CHARITY Consortium Parties
Acknowledgment
The research conducted by CHARITY receives funding from the European Commission H2020programme under Grant Agreement No 101016509. The European Commission has no responsibilityfor the content of this document.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 3 of 107

Executive Summary
The deliverable delves into the comprehensive process of validating and evaluating the CHARITYprototype, a crucial step in ensuring its functionality and efficacy. It underscores the significance ofassessing not only the individual components and services but also their integration within the broadercontext of the project's use cases. This evaluation takes place across diverse testbed environmentsprovided by partners, enabling controlled tests and data collection essential for thorough analysis.
To gauge the success of the project's ambitions and methodologies, a multifaceted approach isemployed, leveraging various metrics primarily derived from log data. These metrics serve asquantitative indicators, shedding light on the technical characteristics and operational functionalitiesof the CHARITY platform. By scrutinizing these metrics, valuable insights into the platform'sperformance and its alignment with project objectives is gained.
The document delineates the validation and evaluation process into distinct phases, with this reportrepresenting the initial stage. It focuses on reporting the outcomes of the set of experiments,technological setups, and validation procedures. Moreover, it provides valuable feedback to thetechnological work packages, informing future development endeavours.
A critical aspect of the evaluation involves defining and addressing specific subtopics linked to projectrequirements, both functional and non-functional. Each subtopic is meticulously examined, withappropriate metrics defined to measure its performance. Experimental procedures are outlined,detailing the methodology, tools, and instruments utilized to gather relevant data during functionaltests. Validation of the platform is achieved through KPI assessment, and a lessons learnt discussion isalso conducted. Additionally, project showcasing is presented through pictures from specific events.
Furthermore, the document emphasizes the necessity of defining testbed characteristics andcapacities to facilitate the deployment of CHARITY components. This involves compiling detaileddescriptions of the testbed infrastructure, including production cloud resources and open-sourcecloud stacks. Such information is crucial for ensuring seamless integration and optimal performanceacross diverse environments.
Overall, the deliverable serves as a comprehensive guide to the validation and evaluation process,providing invaluable insights into the progress and performance of the CHARITY prototype.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 4 of 107

Table of Contents
Executive Summary .. 3
Table of Contents..4
List of Figures..7
List of Tables...10
Abbreviations ...11
1 Introduction..13
1.1 Scope, Motivation and Objectives...13
1.2 Methodology...13
1.3 Structure of the document..13

2 Preparatory activities for evaluation..14
2.1 Evaluation subtopics definition ...14
2.1.1 Platform... 14
2.1.2 XR service Enablers .. 15
2.1.3 Use Cases ... 16

2.2 Procedures and metrics definition .. 16
2.3 Testbeds and resources...16
2.3.1 CloudSigma Testbed Characteristics and Capacity...17
2.3.2 TID Testbed Characteristics and Capacity ..19
2.3.3 OneSource Testbed Characteristics and Capacity..21
2.3.4 ORAMA Testbed Characteristics and Capacity...22

3 Evaluation and results ...24
3.1 E2E CHARITY Orchestration Workflow.. 24
3.1.1 Description, procedure, metrics...26
3.1.2 Experimentation Scenarios .. 26
3.1.3 Evaluation tests, data collection and analysis..35

3.2 Point Cloud Encoding/Decoding..36
3.2.1 Description, procedure, metrics...36
3.2.2 Experimentation Scenarios .. 37
3.2.3 Evaluation tests, data collection and analysis..37
3.2.4 KPIs assessment ...37

3.3 Mesh Merger...38
3.3.1 Description, procedure, metrics...38
3.3.2 Experimentation Scenarios .. 39
3.3.3 Evaluation tests, data collection and analysis..40

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 5 of 107

3.3.4 KPIs assessment ...41
3.4 CHARITY Edge Storage (CHES)..41
3.4.1 Description, procedure, metrics...41
3.4.2 Experimentation Scenarios .. 42
3.4.3 Evaluation tests, data collection and analysis..42
3.4.4 KPIs assessment ...43

3.5 CHARITY Adaptive Scheduling of Edge Tasks (ASET)..44
3.5.1 Description, procedure, metrics..44
3.5.2 Experimentation Scenarios .. 45
3.5.3 Evaluation tests, data collection and analysis..45
3.5.4 KPIs assessment ...47

4 Use case Evaluation and results...48
4.1 UC1-1 Holographic Concert and UC1-2 Holographic meetings 48
4.1.1 Description, procedure, metrics...48
4.1.2 Experimentation scenarios...49
4.1.3 Evaluation tests, data collection and analysis..49
4.1.4 KPIs assessment ...51
4.1.5 Benefits from the use of the Platform/Component...52

4.2 UC2-1 VR Medical Training..52
4.2.1 Description, procedure, metrics...52
4.2.2 Experimentation scenarios...53
4.2.3 Evaluation Tests, data collection and analysis ...54
4.2.4 KPIs assessment ...56
4.2.5 Benefits from the use of the Platform/Component...58

4.3 UC2-2 VR Tour Creator .. 59
4.3.1 Description, procedure, metrics...59
4.3.2 Experimentation scenarios...60
4.3.3 Evaluation tests, data collection and analysis..60
4.3.4 KPIs assessment ...68
4.3.5 Benefits from the use of the Platform/Component...68

4.4 UC3-1 Collaborative Gaming..68
4.4.1 Description, procedure, metrics...68
4.4.2 Experimentation scenarios...70
4.4.3 Evaluation tests, data collection and analysis..71
4.4.4 KPIs assessment ...74

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 6 of 107

4.4.5 Benefits from the use of the Platform/Component...75
4.5 UC3-2 Manned-Unmanned Operation Trainer..76
4.5.1 Description, procedure, metrics...76
4.5.2 Evaluation tests, data collection and analysis..77
4.5.3 KPIs assessment ...92
4.5.4 Benefits from the use of the Platform/Component...95

5 Platform Validation & Lessons learnt...96
6 Platform Showcasing...100
6.1 Holographic Meeting & Concert Showcasing ..100
6.2 VR Medical Training Showcasing...102
6.3 VR Tour Creator Showcasing ... 103
6.4 Collaborative Gaming Showcasing...105
6.5 Manned-Unmanned Operation Trainer Showcasing...107

7 Conclusions ... 108

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 7 of 107

List of Figures
Figure 1 - Location of CHARITY platform datacentres...14
Figure 2 - Dashboard: Overview of "c01" datacentre..15
Figure 3 - Dashboard: cluster resource usage...15
Figure 4 - High level view of CHARITY platform components..24
Figure 5 - Single-Cluster Cloud-Native Application Deployment...27
Figure 6 - Kubernetes Cluster Bootstrapping..28
Figure 7 - Resource status at 'e02' datacentre..29
Figure 8 - AMF editor view of deployed XR application..29
Figure 9 - Multi-Cluster Cloud-Native Application Deployment..31
Figure 10 - Cluster Successful Peering...31
Figure 11 - Multi-Cluster Application Deployment..32
Figure 12 - EUCnC & 6G Summit 2024 CHARITY Platform Showcase..32
Figure 13 - Cloud-Native Application Live Migration...33
Figure 14 - High CPU load on 'e02' datacentre clusters ..33
Figure 15 - AMF editor displaying alerts and alarms...34
Figure 16 - Placement after re-deployment..35
Figure 17 - A test scene reconstructed from 8 RGBD views..37
Figure 18 - Each Game Client can send a fragment of scanned environment and trough Game Server itis sent to theMeshMerger. Game Server is responsible for setting up a merging session with theMeshMerger Service, sending all the fragments, and after receiving merged mesh distributing it back to allGame Clients connected to given game session. ..39
Figure 19 - Each Game Server can open its own mesh-merging session with Mesh Merger Service. It isrealised by assigning to each session its unique ID and using it every time Game Server is requestingmerge operation. This way, each instance of deployed Mesh Merger Service is able to serve single ormultiple Game Servers..40
Figure 20 - Average RPS - CHES...43
Figure 21 - Success percentage for different apps on the full-edge topology.46
Figure 22 - Performance of ASET compared with static policies for (ab) the dc- cloud topology and (cd)the co-dc-cloud topology. ... 46
Figure 23 - Performance of ASET compared with static policies for the full-edge topology. (a) (c) and(d) show averages of multiple runs with λ = 60...47
Figure 24 - Network load with 1280x720 resolution @25fps and an average 2500kbps......................50
Figure 25 - Latency with 1280x720 resolution @25fps and an average 2500kbps50
Figure 26 - Latency metrics, FPS, Packet loss and Bandwidth consumption on the HMD for Test 1....54
Figure 27 - Latency metrics, FPS, Packet loss and Bandiwidth consumption for Test 2........................55
Figure 28 - Latency metrics, FPS, Packet loss and Bandiwidth consumption for Test 3........................56
Figure 29 - Incoming and outgoing bandwidth consumption of the Physics server (LSPart2) while 53users gradually enter the VR session...56

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 8 of 107

Figure 30 - Right: Physics server computations with 53 concurrent users in the same VR session. Left:Rendered scene...57
Figure 31 - 6 different types of VR HMDs..57
Figure 32 - Right: Physics server computations for real-time deformations. Left Rendered scene......58
Figure 33 - Bytes received...60
Figure 34 - Bytes sent..61
Figure 35 - Total Round Trip..61
Figure 36 - Current Round Trip..61
Figure 37 - Available incoming bitrate...61
Figure 38 - Original mp4 video perceived quality..63
Figure 39 - Converted mp4 into HLS format perceived quality...63
Figure 40 - Original 3D model metadata...64
Figure 41 - Original 3D model quality..64
Figure 42 - Converted 3D model on cyango-editor component which shows the loading of 14.2 Mb 65
Figure 43 - HMD Test scenario..66
Figure 44 - Cyango-story experience loading time on HMD device ..66
Figure 45 - Smartphone/Tablet Test Scenario...66
Figure 46 - cyango-story experience loading time on Smartphone/Tablet device................................67
Figure 47 - Desktop Test Scenario...67
Figure 48 - cyango-story experience loading time on Desktop device...67
Figure 49 - Measured latency for sending mesh fragments from the game to the Mesh Merger........73
Figure 50 - Measured RTT: Game Servers <-> Mesh Mergers...74
Figure 51 - RTT values measured between Game Clients and Game Server [ms].................................74
Figure 52 - Where the time goes - upscaling 640x480 resolution by a factor of three.........................79
Figure 53 - Upscaling by a factor of four reveals the limits imposed by caching 80
Figure 54 - Where the time goes - upscaling from 10fps to 20fps with 1920x1440 resolution............80
Figure 55 - Predicted trajectory versus observed trajectory...81
Figure 56 - Diversity of configuration channels for remote rendering components.............................82
Figure 57 - Dynamic Software Adaptation using rolling updates for the Collins use case82
Figure 58 - Employing a Prometheus Operator and Kubernetes namespaces for segregated metrics.84
Figure 59 - Dynamic Adaptation in action – less cloud and more edge resources to upscale at the edge...85
Figure 60 - Generate high quality at rendering source..86
Figure 61 - Generate low quality on the cloud and seek to recover quality at the edge. Significantbandwidth reductions but also significantly increased resource usage overall....................................86
Figure 62 - Serialization performance for 20 frames per second at resolution of 1920x1440..............87
Figure 63: Communication between Docker containers does incur overhead and resources..............88
Figure 64 - Communication within a pod incurs less overhead...88

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 9 of 107

Figure 65 - Containers within a pod have higher bandwidth available than dockers88
Figure 66: Parallel deployment of cloud pods on an AWS EC2 instance...90
Figure 67: Resources are not overburdened...90
Figure 68 - Hololens demonstration of a scenery stream generated on the testbed...........................91
Figure 69 - VR demonstration of a scenery stream generated on the testbed.....................................92
Figure 70 - Integration of Collins Use Case with CHARITY design patterns and technology stack........95
Figure 71 - Studio for speaker in the holographic meeting...100
Figure 72 - Example of Speaker displayed on the Dreamoc Diamond Holographic device.................100
Figure 73 - Example of Musician displayed on the Dreamoc Diamond Holographic device...............101
Figure 74 - 3 HMD users and 55 bots performing Knee surgery training...102
Figure 75 - VR Medical training showcased at EUCNC 2024 ... 102
Figure 76 - XR Editor interface...103
Figure 77 - cyango-story interface...103
Figure 78 - Portuguese TV use case showcase running on CHARITY...103
Figure 79 - AWE XR Lisbon Showcase..104
Figure 80 - Web Summit 2021 - Dotes Running on CHARITY showcase..104
Figure 81 - Invited talk to present DOTES use case running on CHARITY..104
Figure 82 - XR Conference Showcase at University...105
Figure 83 - euCNC 2023...105
Figure 84 - euCNC 2024 Showcase..105
Figure 85 - Interaction with mixed reality in UC 3.1..106
Figure 86 - Scanning the real space using 2 client devices..106
Figure 87 - Promotion at national AI conference, in a public webinar, and during one of the researchcentre’s internal open days...107

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 10 of 107

List of Tables
Table 1. Summary of subtopics..16
Table 2. Testbed Template ..17
Table 3. CloudSigma Testbed Characteristics..18
Table 4. TID Testbed Characteristics..19
Table 5. TID Testbed Characteristics without GPU support...20
Table 6. OneSource Testbed Characteristics..21
Table 7. ORAMA lab characteristics ..22
Table 8. Description of evaluation subtopic -Platform services for XR applications..............................26
Table 9. Description of evaluation subtopic - Point Cloud Encoding/Decoding service36
Table 10. Description of evaluation subtopic - Mesh Merger service..38
Table 11: Description of evaluation subtopic - CHARITY Edge Storage component (CHES) & CHESRegistry sub-component..41
Table 12. CHARITY Adaptive Scheduling component...44
Table 13. Characteristics of reference applications...45
Table 14. Description of evaluation subtopic - Holographic Concert and Holographic meetings..........48
Table 15. Description of evaluation subtopic - Realistic simulation in VR medical training52
Table 16. Description of evaluation subtopic - Virtual Experiences Builder for the web59
Table 17. Description of evaluation subtopic - Mobile multiplayer game utilising AR technology........68
Table 18. Description of evaluation subtopic - Cloud Native Flight Simulator.......................................76
Table 19. Experimental results of evaluating upscaling techniques ..78
Table 20. Resource usage profiles across various configurations..83
Table 21. Blosc Compression Results for 24 frames at a resolution of 1920x1440px............................87
Table 22. Pickle Serialization Results (without Blosc) - 24 frames at a resolution of 1920x1440px87
Table 23. Measuring the GPU to host transfer limits for transferring 10 frames in & 30 frames out ...89
Table 24. The limits of Frame rate upscaling and caching .. 89
Table 25. Requirements status for Flight Simulator Use Case...92

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 11 of 107

Abbreviations
5G-PPP 5G Infrastructure Public Private Partnership
AAA Authentication, Authorization, Accounting
AAE Adversarial Autoencoder
AI Artificial Intelligence
API Application Programming Interface
AR Augmented Reality
CCU Concurrent User
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DASH Dynamic Adaptive Streaming over HTTP
EDSR Enhanced Deep Super Resolution
ESPCN Efficient Sub-Pixel Convolutional Neural Network
ESRGAN Enhanced Super-Resolution Generative Adversarial Network
ETSI European Telecommunication Standard Institute
FSRCNN Fast Super-Resolution Convolutional Neural Network
GPU Graphics Processing Unit
GSM Game Server Manager
HD High Definition
HDD Hard Disk Drive
HLO High Level Orchestrator
HLS Http Live Streaming
HMD Head-Mounted Display
HPC High Performance Computing
IPFT Intelligent proactive Fault Tolerance
JSON Javascript Object Notation
LAPSRN Laplacian Pyramid Super-Resolution
LHLS Low Latency Http Live Streaming
LLO Low Level Orchestrator
LSTM Long Short-Term Memory
MILP Mixed-Integer Linear Programming
PLY Polygon File Format
RIFE Real-Time Intermediate Flow Estimation
QoE Quality of Experience
QoS Quality of Service
RAM Read Access Memory
REST-API Representational State Transfer Application Programming Interface
RFT Reactive Fault Tolerance
RTMP Real-Time Messaging Protocol

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 12 of 107

RTSP Real-Time Streaming Protocol
RTT Round Trip Time
SRGAN Super Resolution Generative Adversarial Network
SSD Solid State Drive
UC Use Case
UDP User Datagram Protocol
VDI Virtual Desktop Infrastructure
VPN Virtual Private Network
vGPU Virtual Graphics Processing Unit
VM Virtual Machine
VR Virtual Reality
XR Extended Reality
ZSM Zero Touch Management
ki>

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 13 of 107

1 Introduction
1.1 Scope, Motivation and Objectives

The CHARITY approach is based on a two-stage prototyping and evaluation cycle which focuses onresearching, designing, implementing and evaluating a cloud-native framework to be able to usespecific mechanisms to support the deployment and life-cycle management of a set of Cloud-basedXR Services (e.g., distributed holographic, AR and VR applications) and improving the overallapplications’ performance and user experience.
The deliverable focuses on the validation and evaluation of components and services of the CHARITYprototype as well as the Use Cases in different testbed environments. The testbed environments areprovided by the partners and allow the execution of controlled tests and collecting the requiredmeasurements for the assessment. The validation and evaluation aim to provide insight to whetherthe project ambitions and approaches provide tangible outcomes to the use cases of the projects. Acombination of metrics is exploited, derived primarily from log data to draw conclusions on theplatform's technical characteristics and functionalities.
This document constitutes the final of two versions of the validation and evaluation, reporting on thefinal set of experiments, technological setups, and validation. It aims to provide feedback totechnological WPs and on the impact the evaluation and validation had on the development process.
1.2 Methodology

We mainly devised the content presented in this deliverable based on the following approaches:
 Via regular communication between CHARITY partners using suitable communication tools(e.g., cross WPs meetings, offline communication through e-mail or Slack messages)
 Sharing examples to guide partners on drafting their evaluation subtopics and providingdifferent rounds of feedback to support a common approach and alignment between thedifferent subtopics handled
 Each partner responsible for an evaluation subtopic has conducted the required functionaltests and experiments to collect and analyse relevant data. For the evaluation subtopicsrelated to the use cases reference to relevant KPIs was provided.
1.3 Structure of the document

Section 2 reports on the preparatory activities for evaluation with reference to the evaluation subtopicdefinition. The subtopics were linked to the requirements devised in D1.2 and categorized accordingto platform components, services and use cases. The section further reports on the testbeds andresources that will be used for experimentation and validation.
Section 3 details the evaluation results of the platform and for specific enablers hosted in the platform.
Section 4 details the use case evaluation results exploiting the CHARITY platform.
Section 5 summarizes the validation and lessons learnt.
Section 6 presents the showcasing of CHARITY platform through use case applications.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 14 of 107

2 Preparatory activities for evaluation
2.1 Evaluation subtopics definition

In order to assess individual functionalities of the platform components/services as well as Use Caserelated aspects, and verify the functional aspects of their intended operation, a number of relatedsubtopics was provided. The subtopics were linked to the requirements devised in D1.2 and the non-functional requirements addressing different attributes of the system. For each subtopic, appropriatemetrics were defined and the necessary tools have been utilized by each partner to gather the relevantevaluation data during the functional tests (i.e., log data).
2.1.1 Platform
As reported in D4.2, the integrated components are evaluated in the scope of T4.3. The efforts of thistask are reflected in two document versions: D4.4, which describes the evaluation andexperimentations of the first phase of the integration of the isolated components, and D4.6, whichcontains the experimentations and evaluations conducted on the final version of the integratedcomponents. The integration activities conducted to arrive to the integrated version of the platformcomponents is described in detail in D4.5.
The CHARITY Platform is responsible for the deployment, monitoring, adaptation, and release ofresources of the XR applications inside the platform. The general “XR Application Journey” of an XRApplication stored in the CHARITY platform is described in detail in the D4.5, together with the CHARITYproject pilots prepared to test it. The platform components have been deployed in a dedicated clusterspecifically created at CloudSigma premises in Zurich, and resources for XR applications have beenonboarded from three datacentres: “c01” from CloudSigma in Zurich (Switzerland), “e01” fromCloudSigma in Sofia (Bulgaria) and “e02” from OneSource in Coimbra (Portugal), as depicted in thefollowing picture (taken from a screenshot of a demo support dashboard).

Figure 1 - Location of CHARITY platform datacentres
Besides the AMF web interface, two Grafana enabled dashboards have been developed/customizedto help troubleshooting and demonstrating CHARITY Platform functionalities.
The first dashboard has been developed to show, for each datacentre, the total and free resources(e.g., CPUs , GPUs, flavour sizes), the available clusters and their occupancy in terms of CPU and

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 15 of 107

memory load and, the deployed XR applications. Figure 2 provides the overview of the “c01”datacentre.

Figure 3 - Dashboard: cluster resource usage
The second dashboard (cf. Figure 3) is an open-source Kubernetes dashboard that has been customizedto select CHARITY clusters and directly retrieve metrics used by the Monitoring manager.
Figure 3 presents the displayed information regarding the detailed resource usage by the “blue” clusterinside the “c01” datacentre as follows: the top row gauges show cluster memory, CPU and filesystemusage, while the graphs in the lower part depict the last values of various detailed metrics aggregatedin several grouping modes.
2.1.2 XR service Enablers
As reported in D3.2 specific data services were developed as part of the project and are exploited bya subset of XR applications of the CHARITY project. Even if these data services are targeted to the usecases of CHARITY, it is envisioned by the partners of the consortium that such services can beused/adopted by other XR applications with similar needs, beyond the ones involved in the projectitself. As part of this deliverable the following XR services have been evaluated:

 The Mesh Merger service which employs geometry processing algorithms to build virtualenvironment for AR applications, that enables the UC3-1 Collaborative Game.

Figure 2 - Dashboard: Overview of "c01" datacentre

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 16 of 107

 The Point cloud encoder/decoder service, that is the main component of the UC1-3 HoloAssistant and supports the efficient transmission of a huge amount of 3D data from the cloudto the edge (the holographic display).
2.1.3 Use Cases
All the application Use Cases and the developed components following the integration andexperimentation plan reported in Section 5 of D4.2. The evaluation is reported in this deliverable,except for the Use Case UC1-3 Holographic Assistant, that left the consortium at the end of the Q4-2023.
2.2 Procedures and metrics definition

For each of the listed subtopics, proper experimental procedures and metrics are defined. The mainitems related to the evaluation subtopics definition were focused on providing information on a) theevaluation scope of each subtopic, b) the related requirements, c) the relevant platform applicationcomponents, d) the measurement points for collecting and storing the data, e) the instruments andtools exploited, f) the methodology and procedure and g) the metrics to analyse the results. Table 1provides a summary of the subtopics that are handled in this deliverable, along with a reference towhich category they belong (platform, XR services, Use Cases) and the metric used in the evaluation.Detailed descriptions and results of the individual subtopics are reported in Section 3.
Table 1. Summary of subtopics

Subtopic description Category Metric/Evaluation
CHARITY platform Platform Usability and functionalmetrics
Point Cloud encoding/decoding (PC E/D) XR services Number of views, number of3D points, FPS, KPIs
Mesh Merger XR services Data transmission time,processing time, KPIs
Holographic Concert and holographic meetings Use Case Several metrics, KPIs
Realistic simulation in VR medical training Use Case Several metrics, KPIs
Virtual Experiences Builder for the web Use Case Several metrics, KPIs
Mobile multiplayer game utilising AR technology Use Case Latency, RTT between GameClient and Game Server, andbetween Game Server andMesh Merger, KPIs
Cloud Native Flight Simulator Use Case Several metrics, KPIs

2.3 Testbeds and resources
This section describes the general testbed characteristics and capacity of the combined testbedinfrastructure consisting of CloudSigma’s production cloud and supplementary testbed deployments.We detail each operator's general characteristics, resource capacity, account creation and accesscriteria. We also describe the ongoing technical support and maintenance required to ensurecontinuous operation throughout the project.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 17 of 107

The main objective is to support the integration of the components developed in WP2 and WP3,according to the technical requirements of the CHARITY architecture and provide the underlyinginfrastructure to deliver a working proof-of-concept for validation and demonstration
To support the deployment of CHARITY components on the combined testbed infrastructure, we mustfirst define testbed descriptions with the characteristics and capacity available per provider/operator.This information is collected using Table 2 as a template,. As stated, the CHARITY testbed combinesproduction cloud resources (e.g., CloudSigma) with private clouds based on widely used open-sourcecloud stacks (e.g., Openstack).

Table 2. Testbed Template
Short description
General configuration
Hypervisor
IaaS stack/version
VMMonitoring
Access methods
Connectivity
Cloud interface
Provisioning
Integration/drivers
Networking
Compute capacity (available for project use)
CPU (Ghz)
RAM (GB)
Number of VMs
Storage capacity (available for project use)
SSD (GB)
HDD (GB)
Image format
Networking
Max internal network bandwidthper VM (Gb)
Max external network bandwidthper VM (Gb)
Max inter-VM latency (ms)
Total cloud external networkbandwidth (Gb)

2.3.1 CloudSigma Testbed Characteristics and Capacity
CloudSigma has provided testbed infrastructure comprising a testing environment in Sofia, Bulgaria,and three production cloud environments in Geneva and Zurich, Switzerland and Boden, Sweden.During the project, CloudSigma provided accounts to project partners along with the required

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 18 of 107

computing resources and provided expertise and support on configuration and infrastructureoptimisation. CloudSigma tested and validated a number of high-performance GPUs in their testlab inSofia using the project use case specifications, including NVIDIA TESLA V100 and A100 Tensor CoreGPUs. Eventually, CloudSigma was able to integrate and expose the NVIDIA RTX A6000 into one oftheir production cloud locations in Boden, Sweden for testing only in Q3 2023. The Sofia testlabretained the NVIDIA A100’s. The NVIDIA RTX A100’s are optimised for data analytics workloads andapplications like VDI, high-performance computing (HPC), and AI/Deep learning. However, it isessential to note that some advanced settings are not yet exposed via the CloudSigma Web Interface.
During the validation phase, CloudSigma explored both passthrough and vGPU (virtualised GPU) forVM allocation, with passthrough typically being preferred for workloads that require dedicated accessto the GPU.Passthrough is typically preferred for workloads that require maximum GPU performance,such as high-performance computing or deep learning applications, but require dedicated access tothe GPU. At the same time, vGPU is more suitable for scenarios where GPU resources need to beshared among multiple VMs or containers, such as VDI or multi-tenant environments, offering abalance between performance and resource consolidation. While CloudSigma has successfully testedboth options, only passthrough is enabled at the time of writing, meaning project partners can onlyattach one GPU per VM. A ClusterAPI (CAPI) CloudSigma provider was developed that facilitates themanagement, provisioning, and lifecycle of Kubernetes clusters across different infrastructureenvironments. The CloudSigma provider implementation for Cluster API provides a declarative APIand tooling to simplify the management and lifecycle of Kubernetes clusters.

Table 3. CloudSigma Testbed Characteristics
CloudSigma Cloud Locations: Geneva, Switzerland (GVA) and Boden, Sweden (LLA)
Short description Test environment in Sofia, Bulgaria. Production environment inGeneva (GVA), Zurich (ZRH) and Boden (GVA). The platformcombines a proprietary stack with open-source technologies toprovide a utility approach to IaaS provisioning. The platform offersa high level of control and flexibility in the provision ofcomputational power, RAM, storage, and networking.
General configuration
Hypervisor KVM
IaaS stack/version Proprietary CloudSigma stack
VMMonitoring Intra-VM testing tools, at the discretion of the VM owner, NewRelicthird-party integration
Access methods API via HTTPS
Connectivity Internet, VPN, Secure Remote User Access, Direct private patch tolocal switch
Cloud interface WebApp, API
Provisioning API, API middleware, WebApp, Python library (Pycloudsigma).
Integration/drivers Ansible, CloudInit, Apache Libcloud, JClouds, Fog, Abiquo HybridCloud, pycloudsigma Library, Terraform, Cluster API
Networking API, WebApp
Compute capacity (available for project use)
CPU (Ghz) 400Ghz
RAM (GB) 400GB
vGPU (instance spec.) Multiple:

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 19 of 107

 A6000 (specializing in graphics computations)commissioned in Boden testbed on November 2023 anddecommissioned since December 2023. A100 (specializing in Machine learning computations) inSofia testbed
Number of VMs Unlimited
Storage capacity (available for project use)
NVMe SSD (GB) 5000
HDD (GB) N/A
Image format RAW
Networking
Max internal network bandwidthper VM (Gb) 20
Max external network bandwidthper VM (Gb) 10
Max inter-VM latency (ms) 1

2.3.2 TID Testbed Characteristics and Capacity
Leveraging TID expertise, a second testbed was deployed at TID premises (Valladolid) (c.f. Table 4) forinternal experimentation. This testbed is also an important milestone that helps test the developedtechnologies with huge computational resource requirements in a customized infrastructure with athree GPU support, and 3 small clusters without GPUs.
TID also installed a less powerful workstation in TID offices (Barcelona) to test on-site componentswith extremely low latency requirements. TID has installed NVIDIA RTX 3090 graphics cards in bothlocations. One VM is supported. NVIDIA RTX 3090 GPU is ideal for data analytics workloads andapplications like VDI, HPC, and AI/Deep learning. Being a testing platform enables easy testing ofvarious GPU settings to evaluate the Adaptive Scheduling workload algorithm.

Table 4. TID Testbed Characteristics
TID Cluster Location (Valladolid)
Short description Test IaaS workstation in Valladolid (Zrh). The workstation usesopen-source technologies to provide a utility approach to IaaSprovisioning. The workstation offers a large computational resourcewith GPU support.
General configuration
Hypervisor -
IaaS stack/version OpenNebula
VMMonitoring -
Access methods ssh
Connectivity Internet, VPN, Secure Remote User Access
Cloud interface -
Provisioning API, Python library
Integration/drivers Flexible
Networking N/A

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 20 of 107

Compute capacity (available for project use)
CPU (Ghz) 100Ghz
RAM (GB) 126GB
vGPU (instance spec.) 3x Titan RTX 3900
Number of VMs Currently up to 1 VM
Storage capacity (available for project use)
SSD (GB) 500
HDD (GB) 9Tb
Image format RAW
Networking
Max internal network bandwidthper VM (Gb) N/A
Max external network bandwidthper VM (Gb) N/A
Max inter-VM latency (ms) N/A

Table 5. TID Testbed Characteristics without GPU support
TID 2 Cluster Location (Peñuelas)
Short description Test IaaS cluster uses open-source technologies to provide a utilityapproach to IaaS provisioning. The workstation offers a mediumcomputation without GPU support
General configuration
Hypervisor -
IaaS stack/version OpenNebula
VMMonitoring -
Access methods ssh
Connectivity Internet, VPN, Secure Remote User Access
Cloud interface -
Provisioning API, Python library
Integration/drivers Flexible
Networking N/A
Compute capacity (available for project use)
CPU (Ghz) 100Ghz
RAM (GB) 32GB
vGPU (instance spec.) N/A
Number of VMs Currently up to 1 VM
Storage capacity (available for project use)
SSD (GB) 50
HDD (GB) 1Tb

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 21 of 107

Image format RAW
Networking
Max internal network bandwidthper VM (Gb) N/A
Max external network bandwidthper VM (Gb) N/A
Max inter-VM latency (ms) N/A

2.3.3 OneSource Testbed Characteristics and Capacity
Leveraging the expertise of OneSource, a third testbed has already been identified at OneSourcepremises to support further the integration and experimentation of the CHARITY framework. Thistestbed features a robust 3-node Kubernetes cluster (refer to Table 6), vital in facilitating the testingand evaluation of distributed scenarios encompassing hybrid edge-cloud domains. Additionally, itenables the exploration of multi-cluster deployments utilizing cutting-edge overlay networkingtechnologies, such as Liqo. Besides the 3-node cluster, an OpenStack provider is also hosted within thetestbed, which is leveraged by Cluster API, integrated in the low-level orchestrator component of theCHARITY framework. Also, considering the newly added support for deployment and management ofon-premises Kubernetes clusters within the low-level orchestrator, OneSource’s datacentre becameusable by the Low-level orchestrator (LLO) as an additional datacentre, where Cloud-Nativeapplications can be deployed.
Furthermore, it offers an opportunity to assess further the performance and effectiveness of the Low-level orchestrator within the CHARITY framework, while also being an asset for integrating andshowcasing the framework with the project UCs, each exploiting respective features.

Table 6. OneSource Testbed Characteristics
OneSource Coimbra, Portugal
Short description Testbed is located in OneSource’s datacenter. The testbedcomprises a 3-node Kubernetes cluster for CHARITY projectexperimentation and validation, along with an OpenStack providerintegrated with Cluster API and the datacentre itself as an additionalprovider leveraged by the LLO.
General configuration
Hypervisor VMWare ESXi
IaaS stack/version N/A
VMMonitoring N/A
Access methods Kubectl
Connectivity VPN
Cloud interface -
Provisioning N/A
Integration/drivers N/A
Networking N/A
Compute capacity (available for project use)
CPU (Ghz) 100Ghz

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 22 of 107

RAM (GB) 32
vGPU (instance spec.) 0
Number of VMs 3
Storage capacity (available for project use)
SSD (GB) 150
HDD (GB) N/A
Image format -
Networking
Max internal network bandwidthper VM (Gb) -
Max external network bandwidthper VM (Gb) -
Max inter-VM latency (ms) -

2.3.4 ORAMA Testbed Characteristics and Capacity
Utilizing ORAMA's expertise and infrastructure, a fourth testbed has been established at the ORAMAlab to enhance the integration and experimentation of the CHARITY framework. This lab is equippedwith Windows machines, each featuring a dedicated public IP, a powerful CPU and memory, and anNvidia GPU for real-time interactive VR rendering. These machines can host network applications andsoftware that complement the CHARITY infrastructure at other testbeds. They are essential for testingand evaluating distributed scenarios, including hybrid edge-cloud setups, thereby allowing furtherassessment of the CHARITY framework's performance and effectiveness.

Table 7. ORAMA lab characteristics
ORamaVR, Heraklion, Crete, Greece
Short description Testbed is located in ORAMA’s lab. The testbed comprises a set ofsupplementary machines with public IPs.
General configuration
Hypervisor N/A
IaaS stack/version N/A
VMMonitoring N/A
Access methods Internet, AnyDesk
Connectivity Internet
Cloud interface N/A
Provisioning N/A
Integration/drivers N/A
Networking Ethernet
Compute capacity (available for project use)
CPU (Ghz) 148Ghz
RAM (GB) 144GB

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 23 of 107

vGPU (instance spec.) Multiple (1x RTX 3060, 2x GTX 1070, 1x RTX 2070S)
Number of VMs 4
Storage capacity (available for project use)
SSD (GB) 200GB
HDD (GB) 1 TB
Image format N/A
Networking
Max internal network bandwidthper VM (Gb) 0.5
Max external network bandwidthper VM (Gb) 0.5
Max inter-VM latency (ms) 1

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 24 of 107

3 Evaluation and results
The following sections present the evaluations and the results of the test activities performed on theCHARITY platform as a whole, and separately for each CHARITY enabler.
3.1 E2E CHARITY Orchestration Workflow

This section describes the scenarios combining the integrated CHARITY framework componentsdevised for evaluating the E2E CHARITY Orchestration workflow as a whole. These scenarios intend torecreate the main reference usage scenarios of the CHARITY platform for demonstrating the CHARITYdeployment options and the life cycle management of Cloud-Native applications. These range fromthe user interaction with the CHARITY dashboard to the allocation and deployment of resources (i.e.,applications, clusters) in the multi-domain infrastructure. They also include the monitoring andforecasting capabilities of the CHARITY platform. Moreover, this section focuses on componentinteractions rather than their detailed description, which can be found in deliverables D2.2, D3.2 andD4.5. For the sake of readability, Figure 4 depicts the high-level diagram of the CHARITY components.A brief description of components is also provided.

Figure 4 - High level view of CHARITY platform components
Application Management Framework (AMF): The external user interface for XR developers andapplication managers is provided by the CHARITY Application Management Framework. To use anyfeature offered by CHARITY, end users need to authenticate themselves through the AMF loginprocess; then they can upload to the internal registry their XR application container images and havethem automatically scanned for security vulnerabilities. XR developers are guided through an easy-to-use Web GUI to create XR Blueprints for their applications. Finally, these Blueprints can be deployedto the platform and XR application managers can track their execution state and operate un-deployment and re-deployment actions.
AMF also provides a REST API for all management operations, so that they can be automated byexternal controller applications.
High Level Orchestrator (HLO): The High-Level Orchestrator module (HLO) performs the high-levelphase of resource allocation in the platform, choosing the most suitable deployment topology for aspecific XR-application initial deployment request, as well as deciding dynamic re-orchestration for XRapplications requesting specific constraints in terms of QoS. HLO abstracts resources in groups at thedomain level (e.g., Data centres and Edge clusters).
The HLO architecture interacts with the AMF receiving the user input and with the LLO to performconcrete deployment over computing, storage and computing resources. The HLO is the core of the

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 25 of 107

MAPE loops performing dynamic orchestration of application and services in the CHARITY platform,thus it receives input data from the MON, the RES and FOR modules. The collected information allowson the one hand resource allocation, and on the other hand to detect the current and forecasted statusof in-use and available resources.
The HLO leverages a plug-in interface to potentially select, for each platform instance, the mostsuitable subcomponent version to perform the solution search and optimization for initial deploymentas well as for dynamic re-deployments. The Complex Scenario Optimal Solver Plug-in (CSOC) is basedon a Mixed Integer Linear programming model of the deployment problem instance and employingstate of the art optimization technology to solve said MILP instance to perform multi-objective andhierarchical optimization of application deployment and dynamic management. The simple SolverPlug-in (SIS) version employs a simpler, linear heuristic algorithm to quickly achieve results for simpletopologies, thus speeding up the integration and evaluation activities, demonstrating the end-to-enddeployment workflow and leaving the way open to a future integration with more sophisticated, full-powered optimal solvers, like the CSOC.
Low-level Orchestrator (LLO): LLO is responsible for processing the data provided by the user throughthe AMF and abstracting that input to Kubernetes Custom Resources (e.g., clusters, deployments,services, ingresses) in the available domains, following additional information from decisions providedby the High-Level orchestrator (HLO). Furthermore, the LLO orchestrator is also responsible fororchestrating and managing the deployed Cloud-Native applications and the infrastructure where theapplications are hosted, as it is the only component which interacts directly with the infrastructure.
Monitoring Manager (MON): The Monitoring Manager manages, collects and serves monitoring datato other components of the platform. This data is used to take deployment decisions, feed forecastingmodels, notify predictions of performance failure and provide the developer a permanent picture ofthe status of the components deployed in the CHARITY Platform. The Prometheus server monitors theclusters and all the components deployed in it, while theMonitoringManager analyses and transformsthe raw data to avoid the complexity of PromQL, the Prometheus query language, and the mathematiccalculations behind the metrics used. The collected data is available to the rest of the platformcomponents through a REST API.
Resource Indexing (RES): The Resource Indexing gathers data from all the clusters to provide the HLO,the most accurate performance representation of the available resources distributed across thedifferent datacenters. This component communicates with the Prometheus servers deployed in eachcluster to check CPU, memory and storage metrics; these data are provided by cAdvisor, a tool thatanalyses running containers performance. The performance picture completes with the analysis of thedifferent links dynamically established between clusters according to the architectures of the use casescenarios. The Resource Indexer leverages additional cluster network metrics such as latency andbandwidth provided by Liqo, a tool which is integrated within the LLO, complementing the monitoringof the platform.
Forecasting Manager (FOR): The Forecasting Manager is in charge of providing accurate multi-steppredictions regarding various specified metrics. This component communicates with the MonitoringManager. For each specified metric, the Forecasting Manager entails a designated forecasting modelthat is based on a novel Deep Learning architecture that has been developed within the frame of theCHARITY project and that has been extensively presented in prior deliverables and correspondingpublications. The XR applications whose metrics shall be subjected to the forecasting process areincluded in a dedicated Forecasting List. Based on the requests performed by theMonitoringManager,the Forecasting Manager is capable of adding / removing elements to / from the Forecasting List andconstructing multi-step predictions regarding a single or multiple elements of the Forecasting List.

3.1.1 Description, procedure, metrics
Table 8. Description of evaluation subtopic -Platform services for XR applications

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 26 of 107

Subtopic Title: CHARITY Platform services for XR applications Partners: HPE - CNR
Short description and evaluation scope:
The evaluation of the platform's features supporting the development of XR application blueprints and the deploymentof XR applications with adaptive behaviors to guarantee QoS has been conducted using various test applications underdifferent topology load conditions across three scenarios

1. Deployment of a simple XR application Blueprint2. Deployment of multi-cluster distributed applications3. Adaptation of XR application deployment for best QoS (OODA loop)
Components involved: All CHARITY platform component are involved in these 3 scenarios

Where are data collected and stored – measurement points:
The functional aspects are evaluated using the AMF Web GUI support as well as external custom dashboards (seeGrafana screenshots in 2.1.1). Moreover, direct access to the clusters of the datacentres is provided through Kubernetesconfig files generated by the platform and displayed to XR developers by AMF interface, so that traditional Kubernetestroubleshooting techniques can be used to check CHARITY platform component actions directly at the lower levels.Typically, this kind of inspection does not require any storage of the data.
The Monitoring component of the CHARITY platform collects infrastructure metrics from the clusters and XRapplications: the data is collected by Prometheus and Thanos and stored inside the management cluster of CHARITYplatform together with the forecasted data (based on the monitoring ones) that get stored inside a local privatedatabase.
When are data collected?
The platform automatically collects only infrastructure metrics of the clusters and XR applications.
Custom metrics internal to XR applications are collected only of the XR application explicitly exports them toCHARITY platform using the custom metrics REST API.
Instruments/tools:
Prometheus and Thanos are the main Open-Source software used by the Monitoring system, together with a localprivate database for the forecasted metric values
Grafana is used to create additional custom dashboard to support troubleshooting and demos
AMF Web GUI provides a rich set of information to track XR applications deployments
K8s command line tools (kubectl) to inspect cluster resources and XR applications pod logs
Methodology/Procedure:
A series of tests will be performed on the platform in a default state, which request a fixed set of applications, withpseudo-randomized key request parameters and application execution order, to allow for significant and repeatableexperiments. The execution order will cause different load condition on the platform and trigger adaptation behaviours.
Metrics to analyse the results
The different scenarios will be analysed to validate

1. Correctness of placement decisions2. Network connectivity between XR application Blueprint internal and external VNFs3. Adaptation actions to guarantee QoS

3.1.2 Experimentation Scenarios
This section documents the experimentation scenarios where the metrics stated in the previoussection will be collected and evaluated in the next section, while also showcasing the features providedby the CHARITY Framework. The scenarios described in this section highlight the more technicalfeatures of the Framework, using generic Cloud-Native applications, showcasing the gentle learningcurve for software developers when using the CHARITY platform. The user-related features will behighlighted further in this document, in the sections dedicated to each project use-case.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 27 of 107

3.1.2.1 Scenario 1 – Deployment of a Simple XR Application
This section describes the scenario of deploying a simple XR application using the CHARITY platform.The goals of this scenario are the following:

 E2E Integration of CHARITY framework components Deployment of a Single application on a Single Domain (cluster) Validate the CHARITY orchestration features, such as placement decisions, allocation ofresources, monitoring and access to the application.
Figure 5 depicts the scenario and the components involved, including the AMF, HLO, LLO, MON/RESand FOR. The tests were conducted on multiple datacentre testbeds (cf. Section 2.1.1) Mainly twoKubernetes clusters were used as part of the tests: namely a management cluster, for hosting theCHARITY platform components, and a workload cluster, for the deployment of XR applications. For thelatter we leveraged the LLO capabilities and integration with ClusterAPI/Openstack to replicate a cloudcomputing infrastructure. The tests consisted in replicating the steps of a XR application deploymentfrom its specification until the service is running and observe the behaviour. The validation occurredunder three conditions: the observation of all components logs, the monitoring of application throughthe CHARITY dashboards, and the application reachability from the outside.

Figure 5 - Single-Cluster Cloud-Native Application Deployment
Next, we describe the test execution details (and the application deployments). Through the AMF, ablueprint was created by defining the requirements of a reference application, i.e. “Super Mario Bros”XR application. This application was chosen as a lightweight web-based single microservice applicationwhich can run on a single Kubernetes cluster without additional specific requirements. The applicationdetails were introduced through the AMF web graphical interface. At deployment decisions time, thedetails are converted by AMF to TOSCA and sent to the HLO. The HLO used this information - facilitatedby the Solver plugin - to decide where the application should be deployed. For this purpose, HLOleverages the data provided by the MON/RES to determine the optimal deployment decision (case 1).If the Solver can’t find suitable resources in the clusters of the various domains, HLO can request LLOthe creation of a new cluster and use it to perform the deployment (case 2). Both cases were tested(cf. Figure 6). The placement decision and application details get merged inside TOSCA model and arethen forwarded to the LLO. The latter translated TOSCA application topology specifications and HLOplacement decisions to Kubernetes environments. LLO's role included the optional step of

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 28 of 107

bootstrapping a Kubernetes cluster, installing ancillary packages and dependencies, creatingKubernetes Custom Resources (e.g., deployments, services, ingresses) and their enforcement into theactual cluster. Lastly, the LLO returns to the AMF the corresponding application accesses (i.e., URLsand Kubeconfig), enabling the user to access the deployed application's components. The applicationdeployment's success was observed through the Monitoring Dashboards, including the visualisationof the application components, infrastructure, and CHARITY statistics.

Figure 6 - Kubernetes Cluster Bootstrapping
The conducted experiment validated the aforementioned goals, demonstrating how CHARITY platformversatility can be used to orchestrate andmanage containerized Cloud-Native applications. The furthersections describe additional platform features and the performed UC validation. Its relevant tohighlight, this scenario and the E2E CHARITY orchestration capabilities were showcased in projectshowcasing activities, including the last EUCnC & 6G Summit 2024. Such capabilities were alsopublished in various scientific venues during the course of the project, namely “Cross-ClusterNetworking to Support Extended Reality Services”, submitted to the IEEE Network Magazine,“Intelligent Multi-Domain Edge Orchestration for Highly Distributed Immersive Services: An ImmersiveVirtual Touring Use Case” submitted to 2023 IEEE International Conference on Edge Computing andCommunications (EDGE) and “Towards Establishing Intelligent Multi-Domain Edge Orchestration forHighly Distributed Immersive Services: A Virtual Touring Use Case” (extended version) submitted toCluster Computing - The Journal of Networks, Software Tools and Applications, in which similarscenarios were devised and tested, further validate the goals, component integration and featuresdescribed.

Figure 7 - Resource status at 'e02' datacentre

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 29 of 107

Figure 8 - AMF editor view of deployed XR application

The following screenshots illustrate deployment decisions for the Simple XR application Blueprintbeing deployed for a gamer located in Madrid (Spain): the selected datacentre will be ‘e02’ in Coimbra(Portugal), in one of the available clusters (external3 or external4). Figure 7 shows the Grafanadashboard view of the resources in that domain.
The AMF dashboard, once the XR application has been deployed, returns the status information aboutthe target datacentre and cluster, together with K8s configuration file to be used to troubleshoot thepod containing XR application. Figure 8 is a screenshot of this information from AMF editor.: the greenmarker is for the location of the client, the blue one is where the XR application has been deployed(the closest datacenter, i.e. ‘e02’ in Coimbra).
At the end this scenario demonstrated the capabilities of the CHARITY platform for deploying an XRapplication by selecting the optimal placement in the managed domains, and the setup ofmonitoring/forecasting infrastructure, without requiring any domain specific skills to the XRdevelopers.

3.1.2.2 Scenario 2 – Multi-Cluster Distributed Application
This section describes the scenario of a Cloud-Native application distributed across two differentclusters.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 30 of 107

The goals of this scenario are to validate the following:
 E2E Integration CHARITY component integration and deployment of applications (similar tothe previous) Bootstrapping of a multi-domain environment (composed of multiple Kubernetes clustersdynamically peered)

These experiments were conducted in the same testbed of the previous scenario. The samemanagement cluster was used, while two work clusters dynamically created upon request (cf. Figure9). Next, we describe the test execution details (and the application deployments). Similar to Scenario1, the application blueprint was created in AMF. In this case, the UC2.3 VR Tour Creator (cf. Section4.3) was used. This UC is composed of 5 components: Cyango-Backend, Cyango-database, Cyango-worker, Cyango-cloud-editor and Cyango-story-express which were all specified in AMF. Thespecification introduced through the AMFweb graphical interface were similarly converted to a TOSCAspecification and sent to the HLO. Again, the HLO used this information to decidewhere the applicationshould be deployed. Nevertheless, in this case we recreated a distributed application deploymentwhere different application components were split across the two workload clusters to guarantee theright level of computing resources availability and required connectivity across them. Hence, upon therequest of HLO, the LLO leveraged Liqo’s peering and offloading features (cf. Figure 11 - Multi-ClusterApplication Deployment) to create a dynamic VPN tunnel (cf. Figure 10). This ensures that regardlessof the location of application components (across the two clusters), they communicate with eachother. Last, as stated in Scenario 1, the LLO returns to the AMF the corresponding application accesses(i.e., URLs and Kubeconfig), granting the user access to the deployed application's components. Theapplication deployment's success was observed through the Monitoring Dashboards, including thevisualisation of the application components, infrastructure, and CHARITY statistics, similar to the theprevious scenario.

Figure 9 - Multi-Cluster Cloud-Native Application Deployment

The conducted experiment validated the aforementioned goals, demonstrating the CHARITYplatform's capabilities in orchestrating and managing multi-cluster environments dynamically. The

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 31 of 107

further sections describe additional platform features and the performed UC validation. It is alsoimportant to highlight that this scenario, features and goals described in this section were alsoshowcased in the events and papers (cf. Figure 12), mentioned in Scenario 1, previously explained inthis document.

Figure 10 - Cluster Successful Peering

Figure 11 - Multi-Cluster Application Deployment

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 32 of 107

Figure 12 - EUCnC & 6G Summit 2024 CHARITY Platform Showcase
This scenario demonstrates how the CHARITY platform helps developers to deploy their application ina complex multi-domain environment, allowing them to ignore the final topology details, throughCHARITY’s transparent network setup.

3.1.2.3 Scenario 3 – Adaptation of XR application deployment for best QoS (OODA loop)
This last scenario capitalizes on the previous ones: the XR application has already been deployed byCHARITY platform, and monitoring/forecasting has been setup taking into account the infrastructuremetrics of the XR application affecting the QoS (let’s assume as an example the CPU load).

Figure 13 - Cloud-Native Application Live Migration
Inside the cluster where the XR application has been placed by CHARITY, we also deploy anotherapplication running the typical Linux stress tests for CPU. When the CPU load of the cluster grows

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 33 of 107

above attention limits, FOR and MON notify the Alert and Alarm conditions to HLO, that analyse theimpact on affected XR applications, and might decide to re-deploy the CPU-QoS sensitive applicationto another less loaded cluster, so that it will be able to provide the requested QoE. Figure 14 showsthe high CPU load of both clusters of ‘e02’ datacentre.

Figure 14 - High CPU load on 'e02' datacentre clusters
At this point MON and FOR notify HLO that sets alerts and alarms for the impacted XR applications, asdisplayed in Figure 15.
HLO decides to re-deploy the XR application and invokes Solver to find the new optimal placement.Once the redeployment has been completed by LLO, AMF editor will display the new deploymentdecisions, as displayed in Figure 16. Specifically, the “closest” datacentre with enough free resourcesis ‘c01’ located in Zurich inside cluster “vaajuv” (‘e02’ in Coimbra is closer, but its CPUs are overloaded).The strange name of this cluster derives from the fact that this has been created automatically byCHARITY platform during a previous deployment that did not find enough resources in the existingclusters but allocated a new one using datacentre free CPUs.
The simple XR application used in the scenario does not use cloud-native storage support (like CHARITYCHES for instance), therefore once migrated the client sessions restart from scratch. This would nothave happened if the sessions state was stored in CHES.
This scenario shows an example of the OODA loops realized by CHARITY platform: MON and RES“Observe” the status of the infrastructure and notify HLO in case of significative events. HLO analysesthe impact of the event on the running XR application that specified QoS requirements, thus it“Orients” the platform re-deployments. The HLO Solver “Decides” how to perform the re-placementsof the XR applications, and finally the LLO “Acts” by actually re-deploying (migrating) the XRapplications in different domains.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 34 of 107

Figure 15 - AMF editor displaying alerts and alarms

Figure 16 - Placement after re-deployment

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 35 of 107

3.1.3 Evaluation tests, data collection and analysis
The following section outlines the evaluation of the features tested by the previously describedscenarios.

1. Simple XR application deployment:a. Simple to use AMF Editor to create Blueprintsb. Intuitive AMF interface for XR application managementc. Successfully tested deployment placement with multiple diversified workload andnetwork topologiesd. Useful information returned to XR developer to access XR applications endpointsi. If the domain does not have public addresses for K8s cluster ingress, a VPNneeds to be setup to access deployed resourcesii. If the domain does not have a dynamic integration with DNS, K8s clusteringress IP address needs to be manually inserted into client HOST filee. Useful information returned to XR developers to troubleshoot XR applicationresources in K8si. effective kubectl configuration support, but it required K8s skills2. Multi-cluster Distributed XR applicationa. Simple creation of complex Blueprints using AMF editori. simple topology graph provides a clear summaryb. Success tests with different XR applications resource requirements (e.g. CPUs, GPUs,etc) that force certain components to powerful enough domainsc. Transparent network connectivity among XR applications VNFs allow programmer tointerconnect them in a simple wayi. same internal resource endpoints independently on their placements indifferent domains3. Adaptation of XR application deployment for best QoS/QoEa. Easy declaration of relevant metrics for QoS/QoE in AMF editorb. Automatic setup of monitoring, forecasting and alarming systemsc. Automated XR application life cycle management provided by CHARITY platformi. Optional support for custom metrics and self-adaptive managementd. Example of OODA loop

3.2 Point Cloud Encoding/Decoding
3.2.1 Description, procedure, metrics

Table 9. Description of evaluation subtopic - Point Cloud Encoding/Decoding service
Subtopic Title: Point Cloud Encoding/Decoding service Partners: CNR
Short description and evaluation scope:
The Point Cloud Encoding/Decoding (PC E/D) component is used for the fast compression/decompression of pointclouds. The main intended use is to transmit a huge amount of coloured 3D points. This may be useful in applicationcontext like the ones where a device/display receives coloured 3D points generated on a edge/cloud.
Related requirements:
No particular requirements. GPU is needed to speed up the performance.
Components involved:
Point Cloud Encoding/Decoding component.
Where are data collected and stored – measurement points:

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 36 of 107

The data used has been created specifically for test purposes. The test data has been provided by the SRT. It consists inan animated 3D scene where a person (the Assistant) talks about weather conditions. Another scene where a people is
inside a room has been also created and used to test such component (see Figure 17). These synthetic scenes aregenerated in real-time using Unity. The measurements have been conducted with the component in isolation andusing the SRT prototype.
When are data collected?
The test 3D scenes have been created during the Q1-Q2 2023 period. Before this period other data has been used toconduct preliminary tests on 3D points encoding and to test the component in isolation. This dataset is described inDeliverable 1.7.
Instruments/tools:
C++, ffmpeg, GPU shaders
Methodology/Procedure: in which way data are collected
The PC E/D component is integrated in the UC1-3 Holo Assistant as a software library. The scenes generated by theUnity rendering engine is represented as a set of RGBD images taken from different viewpoints. Since camera calibrationis known for each RGBD image, each pixel represents a 3D point with colour. This representation of the point cloudpermits to the system, taking into account the viewpoint of the user, to transmit a set of RGBD images around suchviewpoints to the holographic display. The holographic display splats the coloured points creating a 3D virtual scenethat appears real. The PC E/D is a view-dependent compression algorithm that is specifically designed to compress anddecompress efficiently this type of RGBD images.
Metrics to analyse the results
Number of 3D points (i.e. resolution of the RGBD images), number of views (i.e. number of RGBD images to compress),Frame-Per-Seconds (FPS).

Figure 17 - A test scene reconstructed from 8 RGBD views.
3.2.2 Experimentation Scenarios
Essentially, we have two experimentation scenarios. The first scenario was used during thecomponent's development and for its performance optimization, involving testing the component inisolation. This phase of experimentation utilizes the dataset described in Deliverable 1.7.
The second scenario is the test of the component inside the SRT use case (UC1-3 Holo Assistant). Inthis second case the PC E/D is used to transmit the 3D-coloured points representing a bunch of viewsrelated to the viewpoint of the observer from the Unity engine, that generate them, to the Holographicdisplay. For a schematization of the UC, see Section 2 of the Deliverable 1.2.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 37 of 107

3.2.3 Evaluation tests, data collection and analysis
The algorithm at the base of the PC E/D component, and the designmotivations, are described in detailin the Section 5.6 of the Deliverable 3.2. This component has been tested separately and in the pipelineof the UC1-3. The overall frame rate measured after the integration for the test scene is around 5 fps.Further optimization of the streaming parameters of the video parts (that is achieved using ffmpeg)obtain a considerable gain of performance, reaching 15-20 fps. This frame rate is measured for thetransmission of 8 viewpoints of resolution 1280 x 752. This number of views is sufficient to permit tothe user of the holographic display slightly changes of viewpoint without the need to transmit otherdata (more details about this point can be found in the D3.2). This performance reported are relatedto the C++ version. The GPU version is obviously more performing, but it has not been tested insidethe UC1-3 as this requires a tight integration in the image generation pipeline of the UC. Suchintegration would allow to save computations and memory transfers between the application and thecomponent. Tests of the GPU version of the component in isolation show promising results. The resultsindicate that achieving over 30-40 fps with the GPU-integrated version appears feasible.
3.2.4 KPIs assessment
Regarding the general objectives of the CHARITY project, this component has been developed in theambit of the Objective #4 – Develop highly interactive and collaborative services and applications, andit satisfies the KPI-4.3 Specialized data services support: streaming, rendering, compression, cachingand encoding. The performance obtained by the CPU version, particularly the version with theoptimized ffmpeg parameters, satisfies the speed performance required by the Holographic Assistantapplication to reach an acceptableQoE. The GPU version is more performing, ensuring high levels ofQoE even with high-resolution images.
3.3Mesh Merger

3.3.1 Description, procedure, metrics
Table 10. Description of evaluation subtopic - Mesh Merger service

Subtopic Title: Mesh Merger service Partners: CNR
Short description and evaluation scope:
The Mesh Merger service is a XR data service to assemble together pieces of geometry of an indoor environment to setup a corresponding virtual environment for AR applications. The same service, with slightly modifications, can be usedto update an existing virtual environment according to the changes of the real environment. The pieces of geometryare assembled in a mesh calledmesh collider, since it is used to resolve collisions enabling the interaction of the virtualobjects with the real environments.
Related requirements: No particular requirement.
Components involved:Mesh Merger, Game Server (UC3-1)
Where are data collected and stored – measurement points:
The data about indoor environment are collected on-the-fly through a test application (Game Client) developed by theORBKwhich allows to scan a part of the environment using a smartphone equippedwith a Lidar. Differentmesh collidersof different indoor environments have been created.
When are data collected?
The Mesh Merger has been tested with different acquired single mesh colliders during the Q2-Q3 2023 period. In thislast period theMeshMerger has beenmodified to be integrated in the CHARITY platform. At this point, it works togetherwith the Game Server, which request to the service to assemble the pieces of geometry acquired at the begin andduring the game. The current version works with data collected on-the-fly by the gamers’ devices, i.e. smartphoneequipped with Lidar camera.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 38 of 107

2 https://developer.apple.com/augmented-reality/arkit/
3 https://github.com/MIT-SPARK/TEASER-plusplus
4 https://www.openvdb.org

Instruments/tools:
C++, C#, ARKit2, Unity AR Foundation, TEASER++3, OpenVDB4, Node.js
Methodology/Procedure:
Themethodology for the test procedure is as follows: It has been evaluated the time to transmit the pieces of geometry,i.e. the single mesh colliders, provided by the ARKit on the smartphone device equipped with the Lidar, the processingtime for the alignment, and the processing time for the fusion of the aligned mesh to create the final mesh collider.First, this evaluation has considered the component with the data acquired by an application developed by the ORBK.Then, the Mesh Merger component has been turned into a service, based on a REST-API. This service can receiverequests of fuse a new single mesh collider into the current mesh collider of the indoor environment or create a newenvironment for another game. The processing time and the transmission time have been evaluated also in the serverversion, which exploits Node.js to manage the HTTP requests.
Metrics to analyse the results
Data transmission time, processing time, quality visual inspection.

3.3.2 Experimentation Scenarios
A first set of experiments have been conducted was adopted during the development and the initialsteps of the integration. In this case, the Game Server directly sent a set of acquired meshes to theMesh Merger and retrieve the results. In a second round of experiments, the requests are one at atime, i.e. one mesh at a time is aligned and fused to obtain the final mesh collider for the virtualenvironment, and more than one Game Server can use the same instance of the Mesh Merger. TheMesh Merger processes the requests in an asynchronous way and each Game Server identifies itselfby a unique id. This allows two type of communications mode between the Mesh Merger and theGame Server, schematized in Figure 18 and Figure 19.

Figure 18 - Each Game Client can send a fragment of scanned environment and trough Game Server it is sent tothe Mesh Merger. Game Server is responsible for setting up a merging session with the Mesh Merger Service,sending all the fragments, and after receiving merged mesh distributing it back to all Game Clients connected togiven game session.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 39 of 107

Figure 19 - Each Game Server can open its own mesh-merging session with Mesh Merger Service. It is realisedby assigning to each session its unique ID and using it every time Game Server is requesting merge operation.This way, each instance of deployed Mesh Merger Service is able to serve single or multiple Game Servers.
3.3.3 Evaluation tests, data collection and analysis
The tests conducted are based on real data acquired through an ad hoc application developed by ORBKbased on the ARKit. The Mesh Merger service implemented is based on Node.js and follows a REST-API paradigm. The registration and fusion algorithm are based on two open-source codes, theTEASER++, for the alignment, and the OpenVDB library, for the fusion of the aligned pieces of geometryinto the Mesh Collider, respectively. More details about the alignment and the fusion algorithm canbe found in the Section 5.9 of the Deliverable 3.2.
TheMeshMerger service is currently available on the CHARITY platform and can be deployed alongsidethe ORBK Game Server to meet the needs of UC3-1 Collaborative Gaming Application. In this setup,the Game Server communicates with the Mesh Merger to establish the mesh collider for the gameenvironment. For this AR game, the tests conducted demonstrated that the processing time issufficiently fast to provide to the gamers a high QoE, (i.e., less than 2 seconds are necessary todownload and process a new acquisition into the Mesh Collider). In particular, the transmission timeis made efficient by using a binary version of a JSON containing a PLY format of the mesh. Even if thisdata format is not compact, the number of triangles of a single mesh collider, that is in the order of100K-200K triangles, is such that it is sufficient for the purpose of an interactive experience and it iseasy to manage. The processing is asynchronous, so that multiple users can scan different parts of theindoor environment and set up the game quickly. Even if this service works tightly with the GameServer, it is a general mesh processing data service and it can be used by any graphics application thatneeds to register and fuse mesh together. If a higher resolution of the merged mesh is required, theservice can be further optimized by using entropy encoding of the geometry to maintain reasonable

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 40 of 107

performance. This simple solution makes it useful not only by other AR application but also for othertypes of graphics/geometry processing applications.

3.3.4 KPIs assessment
Regarding the general objectives of the CHARITY project, this component has been developedaccording to the Objective #4 – Develop highly interactive and collaborative services and applications,and it fulfils the KPI-4.3: Specialized data service support: streaming, rendering, compression, caching,and encoding.

3.4 CHARITY Edge Storage (CHES)
3.4.1 Description, procedure, metrics
Table 11: Description of evaluation subtopic - CHARITY Edge Storage component (CHES) & CHES Registry sub-component

Subtopic Title: CHARITY Edge Storage component (CHES) & CHES Registry sub-component Partners: HUA, DOTES
Short description and evaluation scope:CHES component aims to provide a hybrid distributed cloud/edge storage framework spread across heterogeneousedge and cloud nodes with considerations on performance (QoS), emphasizing on the resolution of the problem of datadistribution and offloading based on CHARITY application’s requirements.CHES Registry aims to provide a localized Docker registry using CHES as its storage backend. It combines the officialDocker registry imagewith Kubernetes orchestration, CHES object storage backend, and a set of automated deploymentand configuration scripts in order to store and distribute container images closer to the edge.Related requirements: No particular requirements.
Components involved: CHARITY Edge Storage component and CHES Registry sub-component
Where are data collected and stored – measurement points:
CHES component The data originating from DOTES UC (UC2-2 VR Tour Creator) are acquired and stored within a designatedbucket in MinIO managed by CHES. This bucket serves as the repository for the collected data.CHES Registry sub-component The data collected and stored for evaluation primarily comprise the 10GB-sized LSPart1 VM image utilized inthe UC2-1 VR Medical Training (ORAMA). The VM image is stored within a bucket in MinIO managed by CHES.When are data collected?
The data was collected during the 2nd quarter of 2024.
Instruments/tools: MinIO, MinIO client (mc), Prometheus, Kubernetes Dataset Lifecycle Framework provided by IBM’sDatashim, Python3, shell, Docker
Methodology/Procedure:
CHES component

 To assess the component’s performance and effectiveness, several metrics are collected utilizing thePrometheus system. The performance evaluation was performed through Locust, an open-source load-testingframework that enables the definition of user behaviour and supports running load tests distributed overmultiple machines.
CHES Registry sub-component

 The effectiveness of the sub-component is evaluated through the latency involved in fetching the VM imagefrom both a remote and the local registry.
Metrics to analyse the results

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 41 of 107

 Cache hit ratio Transaction rate Latency

3.4.2 Experimentation Scenarios
Three distinct experimental scenarios were devised to evaluate CHES and CHES Registry. The first twoscenarios aimed to measure the cache performance and the transaction rate of CHES, while the thirdscenario focused on assessing the feasibility and efficiency of the CHES Registry, specifically in termsof latency.
3.4.3 Evaluation tests, data collection and analysis
Assessment of CHES cache performance
The caching performance of CHES was assessed with the utilization of Locust. For the purposes of theexperiment, 20 users were configured to execute distributed query requests (read operations). Metricdata were collected using Prometheus agents running on the node responsible for data storage.Specifically, these metric data was collected at 2-minute intervals throughout the operational span ofthe component, i.e. for the whole duration that CHES was active and ready to serve data requests. Theperformance of MinIO's native "disk cache" feature was evaluated using a collection of small tomedium binary files ranging from 5MB to 99MB. These files, originated by DOTES UC (UC2-2 VR TourCreator), comprised the evaluation dataset stored in a MinIO bucket managed by CHES.
Themost important metric for assessing the cache performance of CHES is the Cache Hit Ratio, definedas follows: Hit Ratio = #cache hits / (#cache hits + #cache misses)
A cache hit denotes the successful retrieval of content from the cache instead of the original storage.Conversely, a cache miss indicates the absence of the requested data in the cache memory, promptinga query to the origin storage. Following a cache miss, the request is redirected to the origin storage,and upon retrieval, the content is transferred to the user and, if feasible, cached for future access. Themetrics for cache hits and cache misses were derived from Prometheus, collected at a two-minuteinterval. Specifically, minio_cache_hits_total and minio_cache_missed_total were utilized to quantifycache hits and cache misses, respectively.The results indicate a cache hit ratio of 93%: Hit Ratio = 6124 / (6124 + 412) = 0,93 = 93%
Analysis of CHES transaction rate performance
The transaction rate in a storage system refers to the capacity at which the system can handle readand write operations, typically measured in transactions per second (TPS) or requests per second(RPS). It indicates the system's ability to process data access requests efficiently and quickly, reflectingits overall performance and responsiveness.
The evaluation of CHES's transaction rate was performed using Locust, yielding an average result of6.1 RPS, as illustrated in Figure 20. In alignment with the preceding experiment, a configuration of 20users was established to execute distributed query requests (read and write operations) over the dataprovided by DOTES UC (UC2-2 VR Tour Creator) and stored within a bucket inMinIOmanaged by CHES.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 42 of 107

Figure 20 - Average RPS - CHES

Additionally, a blockchain database, namely BigchainDB was explored as an alternative solution. Morespecifically, BigchainDB supports both blockchain (decentralization, immutability, and owner-controlled assets) and database properties (high transaction rate, low latency, indexing, and structureddata querying). Experimental results demonstrated that CHES is able to achieve a higher RPS comparedto BigchainDB (3.9) for a specific class of experiments.
Evaluating CHES Registry sub-component
The seamless delivery of XR applications on resource-constrained edge devices, poses uniquechallenges due to limited network bandwidth, latency constraints, and intermittent connectivity.Additionally, the size of XR application images is often significant, and downloading these images fromremote repositories can put a burden on the limited network bandwidth and introduce significantlatency. CHES Registry sub-component serves as a crucial component, addressing the need to bringapplication images closer to the edgewhileminimizing network traffic and image download durations.
The feasibility and efficiency of the CHES Registry are evaluated through the examination of onespecific use case scenario: UC2-1 VR Medical Training. During the pilot evaluations of the VR medicaltraining application, retrieving the 10GB-sized LSPart1 VM image from a remote repository led toconsiderable network congestion, causing delays in image download and concurrent networkoperations. This issue was addressed by pre-positioning the VM image within the CHES Registry on thesame edge node before initiating a new VR session request. This change, which involved deploying thenew VM from a local repository rather than a remote one, significantly reduced deployment times. Inthe tests without CHES Registry pre-loading, the application took over 10 minutes to deploy, and insome cases, even up to 20 minutes. With CHES Registry pre-loading, deployment times dropped to 1-2 minutes. These results indicate that CHES Registry achieved deployment times up to 10 times fasterthan raw Kubernetes deployment.
Overall, the evaluation reveals a significant reduction in application deployment time, indicating thepositive impact of the proposed solution.
3.4.4 KPIs assessment
Regarding the general objectives of the CHARITY project, this component has been developed in theambit of the Objective #2 - Provide holistic support for the orchestration of advanced media solutions.More specifically, the KPIs that are satisfied are the following: KPI-2.2 Storage formats: at least one (block, file, object)o As already mentioned, as a storage solution, an open-source framework created byIBM is utilized, called MinIO. This framework uses object storage over block storage,so it is in fact a combination of the two systems, preserving the lightweight distributednature of block storage while providing the plethora of metadata and easy usage ofthe object storage. Extensive research has been conducted in the field of storage solutions inedge computing infrastructures. A scientific journal entitled “A Lightweight

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 43 of 107

Storage Framework for Edge Computing Infrastructures/EdgePersist” hasbeen published in Software Impacts (Elsevier) presenting the proposed edgestorage solution. KPI-2.3 Edge storage hit rate: higher than 70%o The native “disk cache” feature of MinIO has been utilized. Disk caching feature refersto the use of caching disks to store content closer to the tenants allowing users tohave the following: i) object to be delivered with the best possible performance andii) dramatic improvements for time to first byte for any object. Experimental resultsrevealed a hit ratio exceeding 93%. KPI-2.4 Blockchain for edge storage transaction rate: more than 4 transactions per secondo A blockchain database, namely BigchainDB was explored as an alternativesolution. Experimental results demonstrated that MinIO is able to achieve a highertransaction rate (6.1) compared to BigchainDB (3.9) for a specific class of experiments. A scientific journal in the context of performance of storage systems in edgecomputing infrastructures entitled “Performance Analysis of Storage Systemsin Edge Computing Infrastructures” has been published in Applied Sciences(MDPI) to the Special Issue Cloud, Fog and Edge Computing in the IoT andIndustry Systems.o In addition, we conducted extensive experiments within a distributed computingenvironment, utilizing a configuration consisting of four nodes, and once again, weobserved consistent outcomes. Specifically, MinIO demonstrated a superiortransaction rate in comparison to BigchainDB and also achieved a better performancein both read and write operations. This reaffirms the robustness and efficiency ofMinIO across varied deployment scenarios, further underscoring its potential as ahigh-performance data storage solution. A scientific conference paper entitled “A Study on the Performance ofDistributed Storage Systems in Edge Computing Environments” has beenaccepted to the 15th IEEE International Conference on JointCloud Computing(IEEE JCC 2024), showcasing the aforementioned results.
3.5 CHARITY Adaptive Scheduling of Edge Tasks (ASET)
3.5.1 Description, procedure, metrics

Table 12. CHARITY Adaptive Scheduling component
Subtopic Title: CHARITY Adaptive Scheduling component Partners: TID
Short description and evaluation scope:
Adaptive scheduling (ASET) component focuses on the problem of scheduling inference queries that have to beallocated to DL models/resources available in the edge-cloud network at short time-scales (i.e., few milliseconds) withconsiderations on performance (QoS) and security, emphasizing on offloading workloads depending on CHARITYapplication’s requirements. ASET components is based on Kubernetes, Kafka, Prometheus, and Reinforcement Learningtechnologies.
ASET aims at selecting the best policy from a set of several policies in a realistic network settings and workloads of alarge European ISP. Some policies enable real-time applications in realistic settings, but a dynamic scheduling policy isrequired to adapt to different network conditions, topologies, and workloads. Our results show the dynamic policyautomatically adapts to conditions and effectively improves performance over baselines for edge-enableddeployments.Related requirements: No particular requirements.
Components involved: CHARITY Adaptive Scheduling component
Where are data collected and stored – measurement points:

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 44 of 107

Client generator has been created to simulate incoming app users following a Poisson distribution. This generator runson average lambda clients per minute querying the scheduler of a given geographical area (antenna). Once spawned,each client requests for processing a stream featuring randomized characteristics in terms of frame rate, required end-to-end latency, required model accuracy, frame sizes, stream duration. To capture realistic queries characteristics, we
modelled metrics of generated streams according to the reference edge applications in Table 10.When are data collected? The data was collected during the 1st semester of 2024.
Instruments/tools:
Prometheus, Kubernetes, Pytorch, Kafka, Python3, shell, Docker, Object Detection algorithmsMethodology/Procedure: in which way data are collected
A series of tests have been performed on the platform with different settings in order to compare the static policiesover a distributed pool of edge resources. The comparison is based on success, failure and rejection rates.Metrics to analyse the results
Latency, success queries, rejection queries and failure queries.

Table 13. Characteristics of reference applications

3.5.2 Experimentation Scenarios
Two distinct experimental scenarios were devised to evaluate ASET. These scenarios aimed tomeasurethe success, failure and rejection rates and the feasibility of the ASET by changing the networktopology, cloud and edge.
3.5.3 Evaluation tests, data collection and analysis
Initially, we compared the performance of the baseline policies, e.g., closest, farthest, load balancing,least impedance, random, rp-latency, rp-load and cheaper, distinguishing results for differentapplications described above. As a performance metric we consider the percentage of queries that aresuccessfully processed by the system satisfying the application QoS requirements. Figure 18 showsresults of multiple runs with lambda = 60, suggesting that there is no one-size-fits-all policy, as variousapplications may benefit differently from each policy. Varying the rate of stream requests on theantenna may further increase the uncertainty of relying on a single policy.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 45 of 107

Figure 21 - Success percentage for different apps on the full-edge topology.

Figure 22 - Performance of ASET compared with static policies for (ab) the dc- cloud topology and (cd) the co-dc-cloud topology.
Cloud deployment

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 46 of 107

First, we focus on testing the performance when all the available resources are located in a fewcentralized clusters. Static policies have small differences in performance and a dynamic approach haslittle room for improvement. The results for the dc-cloud topology, shown in Figure 19, indicate that,for this topology, ASET does not improve over static policies, and it even performs worse for higherlambdas. However, moving some resources to Central Offices (co-dc-cloud topology) makes a hugedifference. In general, all the policies achieve a higher success ratio on this configuration, as they canexploit the additional lower latency spots, and the higher level of distribution gives to ASET a certainmargin of improvement.
Edge deployment
As shown in Figure 20, the benefits of using a dynamic scheduling approach become more concrete ina full-edge topology, where resources are better distributed on multiple smaller clusters in differentlocations. In fact, the dynamic approach of ASET is able to achieve a constant improvement over anystatic policy, with a higher success ratio over time while maintaining the same rejection rate as thebest static-policy. ASET effectively reduces the number of queries that are handled violating one ormore QoS requirements.

Figure 23 - Performance of ASET compared with static policies for the full-edge topology. (a) (c) and (d) showaverages of multiple runs with λ = 60.
3.5.4 KPIs assessment
Regarding the general objectives of the CHARITY project, this component has been developed in theambit of the Objective #2 - Provide holistic support for the orchestration of advanced media solutionsfocusing on distributing jobs on edge device architectures KPI-2.1.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 47 of 107

4 Use case Evaluation and results
4.1 UC1-1 Holographic Concert and UC1-2 Holographic meetings
4.1.1 Description, procedure, metrics

Table 14. Description of evaluation subtopic - Holographic Concert and Holographic meetings
Subtopic Title: Holographic Concert and Holographic meetings Partners: HOLO3D
Short description and evaluation scope:
Our plan is to measure latency and data rate. Since the number of consumers and devices is finite and quite low,the latency is expected to be related to the internet connection, rather than anything else. We need to conducttesting to determine the maximum acceptable latency that is acceptable while not degrading the QoE (videoquality and synchronization).
Related requirements:
F_UC1_01: CHARITY provides Cloud server with resources necessary to achieve KPIs.
F_UC1_02: CHARITY provides cloud-based software to receive, decompress and render / modify the content inthe cloud in real time.
F_UC1_03: CHARITY software renders in real time several types of pre-set video modes and resolutions, forseveral types of Holographic Displays.
F_UC1_04: APPLICATION PROVIDER provides speaker PC, video camera, lights, black background, secondaryscreen.
F_UC1_05: APPLICATION PROVIDER provides speaker PC with software to retrieve the raw, 2D video from thevideo camera and send it to the Cloud server.
F_UC1_06: APPLICATION PROVIDER provides client PC, Holographic Display, webcam, mic for 2-waycommunication with the Speaker PC.
F_UC1_07: APPLICATION PROVIDER provides client PC with software to send live video/sound stream to theCloud server.
F_UC1_08: APPLICATION PROVIDER provides client PC with software to receive the scrambled, 3D adapted videofrom the Cloud Server and send it to the Holographic Display.
F_UC1_09: APPLICATION PROVIDER provides client PC with software to synchronize with the other connectedclient PCs.
F_UC1_10: APPLICATION PROVIDER, the software F_UC2_08 can choose to retrieve a different type ofscrambled, 3D adapted stream from the Cloud server according to the connected Holographic Display.
F_UC1_11: APPLICATION PROVIDER provides speaker PC with software to convert the shared content (jpg, pdf,doc, ppt, mp4) to the same type of raw,2d video as in F_UC1_05 (Holographic meetings scenario).
NF_UC1_01: The video resolution should be > than full HD (1920x1080) @ 30 fps.
NF_UC1_02: Average latency between receiving the raw, 2D video stream from Speaker PC and rendering it forthe specific Holo Display resolution and format required by the Client PC<= 30-600 Seconds
NF_UC1_03: Average latency between receiving the raw, 2D video stream from Speaker PC and rendering it forthe specific Holographic Display resolution and format required by the Client PC<=1000ms (second scenario).
Components involved: Cyango-media-server
Where are data collected and stored – measurement points:
Data is directly computed in the Speaker and Client PCs. We do not intend store any data.
When are data collected?
Several sessions of 60 minutes each.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 48 of 107

Instruments/tools:
Full hd/4k cameras that support RTMP streaming,
Methodology/Procedure:
Data is directly computed in the Speaker and Client PCs.
Metrics to analyse the results

 Available Incoming Bitrate Available Outgoing Bitrate Bytes Discarded On Send Bytes Received Bytes Sent Current Round-Trip Time Total Round Trip Time

4.1.2 Experimentation scenarios
The video livestreaming scenario involves a speaker streaming from a streaming device (such as acamera or webcam) to the cyango-media-server component. This component initiates data processingand optimization to deliver real-time streaming video and high-quality audio.
This scenario involves cyango-media-server, where the goal is to achieve an average latency < 20 ms.
The same applies to the client PC connected to the holographic display, essentially performing thesame function in reverse.

4.1.3 Evaluation tests, data collection and analysis
Initial tests: Video Streaming over wired local network
Our first tests were relevant to both UC1-1 and UC1-2 use cases.
Our initial tests were conducted using TCP. As anticipated, the stability was satisfactory, but latencywas high.
Over a 1gb wired connection, we observed a 5000-7000 ms delay between theMusician and the ClientPCs when streaming a 1280x720 video at 25 fps with approximately 3500 kbps. The latency was mostlyinduced by the local video manipulation component that vastly depends on the computerperformance.
We utilized themost challenging template for the Dreamoc Diamond, a four-sided holographic device
We then transitioned to UDP for local streaming. We made some video and error handlingoptimizations, which slightly improved latency to 3000-4000 ms for the same 1280x720 video streamat 25 fps and ~3500 kbps. However, we encountered another issue: the sound was no longersynchronized with the video stream. We used the same video manipulation template designed for themost challenging four-sided holographic device.
The results were not conclusive, as performance largely depended on the hardware configuration ofboth theMusician's and Client PC. The observed latencywasmuch higher (up to tenfold) than expectedfor a local streaming solution, leading us to conclude that a cloud-based solution with significantlyenhanced computing power was necessary.
Video Streaming – Cloud Server

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 49 of 107

We successfully integrated our local streaming app with the CHARITY Edge Cyango-media-server.Initially, we tested various local and web streaming protocols, but most yielded unsatisfactory resultsdue to high latency. As a result, we opted to implement the WebRTC protocol.
The streaming occurred during two sessions of 2 hours each, and the following results were recorded.
For the sake of consistency, we tried to use the same video settings for the stream:

 Device: Microsoft LifeCam HD-3000 Resolution: HD (1280x720) Bitrate (kbps): 2500-3500 Frame rate: 25 Video codec: H264
The findings indicate that latency has been successfully reduced to below 1000 ms, with synchronizedaudio and video. These results are derived from the analysis of raw, unedited videos, given that thedevelopment of the cloud video manipulation component is ongoing.

Figure 24 - Network load with 1280x720 resolution @25fps and an average 2500kbps
Network load shows a stable average of 2.8 Mbps sent and 2.9 Mbps received over a 60-minutesession.

Figure 25 - Latency with 1280x720 resolution @25fps and an average 2500kbps
The latency graph indicates a relatively stable latency of 150-200 ms on average over a 60-minutesession. While this raw, unaltered video stream exhibits latency levels that are insufficient for theHolographic Concert Use Case, ongoing testing will involve the cloud video manipulation component.Upon its completion, subsequent tests will assess any additional latency introduced by videomanipulation.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 50 of 107

We have integrated the video editing tool for the large Holographic Device (Dreamoc Diamond) andhave also incorporated sound. Our findings indicate that the impact on performance is negligible.Despite testing with longer-distance connections (specifically, between Bucharest-Istanbul andBucharest-Munich), we have maintained latency under 1000 ms.
4.1.4 KPIs assessment
KPI-UC-1.1: Average latency < 20 ms.
Description: This KPI measures the time delay from the transmission of input data to the reception of3D-point cloud data. Ensuring low latency is crucial.
The average latency currently exceeds 20 ms. It remains uncertain whether this meets therequirements for the Holo Concert use case; further tests are necessary, particularly after thecompletion of the video manipulation and synchronization components.
KPI-UC-1.2: Decrease in bandwidth by 50%
This KPI focuses on reducing the amount of data transmitted over the network by half. This is crucialfor optimizing network resources and reducing costs.
This has not yet been achieved, but the following implementation strategies will be attempted:

• Data Compression: Implement advanced data compression techniques to reduce thesize of the transmitted data.
• Efficient Data Encoding: Use efficient encoding schemes that reduce the data sizewithout significant loss of quality.
• Selective Data Transmission: Transmit only essential data needed for the task, possiblyusing data filtering or aggregation methods.
• Caching: Use caching mechanisms to store frequently accessed data locally, reducingthe need to transmit data repeatedly.

KPI-UC-1.3: Frame rate of the holographic visualization >= 30Hz
Description: This KPI ensures that the holographic visualization operates at a minimum of 30 framesper second (FPS), providing a smooth and seamless visual experience. This has been achieved, furtherimprovements can be obtained through the following Implementation Strategies:

• Optimize Rendering Pipeline: Enhance the rendering pipeline to ensure efficientprocessing of visual data, maintaining high frame rates.
• High-Performance Graphics Hardware: Use high-performance GPUs to handleintensive rendering tasks.
• Efficient Resource Management: Allocate resources effectively to ensure consistentframe rates, avoiding bottlenecks in the rendering process.
• Parallel Processing: Utilize parallel processing techniques to distribute the renderingworkload across multiple processors or cores.

KPI-UC-1.4: Data services required (raw data streaming, rendering, compression, caching, encoding)=>5.
Description: This KPI indicates that at least five different data services are necessary for the use case,ensuring a comprehensive and robust data processing workflow.

 The tests were made with five different data services: i.e.raw data streaming, rendering,compression, caching, encoding.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 51 of 107

4.1.5 Benefits from the use of the Platform/Component
The CHARITY platform provides three key benefits to UC1-1 and UC1-2:

 Cost-efficient video processing capabilities— by optimizing how and where the video editingis performed and by removing the dependency on local third party software; Scalability and flexibility — CHARITY platform can quickly scale resources up or down basedon demand, providing flexibility to handle varying workloads. The local software that was usedbefore needed a separate licence for every instance run simultaneously. Reliability and failover elastic mechanisms for ensuring high availability and minimizingdowntime. The initial local software did not offer any reduncy nor failover mechanisms.

4.2 UC2-1 VR Medical Training
4.2.1 Description, procedure, metrics

Table 15. Description of evaluation subtopic - Realistic simulation in VR medical training
Subtopic Title: Realistic simulation in VR medical training Partners: ORAMA
Short description and evaluation scope:
ORAMA plans to use the metrics of latency, data rate and number of users in order to determine the maximum latencythat is supported in relation to the number of concurrent users in a VR session. The end-to-end latency derives fromthree factors: processing in the edge /cloud resources, transmission over the network and processing on the HMD. End-to-end latency includes the rendering and the streaming latency, HMD Decoding time and Time to latch frame as wellas the jitter and refers to the time since a user movement is registered by the system and for the corresponding imageto be displayed on the headset’s screen. In addition, we aim to approximate both the data cost and the latency cost(network related) each additional user adds to a VR session.
Related requirements:
F_UC2_01: APPLICATION DEVELOPER: Use themirror networking service or similar for matchmaking, creation of sessionand selection of an already existing session (IP, location, userid master) photon.
F_UC2_03: APPLICATION DEVELOPER: Session management through a relay server or message broker in the cloud.
F_UC2_07: APPLICATION DEVELOPER: The application component running on the HMD should be aware of theconnected resources (app instance on edge) where part of the application has been offloaded.
F_UC2_08: APPLICATION DEVELOPER: The application running on the HMD should be able to connect via standardizedprotocols to the resources (app instance on edge) where part of the application has been offloaded.
F_UC2_11: APPLICATION DEVELOPER: Support continuous streaming of produced frames, that combines two images(one per eye) per user, from the edge resource node to the HMD.
F_UC2_13: APPLICATION DEVELOPER: The resource discovery mechanism of CHARITY should offload part of theapplication functionality from the HMD to nearby edge resource considering lowest average latency.
F_UC2_17: APPLICATION DEVELOPER: Establish communication of the HMD and the Remote Service (RS) in thecloud/edge when launching the app on the HMD.
NF_UC2_01: USER, APPLICATION DEVELOPER: Round trip time (RTT) latency <15ms.
NF_UC2_04: USER, APPLICATION DEVELOPER: Connectivity from user HMD device <10 ms.
NF_UC2_10: APPLICATIONDEVELOPER: Receive errormessages on potential problemswith existing resources, continuethe VR app by communicating with another newly discovered resource (discovery and placement).
NF_UC2_17: USER, APPLICATION DEVELOPER: Performed actions from all users must be synchronized to the outputrendered image of each individual user’s HMD with lowest average latency.
Components involved: Activation Proxy, LSPart1, HMDApp, Photon
Where are data collected and stored – measurement points:

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 52 of 107

Network statistics regarding the streaming of rendered images is measured on the LSPart1 and is stored on the HMD.User login information, and User analytics is stored on the LSPart1 and sent to the Microsoft Azure Cloud.
When are data collected?
Each session of tests lasts approximately 5 minutes.
Instruments/tools:
Mobile HMD, LSPart1, LSPart2
Methodology/Procedure:
Data is captured and timestamped on the HMD from the streamer client and stored temporarily on the HMD. At specifictime intervals, every 40 secs, all captured metrics are transmitted to the Analytics Engine through the AMF. User inputcan greatly vary in each VR session. We aim to scale to over 50 users in the experiments.
Metrics to analyse the results

 Frames Per Second: The frames per second rendered by the machine Frame Delivery Time: Time from the creation of the frame to the time it is displayed on the HMD Bandwidth Utilization (kbps): Throughput used by the streaming application Bandwidth Utilization (%): Estimated throughput usage based on available throughput estimates Round Trip Delay (ms): Network Latency from the Streaming Machine to the HMD Jitter (us): Variance of Network Latency Packets Received (total): Total packets sent to the HMD Packets Lost (cumulative): Total packets lost by the HMD Packets Dropped (cumulative): Total packets dropped due to high latency Packets Lost (Percentage): Percentage of packets lost

4.2.2 Experimentation scenarios
A number of testing sessions were conducted, in which experiments were incrementally staged toreach a large number of CCUs, exploiting both real users with available HMDs and simulated users viathe exploitation of bots. Simulated Bot users, spawned by a script developed by ORAMA, behave as areal HMD user and generate the same overhead on the network bandwidth and on the CPU load ofthe LSPart2 server, reaching the target of 50 CCUs. The experiments in this deliverable aimed toseparately assess the Use Case components and the orchestration of the CHARITY platform. On onehand, the focus was on evaluating the deployment of the developed components within one of theproject's testbeds. On the other hand, the goal was to assess the metrics and KPIs before furtherleveraging the orchestration functionalities of the CHARITY platform. The HMDs for the experimentwere provided from ORAMA and the participants were members from the ORAMA team located inGreece. The LSPart1 and LSPart2 components were deployed in CHARITY platform, specifically at theSofia Testbed provided by OneSource. For each LSPart1, an XR Application Activator Blueprint with adocker image is created and acts as a proxy, which activates an always-on Machine, which runs theLSPart1 software, in the ORAMA Lab. In addition, another Machine was exploited for simulating up to55 users, depending on the scenario, via bots. The LSPart2 was deployed in a separate Blueprint as adocker image. Each participant’s HMD was connected to a separate machine, where the LSPart1 wasrunning. The HMDwould connect to the LSPart1 proxy created in the CHARITY Platform and would getassigned on a physical machine where it would then connect. The machines were connected usingEthernet. The HMD was connected through 5Ghz Wi-Fi. The following tests were conducted:
Test 1 - 1 HMD User and 20 Bots
The test was conducted via the deployment of 1 container for the XR Activation Proxy (Blueprint withDocker image), 1 machine (Windows 10 with RTX 3060 GPU) for the LSPart1 and 1 container for theLSPart2 (Blueprint with Docker image), and 1 machine (Windows 10) to run the 22 Bots.
Test2 - 2 HMD Users and 30 bots

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 53 of 107

The test was conducted via the deployment of 2 containers for the XR Activation Proxy (Blueprint withDocker image), 2 machines (Windows 10 with GTX 1060 GPU) for the LSPart1 and 1 container for theLSPart2 (Blueprint with Docker image), and 1 machine (Windows 10) to run the 33 Bots.
Test3 - 3 HMD Users and 50 botsThe test was conducted via the deployment of 3 containers for the XR Activation Proxy (Blueprint withDocker image), 3 machines (3 Windows 10, with 1x RTX 3060 GPU and 2x GTX 1070 GPUs) for theLSPart1 components, 1 container for the LSPart2 (Blueprint with Docker image), and 1 machine(Windows 10) to run the 55 Bots.
4.2.3 Evaluation Tests, data collection and analysis
Test 1 -   1 HMD User and 20 BotsIn the first test, the distributed VR pipeline was evaluated with one HMD user and 20 bots. The systemmaintained a steady frame rate of 75 fps, which is suitable for interactive VR simulations, ensuring asmooth and immersive experience. Packet loss was minimal, indicating reliable network performance.The streamed encoded frames were produced utilizing H.264 adaptive compression, where p-frames(predicted-frames) are encoded in greater compression rate, for frames that slightly differ from eachprevious one, and i-frames (intra-coded-frames) are encoded in lower compression rate, for framesdiffer significantly from each previous one. In that respect, the bandwidth consumption was variable,since the recorded user was constantly changing the camera orientation during the experimentationscenario, reflecting the dynamic nature of the XR pipeline. Additionally, the average latency forencoding, decoding, and rendering was recorded at 22.1 ms, demonstrating efficient processing, veryclose to the set KPI value. Network processing, including network and send latency, was measured atan average of 25.5 ms, in total 45 ms. These results highlight the system's capability to handle VRsimulations with low latency and high frame rates, crucial for user immersion and interaction.

Figure 26 - Latency metrics, FPS, Packet loss and Bandwidth consumption on the HMD for Test 1

Test2 - 2 HMD Users and 30 botsIn the second test, the system was evaluated with two HMD users and 30 bots. The frame rateremained steady at 75 fps, suitable for interactive VR simulations, and packet loss was minimal.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 54 of 107

Bandwidth visualization showed variability during moments where the user changed the HMD cameraorientation, especially towards the end of the simulation. The average latency for encoding, decoding,and rendering increased to 29.8 ms, attributed to the use of a lower-spec machine (LSPart1) with aGTX 1070 GPU, compared to a high-end machine with an RTX 3060 GPU used in the other two tests.This underscores the importance of high-end GPUs in maintaining low latency. Network processing,including network and send latency, increased to 32.6 ms, also due to the lower specifications of theLSPart1 machine, increasing the total latency of the frame in the HMD to 62 ms, showcasing asatisfactory QoE even with low spec machines. These findings emphasize the critical role of hardwarespecifications in achieving optimal performance in distributed XR environments.

Figure 27 - Latency metrics, FPS, Packet loss and Bandiwidth consumption for Test 2

Test3 - 3 HMD Users and 50 botsIn the third test, the system's performance was assessed with three HMD users and 50 bots. The framerate consistently remained at 75 fps, ensuring a suitable environment for interactive VR simulations,with minimal packet loss. Bandwidth visualization varied when the users' camera orientation changedsignificantly especially at the start and end of the simulation. The average latency for encoding,decoding, and rendering was recorded at 19.7 ms, demonstrating efficient processing even withincreased user load. Network processing, including network and send latency, was measured at 27.2ms, indicating effective handling of network communication. The physics server's incoming bandwidthgradually increased as users joined the VR session, stabilizing at around 0.35 Mbps after all 53 userswere connected. The outgoing bandwidth followed a similar pattern but remained lower due to therelay server's role in distributing user positions, reducing the load on the LSPart2 machine. Theseresults showcase the system's scalability and robustness in managing multiple users and bots in adistributed XR environment.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 55 of 107

Figure 28 - Latency metrics, FPS, Packet loss and Bandiwidth consumption for Test 3

Figure 29 - Incoming and outgoing bandwidth consumption of the Physics server (LSPart2) while 53 usersgradually enter the VR session.
4.2.4 KPIs assessment
KPI-UC2.1: Average latency < 20 ms. In all above experiments (see Figure 23, Figure 24, Figure 25) theencode/decode/rendering latency is below 20 ms.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 56 of 107

KPI-UC-2.2: Number of CCU >50. This KPI was achieved with 38 users (3 HMDs and 50 bots), as it isdocumented in Figure 26 and Figure 27. It is expected that in the future with certain optimizations wecould reach to even higher amount of CCUs.

Figure 30 - Right: Physics server computations with 53 concurrent users in the same VR session. Left: Renderedscene
KPI-UC-2.3: Number of different VR HMDs >5. We conducted successful tests with 6 different HMDs:Meta Quest-1, Meta Quest-2, Meta Quest-3, Meta Quest-Pro, Pico-4, HTC-Vive-Focus (Figure 28). Theachievement of this KPI indicates that our solution is device agnostic and easily scalable to both lowand high spec HMDs.

Figure 31 - 6 different types of VR HMDs
KPI-UC-2.4: Data services required (rendering, compression, caching, encoding) =>4. The VR medicaltraining use case involves 5 different data services: rendering, encoding, decoding, networking andphysics. In all conducted experiments we recorded the processing times for all involved services (seeFigure 23, Figure 24, Figure 25, and Figure 26.
KPI-UC-2.5:  Automated configurable soft-body simulation for objects with large number ofvertices >= 8.000 vertices. The VR medical training sample application from ORAMA, which serves asthe pilot prototype for testing the developed services and exploiting the functionalities of the CHARITYplatform, includes various rigged objects with varying numbers of vertices (e.g., the patient’s leg with

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 57 of 107

8252 vertices). As these are not softbodies, to achieve this KPI we have experimented the dissectedphysics server with the Standford Bunny model that is modelled as a rigged softbody with 17,260vertices (Figure 29).

Figure 32 - Right: Physics server computations for real-time deformations. Left Rendered scene.
4.2.5 Benefits from the use of the Platform/Component
The CHARITY platform brings considerable advantages for deploying and managing our use casecomponents. The integration of CHARITY’s capabilities has resulted in a seamless and efficientworkflow, significantly enhancing our overall system performance and deployment strategy. Theinclusion of advanced features like automated deployment APIs has notably improved the system'sperformance, scalability, and user experience.
Within CHARITY, we transformed our VR pipeline from monolithic to distributed, allowing the VRHMD to be light. This fact enabled the use of our VR medical training application by even low specHMDs, providing a device agnostic framework. The Remote Rendering Component offloads heavygraphics rendering to powerful machines in the cloud, allowing for higher fidelity graphics than whatis possible on untethered HMDs. The Physics server component excels in executing VR physicscomputations, a critical aspect for maintaining the integrity and performance of our VR pipeline. Byutilizing cloud resources for physics computations, the system supports high-intensity physics tasks,such as soft-body simulations, and enables over 50 concurrent users to collaborate and interactwithin the same VR session, thereby providing an enhanced overall quality of experience.
The Application Management Framework (AMF) simplifies the configuration of our use casecomponents through its dedicated website, which offers a user-friendly interface. This ensures thatsetting up Blueprints for our Physics Server and remote rendering components is intuitive andefficient, significantly reducing the complexity associated with manual deployment and configurationprocesses. A major benefit of the CHARITY platform is its ability to automate the deployment of usecase components. Leveraging the AMF's API, we can programmatically manage the deploymentprocess, ensuring optimal deployment of the Physics Server and remote rendering components,which minimizes latency and enhances the user experience. The API integration allows for flexibleand dynamic deployment, adapting in real-time to changing conditions and demands. The CHARITYplatform supports multiple deployment strategies, providing the necessary scalability to grow andadapt our system. Whether deploying simultaneously using a single Blueprint or managing separateBlueprints for more flexibility, the platform optimizes resource utilization and effectively meetsvarying demands.
Additionally, the CHARITY platform supports real-time monitoring and management of deployedcomponents. By integrating latency data collection and monitoring capabilities, the system remainsresponsive and efficient. The Physics server can leverage these insights to trigger necessary actions,

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 58 of 107

such as redeploying in optimal locations and adapting resources, ensuring consistent performanceand quality of service.
4.3 UC2-2 VR Tour Creator
4.3.1 Description, procedure, metrics

Table 16. Description of evaluation subtopic - Virtual Experiences Builder for the web
Subtopic Title: Virtual Experiences Builder for the web Partners: DOTES
Short description and evaluation scope:
We plan to measure latency, data rate and number of consumers to understand the overload limits and the maximumlatency that is acceptable while not degrading the QoE of the number of concurrent users and the number of requestsfrom the client side.
Related requirements:
F_UC2_22: APPLICATION DEVELOPER: Cloud video 360 editor. Allows USER to edit the virtual experiences with videoand audio on the cloud
F_UC2_ 23: APPLICATION DEVELOPER: Real-time video streaming. The VIEWER must be able to consume the livestreaming video on the Story Front-end, 2D or 360 videos can be used.
F_UC2_24: APPLICATION DEVELOPER Real-time 3DModel server-side render. The VIEWER should be able to see the 3Dmodel with adaptative quality depending on the network quality.
F_UC2_25: APPLICATION DEVELOPER: Real-time audio translation. The edge cloud should be able to process the audioof a live streaming video and transcribe it on the APPLICATION DEVELOPER: Cloud processing power. The edge cloudshould have enough resource allocation depending on the demand of the media files that the VIEWER requests.
NF_UC2_19: USER, APPLICATION DEVELOPER: Data rate >50 Mbps supported by at least 5Ghz wifi or 5G.
NF_UC2_20: APPLICATION DEVELOPER: Receive error messages on potential problems with existing resources,continue the VR app by communicating with another newly discovered resource (discovery and placement).
NF_UC2_21: USER: Continue using the application in case of problems in network resources with minimal delay.
NF_UC2_22: ADMINISTRATOR: Maintain application integrity and user’s security.
NF_UC2_23: APPLICATION DEVELOPER, USER: Proximity of the relay server based on the users’ footprints.
NF_UC2_24: APPLICATION DEVELOPER: GPU and CUDA acceleration capabilities available at edge nodes, where part ofthe application is instantiated.
Components involved: cyango-story, cyango-backend- cyango-database, cyango-worker- cyango-media-server,cyango-cloud-editor
Where are data collected and stored – measurement points:
Data is collected on the cyango-story or cyango-cloud-editor and stored on the Prometheus instance
When are data collected?
The amount of time to collect the data depends on usage of the end-user, but typically it can be around 5 hours.
Instruments/tools:
360 Cameras that support RTMP streaming, cyango-story, cyango-backend- cyango-database, cyango-worker- cyango-media-server, cyango-cloud-editor, HMDs
Methodology/Procedure:
Data is directly computed in the cyango-story or cyango-cloud-editor on the client’s browser side, that can be desktop,mobile or HMD. The data is sent to cyango-backend and then exposed and stored via an endpoint to a Prometheusinstance.
Metrics to analyze the results

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 59 of 107

 Available Incoming Bitrate; Available Outgoing Bitrate; Bytes Discarded On Send; Bytes Received; Bytes Sent; Current Round Trip Time; Total Round Trip Time;

4.3.2 Experimentation scenarios
The VR video livestreaming scenario where a creator can start streaming from any streaming device(360 camera, webcam) to the cyango-media-server component which starts the data processing andoptimization to deliver a real-time streaming of up to 8k resolution video and high quality audio. Thisscenario involves cyango-media-server, cyango-story, cyango-backend, cyango-editor and cyango-database. The goal is to achieve an average latency < 20 ms.
The content processor scenario where video, audio, images and 3D models are converted from almostany format to optimized formats for web content streaming and consumption. This scenario involvescyango-editor, cyango-backend, cyango-worker and cyango-database
The number of different HMD headsets test scenario where we load the Cyango XR experiences fromcyango-story component.
The 100 Rooms/Scenes scenario is where we test the loading times of XR experiences with a bigamount of assets distributed on up to 100 XR scenes/rooms and still deliver a good QoE to the end-users.
4.3.3 Evaluation tests, data collection and analysis
VR Video Livestreaming Tests
The livestreaming use case was implemented on the cyango-media-server component which is hostedin the edge. There were many experiments and tests to achieve a working prototype of a real time 360video experience. This was achieved by using the WebRTC protocol, after many unsuccessful testswith HLS, LHLS and DASH, which are also streaming protocols, but introduced too much delay.
We implemented the Livestreaming VR functionality with a metrics middleware to evaluate a set ofbandwidth and video conditions parameters. We made a test by streaming a 5.7k video to the cyango-media-server and consuming it via the cyango-story component on different premises. The streamingwas made for 2 hours, which we retrieved some metrics. Some of the most relevant metrics gatheredare shown in Figure 30, Figure 31, Figure 32, Figure 33, Figure 34 below:

Figure 33 - Bytes received

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 60 of 107

Figure 34 - Bytes sent

Figure 35 - Total Round Trip

Figure 36 - Current Round Trip

Figure 37 - Available incoming bitrate
Content Processor Tests

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 61 of 107

The video converting use case has the most progress in terms of testing and implementation. Thisfeature requires a continuous improvement and trials with multiple video formats and sizes. We wantto enable our users to upload any kind of video and stream it in the most effective way. The customalgorithm we implemented derives from the cyango-worker component and it is responsible forreceiving the uploaded file and convert it using the open-source ffmpeg library. The algorithm uses aencoding ladder strategy that generates many quality levels of that file (video, image and audio),allowing a better experience. We also found out that there are limitations on the video quality thatcan be played in the VR headsets, particularly concerning the bitrate and resolutions. To achieve agood balance between quality and performance for any kind of video is hard, because there are manyfactors and fine-tuning parameters that can improve or degrade the user experience. We conductedtests with many video formats and resolutions with different bitrates for multiple combinations offfmpeg commands. We have achieved a considerate good relation between quality, size and bitratethat converts any video format up until 500 Mb to a streamable HLS playlist.
We found that themain difference between running a ffmpeg command for each resolution separatelyversus running a single ffmpeg command with all resolutions at once affects the encoding process andthe resulting output quality and size.

Test 1: Running Separate Commands for Each Resolution
In this approach, we run ffmpeg multiple times, once for each resolution variant, creating separateoutput files for each variant. Each command encodes the video and audio for a specific resolution withits own specified settings (bitrate, resolution, codec, etc.).
This approach gives more control over the encoding parameters for each resolution, allowing to fine-tune settings independently.
However, it can be more time-consuming and resource-intensive since it’s encoding used the samesource video multiple times for different resolutions. But the quality of the output was slightly betterthan test 2.

Test 2: Running a Single Command with All Resolutions:
In this approach, we used ffmpeg to generate multiple output variants (resolutions) within the samecommand, creating a single master playlist that references all the variant playlists.
The command processes the source video only once, and the video encoder produces multiple videostreams of different resolutions from the same source.
This approach is more efficient in terms of time and processing resources since it only needs to processthe source video once, regardless of the number of output resolutions.
However, it may have less control over individual encoding settings for each resolution, as thecommand applies the same encoding settings to all resolutions. The output generated less visualquality for the video comparing with test 1.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 62 of 107

Figure 38 - Original mp4 video perceived quality

Figure 39 - Converted mp4 into HLS format perceived quality

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 63 of 107

The approach to choose depends on the specific requirements of the application and the trade-offswe are willing to make.If we need fine-grained control over the encoding settings for each resolutionand have enough processing resources and time, running separate commands for each resolutionmight be preferred. If efficiency is a priority and we can sacrifice some individual control over encodingsettings, running a single command with all resolutions can be a more practical and faster solution.Regardless of the approach, using adaptive bitrate streaming techniques (like HLS) and providingmultiple resolution variants in the output will ensure that your video content is easily adaptable tovarious network conditions and playback devices, offering a better user experience for viewers.

3D Model conversion test
The original glb model used for testing is 116,6 Mb of size with 4096x4096 resolution textures. Here’sthe full inspect result from the https://gltf.report/ tool:

Figure 40 - Original 3D model metadata

Figure 41 - Original 3D model quality

https://gltf.report/

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 64 of 107

The objective is to implement a level of detail for the 3D model similar to what was done for the videoand images conversion. So, we decided to implement
level 1 with max resize of textures up to 1024x1024,
level 2 with max resize of textures up to 2048x2048,
level 3 with max resize of textures up to 4096x4096

We used the gltf-transform (https://github.com/donmccurdy/glTF-Transform) open source tool,which allows to tweak parameters to optimise the glb model. After many trials and errors, we achieveda balance between quality and size reduction of the 3D model.
After conversion, the glb file size decreased from 116.6 MB to 14.2 MB, while maintaining textures atacceptable quality for web use.

Figure 42 - Converted 3D model on cyango-editor component which shows the loading of 14.2 Mb

Different HMD models were tested with Meta Quest Pro, Meta Quest 1, Meta Quest 2, Meta Quest 3,PICO 4 and Apple Vision Pro. The experience worked and loaded the correct assets on all devices, onweb mode and on WebXR mode, except on Apple Vision Pro which lacks WebXR capabilities.
To load a XR experience with 100 rooms/scenes, developments were made on asset loading. Weimplemented an asset loading system on both cyango-editor, cyango-story and cyango-backend whichallows to wait, load and cache the correct assets on the end-user devices so it can be consumed fasteron the upcoming loads of the experience. This asset loading system also integrates the progressiveweb app system which allows to completely cache the experience offline. The experience loaded with360 images, videos, 3D models and audios in a very optimized way and adapted for each device. Forexample, we optimized the loading times adapted for smartphone scenarios, tablet scenarios, desktopscenarios and HMD scenarios.

Scene/Room loading on HMD device
The HMD scenario, we tested with a wifi connection on the HMD, where we published the story with100 rooms, andwe can see the story is optimised with a loading of 2.5mbps spike, as it is an acceptableloading time and size with adaptive number of room/scene loading.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 65 of 107

Figure 43 - HMD Test scenario

Figure 44 - Cyango-story experience loading time on HMD device

Scene/Room loading on Smartphone/Tablet device
This test scenario gave similar results of the HMD test, as the same adaptive algorithm is being used.

Figure 45 - Smartphone/Tablet Test Scenario

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 66 of 107

Figure 46 - cyango-story experience loading time on Smartphone/Tablet device

Scene/Room loading on Desktop device.
This test scenario gave similar results to the previous one.

Figure 47 - Desktop Test Scenario

Figure 48 - cyango-story experience loading time on Desktop device

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 67 of 107

4.3.4 KPIs assessment
KPI-UC2.1: Average latency < 20 ms. The average latency is difficult to measure, although based onour tests, and knowing all the external factors that could affect the latency, the average latency canbe less than 20 ms in optimal conditions.
KPI-UC-2.3: Number of different VR HMDs >5. We have tested the VR experiences on more than 5different VR HMD’s, including Meta Quest Pro, Meta Quest 1, Meta Quest 2, Meta Quest 3, PICO 4 andApple Vision Pro.
KPI-UC-2.4: Data services required (rendering, compression, caching, encoding) =>4. The tests weremade with three different data services (VR video livestreaming, transcoding VR video, rendering VRvideo and networking).
KPI-UC-2.6: Server supporting up to 100 virtual rooms. We tested an experience with 100scenes/rooms composed by 360 videos, 360 images, 3D models, spatial audio, 3D text mixed together.This experience performed effectively due to the implementation of asset loading algorithms that onlyload the necessary ones depending on the user usage.
4.3.5 Benefits from the use of the Platform/Component
The benefits from the platform are crucial for DOTES use case. As a use case we need to focus onproduct development and user QoE while assuring the best cloud deployment of every productcomponent. AMF plays a crucial role in simplifying the deployment of use case components andalleviating the DevOps complexity for the use case development team.AMF is the only interface thedevelopment team needs to take care of, by setting the basic parameters to deploy all thecomponents.
The use case benefits from CHARITY platform to:

 Automate deployments
 Monitoring for threats and possible actions
 Adapt the cloud/edge components automatically depending on the consumption
 Load balancing
 Storage management from CHES

4.4 UC3-1 Collaborative Gaming
4.4.1 Description, procedure, metrics

Table 17. Description of evaluation subtopic - Mobile multiplayer game utilising AR technology
Subtopic Title: Mobile multiplayer game utilising AR technology Partners: ORBK
Short description and evaluation scope:
UC 3.1 measures RTT and latencies between all core UC components: Game Clients, Game Servers, and Mesh Merger.The Game Servers Manager serves as an intermediary element facilitating communication across UC components. Themeasured average RTT between Game Clients and Game Servers is approximately 45ms, while the latency betweenGame Servers and the Mesh Merger is around 35ms. These values conform with the assumed KPIs, ensuring aresponsive and efficient system performance.
ORBK has successfully tested the efficient management of Docker images for game server deployment within theCHARITY platform, including tasks such as image uploading, updates, and deployment. Uploads are fast, anddeployment is efficient both using the AMF interface and via the API. The user-friendliness of AMF is exceptional;navigating through it is straightforward, and its interface is intuitive.Additionally, we have assessed the user-friendliness

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 68 of 107

and effectiveness of the CHARITYmanagementwebsite and deployment API, confirming their simplicity and reliability.
Related requirements:
F_UC3_1 ADMINISTRATOR: CHARITY should have a repository which will store docker images.
F_UC3_2 ADMINISTRATOR: CHARITY should have a website (CHARITY management website) which can be used toupdate docker images to docker images repository.
F_UC3_3 ADMINISTRATOR: CHARITY management website should display docker images uploaded to docker imagesrepository.
F_UC3_4 ADMINISTRATOR: CHARITY management website should display deployed docker images status.
F_UC3_5 APPLICATION DEVELOPER: CHARITY must have a deployment API which can be used to request for a newgame server instance.
F_UC3_6 APPLICATION DEVELOPER: CHARITY must be able to deploy docker images.
F_UC3_7 APPLICATION DEVELOPER: Deployment API must return host public IP after deploying docker image.
F_UC3_8 APPLICATION DEVELOPER: Deployed docker image must be reachable by UDP protocol through one ofpredefined ports.
F_UC3_11 APPLICATION DEVELOPER: CHARITY must deploy docker image as close (geolocation) to requesting player aspossible (with lowest latency).
F_UC3_12 ADMINISTRATOR: CHARITY should monitor deployed docker image status (CPU usage, RAM usage, overallperformance).
Components involved: Game Clients (iOS app), Game Server (Docker image), Mesh Merger (Docker image), GameServers Managers (deployed outside CHARITY platform)
Where are data collected and stored – measurement points:
The data collection process involves continuous monitoring of the system's performance during runtime. The GameServers Manager collects latency data between Game Clients and Game Servers, as well as between Game Servers andthe Mesh Merger. This data is gathered at regular intervals and stored in a dedicated database managed by GSM. Thecollection includes detailed timestamps and latencies to provide a comprehensive view of the system's performance.
Game Servers Manager uses built-in tools to measure latencies, ensuring accurate and consistent data collection. It canbe also integrated with CHARITY’s monitoring services to share this data, enabling real-time analysis and the generationof alerts if thresholds are exceeded. This approach ensures that any potential performance issues can be promptlyidentified and addressed, maintaining optimal system operation and user experience.
When are data collected?
The data are collected during the runtime of the game. Whenever at least one Game Server is deployed and running,the data are collected, exposed and analysed.
Instruments/tools:
Game Servers Manager, Game Server and Game Clients are using build-it tools to measure latencies.
Methodology/Procedure:
We measure and analyse RTT and latencies between those pairs of components:
- Game Clients and Game Server that are connected to during a game session
- Game Server and Mesh Merger
RTT (Round-Trip Time) measures the total time it takes for a data packet to travel between components plus the timethat is required for the data to be processed. This metric is crucial for understanding the responsiveness of the systemfrom the client's perspective.
Latency refers to the time it takes for a single data packet to travel between components. This metric provides acomprehensive view of the communication efficiency and is a key indicator of network performance.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 69 of 107

Metrics to analyze the results
– Latency between Game Clients and Game Server– RTT between Game Clients and Game Server– Latency between Game Server and Mesh Merger– RTT between Game Server and Mesh Merger– Game Server Docker image deployment time– Game Server Docker image + Mash Merger Docker image deployment time

4.4.2 Experimentation scenarios
The experimentation scenarios for UC 3.1 are designed to thoroughly test the performance, scalability,and reliability of the Game Clients, Game Servers, Mesh Merger, and Game Servers Manager withinthe CHARITY platform. These scenarios aim to validate the integration, monitor system behavior underdifferent conditions, and ensure that all components interact seamlessly to provide an optimal gamingexperience.

Scenario 1: Basic Deployment and Functionality Test
- Objective: Verify the basic deployment and functionality of Game Servers and Mesh Mergercomponents.
- Description: Deploy a single Game Server and a corresponding Mesh Merger using the CHARITYplatform. Ensure that the Game Client can connect to the Game Server and interact with theenvironment accurately.
- Metrics: Deployment success rate, initial connection time, basic interaction latency.

Scenario 2: Load Testing and Scalability
- Objective: Assess the system's scalability and performance under increased load.
- Description: Gradually increase the number of Game Clients connecting to a single Game Server andmonitor system performance. Repeat the process with multiple Game Servers to test horizontalscalability.
- Metrics: Response time, latency between Game Clients and Game Server, system throughput,resource utilization.

Scenario 3: Network Latency and Throughput Testing
- Objective: Measure and evaluate network latency and throughput between core components.
- Description: Collect and analyze RTT and latency data between Game Clients and Game Servers, andbetween Game Servers andMeshMerger. Perform tests under varying network conditions to simulatereal-world scenarios.
- Metrics: Average, minimum, and maximum latency, RTT values, data transfer rates.

Scenario 4: Automated Deployment and AMF REST API Testing
- Objective: Validate the automated deployment process using the AMF REST API.
- Description: Trigger deployments of Game Servers and Mesh Merger via the AMF REST APIprogrammatically. Monitor the deployment process and ensure that the components are correctlyinstantiated and configured.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 70 of 107

- Metrics: Deployment time, API response time, success rate of automated deployments.

Scenario 5: Geographic Proximity and Latency Optimization
- Objective: Ensure that the deployment of Game Servers and Mesh Mergers optimizes for geographicproximity and low network latency.
- Description: Deploy Game Servers and Mesh Mergers in various geographic locations. Measure andcompare the network latency experienced by Game Clients located in different regions.
- Metrics: Geographical deployment success, latency reduction achieved, overall user experiencequality.

Scenario 6: Failure Recovery and Redundancy Testing
- Objective: Test the system's ability to recover from failures and maintain service continuity.
- Description: Simulate failures of Game Servers andMeshMergers and observe the system's response.Ensure that the Game Servers Manager triggers the deployment of new instances as needed and thatthe system resumes normal operation.
- Metrics: Recovery time, system downtime, data integrity post-recovery.

Scenario 7: Performance Monitoring and Alerts
- Objective: Evaluate the performance monitoring and alerting capabilities of the CHARITY platform.
- Description: Continuously monitor the performance of all deployed components using the CHARITYmonitoring services. Set thresholds for key metrics and validate that alerts are triggered appropriatelywhen these thresholds are exceeded.
- Metrics: Accuracy of monitoring data, responsiveness of alerts, effectiveness of automated correctiveactions.

By conducting these experimentation scenarios, UC 3.1 aims to ensure that all components performoptimally within the CHARITY platform, providing a seamless and high-quality gaming experience.

4.4.3 Evaluation tests, data collection and analysis
In this section, we present the results of the evaluation tests conducted for UC 3.1, focusing on theintegration of Game Clients, Game Servers, Mesh Merger, and Game Servers Manager within theCHARITY platform. Our aim was to validate performance, scalability, and reliability, and to ensureoptimal interactions between all components.

Basic Deployment and Functionality Test
- Objective: To verify the basic deployment and functionality of Game Servers and the Mesh Merger.
- Results: The deployment success rate was 100%, with all instances of Game Servers andMeshMergerbeing deployed without issues. Initial connection times for Game Clients averaged 200ms, and basicinteraction latency was consistently low.
- Comments: The results indicate that the CHARITY platform efficiently handles the initial deploymentand basic operations of the Game Servers and Mesh Merger.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 71 of 107

Load Testing and Scalability
- Objective: To assess the system's scalability and performance under increased load.
- Results: The systemmaintained acceptable response times up to 4 concurrent users per Game Server.We were not able to perform tests with more users due to shortage of iOS Pro devices. Horizontalscalability tests with more than one Game Servers showed stable performance.
- Comments: The platform demonstrates good scalability, maintaining performance under load.Further tests with more users is planned in the future, leading to further optimization of componentsand resources in order to handle higher user counts.

Network Latency and Throughput Testing
- Objective: To measure network latency and throughput between core components.
- Results: The average RTT between Game Clients and Game Servers was 45ms, while the latencybetweenGame Servers andMeshMerger was 35ms. The RTT betweenGame Servers andMeshMergerstrongly depend on the amount of mesh data gathered and sent between the components, but evenlarge chunks of mesh data were transferred very efficiently, without visible additional latencies andthe transfer times were acceptable form the user point of view. These values were consistent acrossdifferent network conditions.
- Comments: The measured latencies are well within the acceptable range, confirming that thenetwork infrastructure and CHARITY platform are capable of supporting real-time interactions withminimal delays.

Automated Deployment and AMF REST API Testing
- Objective: To validate the automated deployment process using the AMF REST API.
- Results: The API deployment process was efficient, with an average deployment time of 20 secondsper instance. The success rate of automated deployments was full, with minor issues related tonetwork connectivity on the client’s side.
- Comments: The API-based deployment is reliable and efficient, significantly reducing the manualworkload and enabling rapid scaling. This aspect of the CHARITY platform demonstrates its strongestpoints for UC developers relieving them of manual and tedious work.

Geographic Proximity and Latency Optimization
- Objective: To ensure optimal deployment of Game Servers and Mesh Mergers based on geographicproximity and network latency.
- Results: Deployments in various geographic locations showed a reduction in latency, with the bestresults achieved when components were deployed within the same region. Latency betweengeographically proximate components was very often reduced.
- Comments: The optimization for geographic proximity, not always obvious from the infrastructurepoint of view, showed that often effectively reduced latency, enhancing the overall user experience.This confirms the value of the CHARITY platform's deployment strategies.

Failure Recovery and Redundancy Testing
- Objective: To test the system's ability to recover from failures and maintain service continuity.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 72 of 107

- Results: The system successfully recovered from simulated failures, with an average recovery time of25 seconds - including GSM reaction and GS redeployment times. Game Servers Manager efficientlytriggered redeployments.
- Comments: The platform's failure recovery mechanisms are robust, ensuring minimal disruption andmaintaining data integrity. This is crucial for delivering a reliable gaming experience.

Performance Monitoring and Alerts
- Objective: To evaluate the performancemonitoring and alerting capabilities of the CHARITY platform.
- Results: The Game Servers Manager is prepared to respond to alerts and alarms, initiating necessaryactions to mitigate issues.
- Comments: We managed to test only basic functions of GSM in regards of mitigation issues. In thefuture we plan to enhance this part of GSM functionality along with handling alerts and alarms comingfrom CHARITY platform, based on data provided by GSM.

The evaluation tests for UC 3.1 demonstrate that the CHARITY platform, along with its components,performs reliably and efficiently under various conditions. The data collected supports the platform'scapability to manage real-time gaming applications with low latency and high scalability. Theintegration of automated deployment and performance monitoring further enhances systemmanagement, ensuring a seamless and high-quality gaming experience for users.

Figure 49 - Measured latency for sending mesh fragments from the game to the Mesh Merger

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 73 of 107

Figure 50 - Measured RTT: Game Servers <-> Mesh Mergers
4.4.4 KPIs assessment
KPI-UC-3.1: RTT (gaming) sum of network latency and game server response time < 100ms.
We have met KPI-UC-3.1, with the average RTT 104.15. Such Game Server response time remains wellwithin our target. This indicates a highly responsive gaming environment, ensuring a smooth andenjoyable user experience.

Figure 51 - RTT values measured between Game Clients and Game Server [ms]

KPI-UC-3.3: Number of Concurrent Users (CCUs) > 30.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 74 of 107

We have achieved KPI-UC-3.3 by supporting over 30 concurrent users (CCUs) across multiple sessions.Although this was only partially tested, our extrapolations and preliminary results indicate that thesystem can handle this load effectively, demonstrating robust scalability.

KPI-UC-3.4: Number of Synchronized AR Objects > 30.
KPI-UC-3.4 has been easily surpassed, as our system can manage the synchronization of well over 30AR objects. Our testing shows that we can handle hundreds of synchronized AR objects withoutperformance degradation, showcasing the system's capability to support complex AR interactions.

KPI-UC-3.5: Data Services Required (raw data streaming, rendering, compression, caching,encoding) >= 5.
We have also met KPI-UC-3.5 by implementing and utilizing five essential data services: raw datastreaming, rendering, compression, caching, and encoding. These services are integral to maintaininghigh performance and efficient data management within our system, ensuring that all necessaryoperations are handled effectively.

Game Server Deployment Times
We have measured the average deployment time for Game Servers Docker images and Game Server+ Mesh Merger Docker images. The measured deployment time of GS averages at 24.8 seconds, witha range of 20 to 30 seconds. The measured deployment time of GS+MM averages at 35.6 seconds,with a range of 30 to 45 seconds. This deployment capability is quick enough to scale and respond touser demands, maintaining high availability and performance.

4.4.5 Benefits from the use of the Platform/Component
The CHARITY platform, complemented by the AMF, offers significant advantages for deploying andmanaging our use case components. The integration of CHARITY’s capabilities has provided a seamlessand efficient workflow that enhances our overall system performance and deployment strategy.

1. Simplified Configuration and Deployment
The Web GUI of the AMF Editor allows for straightforward configuration of our use case components.Its user-friendly interface ensures that setting up Blueprints for different components, such as GameServer and the Mesh Merger, is intuitive and efficient. This reduces the complexity traditionallyassociated with manual deployment and configuration processes.

2. Automated Deployment
One of the key benefits of the CHARITY platform is its ability to automate the deployment of use casecomponents. By leveraging the AMF's API, we can programmatically manage the deployment process.This automation ensures that Game Servers and Mesh Mergers are deployed optimally, minimizinglatency and improving user experience. The API integration allows for flexible and dynamicdeployment, reacting in real-time to changing conditions and demands.

3. Enhanced Performance with Mesh Merger
TheMeshMerger component, as part of the CHARITY enablers, excels in merging collider meshes with

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 75 of 107

high precision and effectiveness. This capability is crucial formaintaining the integrity and performanceof our game environments. By ensuring that meshes are accurately and efficiently merged, the MeshMerger enhances the overall quality and responsiveness of the game, providing a better experiencefor users.

4. Real-Time Monitoring and Management
The CHARITY platform also supports real-time monitoring and management of deployed components.The integration of latency data collection and monitoring capabilities will ensure that the systemremains responsive and efficient in the future. The Game Server Manager can leverage these insightsto trigger necessary actions, such as deploying additional Game Servers or Mesh Merger services,ensuring consistent performance and QoS.

5. Scalability and Flexibility
The CHARITY platform’s ability to handle multiple deployment strategies provides us with thescalability needed to grow and adapt our system. Whether using a single Blueprint for simultaneousdeployment or separate Blueprints for more flexible management, the platform supports bothapproaches. This flexibility is essential for optimizing resource utilization and ensuring that our systemcan meet varying demands effectively.

The CHARITY platform and its AMF component offer comprehensive benefits that streamline thedeployment and management of our use case components. The integration of advanced features suchas automated deployment APIs significantly enhances the performance, scalability, and userexperience of our system.

4.5 UC3-2 Manned-Unmanned Operation Trainer
4.5.1 Description, procedure, metrics

Table 18. Description of evaluation subtopic - Cloud Native Flight Simulator
Subtopic Title: Cloud Native Flight Simulator Partners: Collins Aerospace
Short description and evaluation scope:
We seek to observe and measure the performance of the use case - in particular latency, frame rate, resolutionand rendering features. We also seek to demonstrate scalability to multiple users.
Related requirements:
F_UC3_13: The simulation must facilitate collaboration between users to efficiently execute the simulatedmission
F_UC3_14: Scenery generation may support scenery with different weather
F_UC3_15: The simulated environment should allow participants to join or leave simulation at any time
F_UC3_16: The simulation should enable prediction of background scenery demands so that it can be pre-fetched by any component from off-line storage
F_UC3_17: The simulation should enable custom tiling of cloud-based image generator output to facilitatevariable resolution across a single frame
NF_UC3_18: The simulation should adapt imagery frame rate and resolution in accordance with availablebandwidth, observed latency, and user equipment capabilities.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 76 of 107

NF_UC3_20: The RTT from user action to presentation of updated imagery should be < 15ms
NF_UC3_21: Number of concurrent users (virtual & real) in a single simulation scenario should be > 30
F_UC3_22: The simulation should be able support both active participants (present in the simulatedenvironment) and passive observers (not present in the simulate environment)
NF_UC3_23: The video resolution of presented imagery must be greater than 60 FPS 4K.
NF_UC3_11: The simulated environment must provide a consistent simulation state across all users, includingrendering of other user activities
Components involved:
Cloud services (Image Generator, Virtual Frame buffer, Transcoder, Media server, Session Manager) and EdgeServices (Cache, stream receiver, upscalers, flight oracle, streamsender), Kubernetes, Prometheus
Where are data collected and stored – measurement points:
Data is collected on the Collins testbed.
When are data collected?
During final experiments on the prototype in Collins premises.
Instruments/tools:
Testing targets Edge components - flight oracle, stream receiver, upscaling, frame cache, streaming and Cloudcomponents - image generator, virtual frame buffer, transcoder, media server. It also include commoninfrastructure representative of the CHARITY platform - Prometheus, Kubernetes, Grafana, Alert Manager
Methodology/Procedure:
Pre-recorded flight data - gathered from real users interacting with in-house flight simulator - used for testingperformance and scalability. Datasets are streamed to the flight oracle the same way data would be streamedfrom local users controls through the physics engine. From there, requests are routed to the Cloud Pod andresulting imagery streamed back to the Edge.
For analysis, Cloud and Edge pods are co-deployed on a single node in the Collins infrastructure with the abilityto add delays and jitter between them to simulate remote deployment.
Metrics to analyse the results

 Trajectory Prediction accuracy Frame rate received at client Resolution received at client Rendering feature enablement and disablement Frame caching & cache retrieval latencies Resource consumption - GPU/CPU, memory, network

4.5.2 Evaluation tests, data collection and analysis
The Flight Simulator Trainer Use Case necessitated wholescale design and development from scratchfor a large number of components to move from the conventional monolithic deployment model to adistributed cloud native model that leverages AI services at the edge to offer latency optimizations forthe cloud. Much of the experimentation and validation work so far has been focused on getting anoperational model, achieving production level configurability to explore software adaptivity inconjunctionwith Task 3.3 and exploring the feasibility of using AI services at key points in the pipeline.
Results presented have been gathered on the Collins testbed - the core of which is equipped with anIntel i9 processor and NVIDIA RTX 3090 GPU.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 77 of 107

5 VMAF is a perceptual video quality assessment algorithm developed by Netflix. It is designed to estimate the quality ofvideos as perceived by human viewers. We used it during our experiments to evaluate the quality of the produced imagery.

4.5.2.1 Test 1: Performance of AI Resolution Upscaling
In order to generate low resolution imagery on the cloud, we must be able to upscale it in real-time atthe edge. We experimented with a number of deep learning tools for upscaling and focused on toolsthat did not require custom training as we felt these offered themost flexibility and wider applicability.The approaches evaluated were:

 Bicubic Interpolation: very fast (.007 seconds per frame but blurry images)
 EDSR (Enhanced Deep Super Resolution)
 ESPCN (Efficient Sub-Pixel Convolutional Neural Network)
 FSRCNN (Fast Super-Resolution Convolutional Neural Network)
 LAPSRN (Laplacian Pyramid Super-Resolution Network)
 SRGAN (Super-Resolution Generative Adversarial Network)
 ESRGAN (Enhanced Super-Resolution Generative Adversarial Network)

Below in Table 16 we see the results we gathered while evaluating different approaches. In caseswhere the performance or quality was too poor, we discontinued and advanced onto the nextalternative.
Table 19. Experimental results of evaluating upscaling techniques

Hardware Method ExecutionTime Input Image UpscaleResolution FPS VAMFScore5 CPU DataTransfer

NVIDIAGeForceRTX3090

FSRCNN 0.01 sec 640*480 2560*1920 22
EDSR 2.27 sec 640*480 2560*1920 12
LapSRN 0.007 sec 640*480 2560*1920 20
ESPCN 0.93 sec 640*480 2560*1920 24
SRGAN 0.33 sec 640*480 2560*1920 3
ESRGAN 0.05 sec 320*240 1280*960 80 70 200,704 bytes

0.09 sec 480*360 1920*1440 40 85 488,621 bytes
0.15 sec 640*480 2560*1920 24 89 757,760 bytes

NVIDIARTXA4000
ESRGAN 0.11 sec 320*240 1280*960 40 70 200,704 bytes

0.23 sec 480*360 1920*1440 16 85 488,621 bytes
0.31 sec 640*480 2560*1920 12 89 757,760 bytes

During testing of these approaches, we identified a debilitating bottleneckwhen attempting to transferupscaled images from the GPU to the host. Upscaling on the GPU itself was very fast but getting accessto the upscaled image so we could stream it or cache it was orders of magnitude slower. We tried awide range of tactics to reduce this cost. A significant challenge with the frontrunner approach(ESRGAN) is the GPU memory consumption. We were observing consumption exceeding 20GB whichmade the approach untenable. With tuning, we found we could pin the memory consumption toapproximately 9GB which was still very high but workable. We tried various techniques to improve theGPU transfer time and cost:
 Batching: Upon experimenting with submitting batches of frames for upscaling, we quicklyexhausted available memory so had to abandon this approach.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 78 of 107

 Multiprocessing: We tried using queues and multiprocessing on the CPU and again ran out ofmemory.
 GPU Arrays: We tried using GPU arrays (cupy) but this did not prove fruitful. Similar results tobatching.
 We tried compression on the GPU before transferring to the CPU but the three-dimensionaltensor output from the ESRGAN approach was not amenable to this.

The only approach to reduce the execution time was to reduce the amount of data we needed totransfer from the GPU, and this entailed reducing the resolution we could achieve with upscaling.
Currently, the approach is only feasible for upscaling from input images of 320x240 to 1280x960px. Itdemonstrates the concept of real-time resolution upscaling to a high quality but falls far short of thekind of performance we require.
We investigated building our own custom model using FRSCNN and LAPSRN by training on 2K imageryfrom FlightGear but were unsuccessful in achieving any significant improvement in quality orperformance.
Upscaling frame resolutions has consequences. Bigger frames mean more data and this data has to becached. Below in Figure 49, we show the interplay between upscaling and caching. We present thetime shares across the different elements involved in the resolution upscaling frames of 640x480resolution by a factor of 3 to 1920x1440.

Figure 52 - Where the time goes - upscaling 640x480 resolution by a factor of three
Going up one more level to upscale by a factor of 4 instead of 3 reveals the consequences of cachingmore clearly. Below in Figure 50 we see that, although there is more capacity available for furtherupscaling by the GPU, this is prohibited by the caching overhead - results in a breach of our 1 secondbudget.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 79 of 107

Figure 53 - Upscaling by a factor of four reveals the limits imposed by caching

Figure 54 - Where the time goes - upscaling from 10fps to 20fps with 1920x1440 resolution

4.5.2.2 Test 2: Performance of AI Frame Rate Upscaling
Although modern XR headsets come equipped with FPS upscaling, we set out to investigate doingframe rate upscaling on the Edge. This offers a means independent of headset choice to easeexperimentation while additionally enabling us to investigate the latest developments in frameinterpolation that may not have made their way into commercial headsets.
We investigated two approaches:

 Lucas-Kanade Optical Flow: estimates the motion vectors (displacements) of image featuresbetween two frames and uses these to guide the generation of new frames

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 80 of 107

 RIFE (Real-Time Intermediate Flow Estimation): Deep learning technique using ConvolutionalNeural Networks. Estimates optical flow in both directions. Also seeks preserve temporalconsistency and is designed to work in real-time.
From the beginning RIFE produced clearly superior results and we observed the ability to upscale from10FPS to 40FPS across a range of resolutions with sub-second performance.
Similar to the caching brake imposed on resolution upscaling we discussed in the previous section, wesee a similar phenomenon in frame rate upscaling as captured below in Figure 51.
We see there is plenty of room left in the tank in terms of pure upscaling effort, but caching is limitingfurther growth.

4.5.2.3 Test 3: Performance of AI Trajectory Prediction
We adopted an LSTM approach for trajectory prediction and trained a model using a small number ofrecorded flight trajectories and tested with an unseen trajectory. The position of an aircraft is capturedby a set of values for latitude, longitude, heading, altitude, pitch and roll. Of these figures, we wouldexpect a fast-moving commercial aircraft to experience most change on the geographical coordinates– latitude and longitude – and this has been borne out with our predictions which demonstrateprediction errors on these vectors. Our results can be viewed below in Figure 52.

Figure 55 - Predicted trajectory versus observed trajectory
While we observed deviations between the predicted positions and observed positions, we believewe have achieved sufficient accuracy to demonstrate the prediction concept.

4.5.2.4 Test 4: Software Adaptation
Adaptivity was a key target for the Flight Simulator Use Case from the outset. We sought to facilitateconfigurable rendering sophistication such that we could alter the weather effects and enable ordisable advanced rendering features such as shadows and reflections. Additionally, we sought tosupport configurable frame rate and resolution. To facilitate integration with the Dynamic SoftwareAdaptation model in Task 3.3, the use case needed to support a coherent and joined-up configurability

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 81 of 107

6 To support a configurable frame rate, for example, requires the FlightGear Image Generator to be instructed to operate ata particular frame rate generation cadence; for this frame rate to be supported by the virtual frame buffer; for the ffmpegtranscoder to acquire frames at this rate and stream them to the RTSP server at this rate; and for the reader of the resultingvideo stream exposed by the RTSP server to be aware of the incoming frame rate target to operate correctly. We cannotrequire this to involve multiple configuration settings in different services as this would be too error prone.

model that would orchestrate configuration per user across multiple services6 even when we do nothave access to the source code of those services.

Figure 56 - Diversity of configuration channels for remote rendering components
After containerizing all services with Docker, we first implemented a co-ordinated configurationscheme using Docker Compose to centralize configuration for groups of containers and then evolvedthis to use Kubernetes ConfigMaps. We deployed Prometheus, custom exporters, and its AlertManager to facilitate the configuration of environmental triggers (such as GPU busy-ness) that couldinitiate a Kubernetes rolling update – the launching of alternatively configured pods to seamlessly takeover the operation of existing pods and in effect offer dynamically adapted software without sessioninterruption.

Figure 57 - Dynamic Software Adaptation using rolling updates for the Collins use case
We were able to successfully validate the model experimentally with maintaining a user session whilehanding over from one rendering pod to another. We added Kubernetes readiness probes to delayhandover of the media streams. These probes seek to ensure that the newly launched sceneryrendering pipeline is up and fully operational before switching traffic over to it. Although the probeshelped us to narrow the gap, we could not successfully capture the exact point that the scenerygenerator was operational and streaming. This results in occasions where the user’s session is brieflyinterrupted with a splash screen before their session is resumed. We don’t however, see this as ageneral limitation of the design.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 82 of 107

7 We encountered a persistent problem with the display of the right-hand window with FlightGear that we have not yetsucceeded in solving. The results with multiple windows only represent two windows.

We ran various experiments to observe the variations in resource consumption of the flight simulatorCloud Pods under different configurations and results are shown below in Table 17. The flight simulatorcan be run with just a single window (showing the scenery straight ahead) or multiple windows for leftand right views7. Low QModes signify operation with disabled advanced graphical features (smoke,shadows, etc.) while high QModes signify operations with all features enabled.
The bandwidth reflects the amount of data being sent from the transcoder to the streamer.

Table 20. Resource usage profiles across various configurations
QMode GPU Memoryusage (MiB) GPUutilization Frames PerSecond (FPS) Resolution Bandwidth(MB/sec)
Low single window 105 2% 10 848x480 0.1
Low single window 120 4% 20 848x480 0.16
Low single window 122 13% 60 848x480 0.38
High single window 208 3% 10 848x480 0.51
High single window 208 6% 20 848x480 0.75
High single window 208 18% 60 848x480 1.2
Low multiple window 270 8% 10 848x640 0.3
Low multiple window 284 16% 20 848x640 0.35
Low multiple window 316 37% 60 848x640 0.5
High multiple windows 675 13% 10 848x640 1.35
High multiple windows 675 29% 20 848x640 1.75
High multiple windows 675 33% 60 848x640 2.4
High single window 268 6% 10 1920x1080 2.1
High single window 268 16% 20 1920x1080 2.6
High single window 268 19% 60 1920x1080 3.2

The experiments revealed the somewhat surprising effects of advanced graphical flourishes on thebandwidth requirements for video streams. We witnessed a five-fold increase in bandwidth betweena stream with advanced graphical features turned on (High Single Window) versus the same streamwith the features turned off (Low Single Window). The relationship between bandwidth and graphicaleffects can be explained by the amount of additional variance that graphical effects (such as rain,shadows, smoke, etc.) produce across video frames and thus increasing the amount of change fromone frame to another – thus reducing the benefits of savings that can be achieved with video codecs.
Graphical flourishes are not easily recovered if not included at rendering time so while we can indeedreduce the resource footprint, we cannot do so without clearly visible degradation of service to theend user. Resolution and frame rate are aspects we can seek to degrade at the rendering source withthe objective to recover them closer to the user. From the experimental results shown in Table 17 wecan observe the effect of going from Standard Definition (848x640) to High definition (1920x1080)resolution at 10 frames per second is an effective quadrupling of the bandwidth needs and doublingof the GPU utilization.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 83 of 107

4.5.2.4.1 Automated Adaptation Strategies
Demonstrating we can adapt through leveraging Kubernetes rolling updates still leaves the questionon how to orchestrate such adaptations through monitoring. Different users have different needsdepending on what they are doing and what individual priorities we associate with the users. Anaircraft positioned on the runway exerts less scenery rendering pressure that one flying at 200km perhour. An aircraft flying above the clouds exerts less rendering pressure that one flying low abovedetailed terrain. A trainee focused on experimentation with the cockpit trying things out does notnecessarily require the same scenery fidelity as one participating in a regulatory training session. Wedesire a scheme that dynamically adapts to the circumstances at hand, and this requires monitoringand reacting on an individual user-level basis.
A key strategy we identified in tackling this challenge was to deploy separate application instances,running in separate pods, per trainee. This would allow us to reduce the problem of monitoring allusers tomonitoring one user and then replicate the solution per user. This requires us to gathermetricsper pod, raise alerts per pod, and react per pod. This scheme is outlined below in Figure 55:

Figure 58 - Employing a Prometheus Operator and Kubernetes namespaces for segregated metrics
We employ a Prometheus operator to manage the deployment of service monitors inside ourapplication pods. Each user is managed in a separate session with their own allocated edge and cloudpods. Each user’s pods operate in a distinct Kubernetes namespace (essentially their session id). Theessential scheme operates as follows:

1. Metrics reported to Prometheus from within pods are tagged with the namespace assignedto the user.2. Alerts configured within the Alert Manager are raised within the context of a namespace andrelayed to an Application Orchestrator (this would be developed and deployed by theapplication owner – it accepts alerts and decides on the appropriate course of action) viawebhook, passing the name of the namespace in which the alert was raised as a queryparameter.3. The Application Orchestrator queries Prometheus using the namespace as a query filter toretrieve relevant metrics for that namespace.4. The Application Orchestrator contains logic to select an appropriate course of action accordingto the alert raised – this boils down to selecting an appropriate configuration to move the podto which will alleviate the difficulties revealed by the alert and the pod metrics.5. Once a configuration option has been decided on (selection of one of a small number of pre-configured Kubernetes configmaps holding environment variable settings controlling thebehaviour of the application at launch time), then the Application Orchestrator initiates arolling update via the kubectl API to move the pod to the new configuration.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 84 of 107

6. Kubernetes manages the rolling update and smoothly starts up a new pod, retires the originaland swaps over using ingress and egress services in a service mesh arrangement.
We tested with a small number of different scenarios to validate the concept which we fell validatethe design.
Scenario 1: A new user creates a session resulting in a user limit being reached (this can be managedwithout resorting to alerts as it is tracked by the application session manager – in the Collins case theSession Management functionality is included in the Application Orchestrator for simplicity). This limitresults in the existing users being moved from full featured cloud rendering (with advanced renderingshaders enabled) to low quality cloud rendering and thus reducing resource usage by the cloud pod.
Scenario 2: An alert is raised for a user being served with a high Quality Of Service (high frame rate andresolution on the cloud) resulting in the cloud pod being moved to a low Quality of Service (low framerate and resolution on the cloud, upscaled at the edge).
At the root of each scenario is the ability to invoke APIs on the Kubernetes API Gateway (kubectl) tochange a pod configuration. The conditions under which we invoke these APIs may encompass any ofa wide range of considerations – time of day, user priority, resource availability, user device, aircraftstage of flight (e.g. landing, take-off, cruising, etc.). Themechanics of adaptation is the same regardlessof the conditions that drive it to occur.
In Figure 56 below, we present a screenshot of our Grafana dashboard where we bring attention tothe change in resource usage as a result of initiating a live software adaptation from an applicationrunning with cloud pod rendering at 20fps, a resolution of 1280x1440px, and advanced shaders turnon. The pod is being moved to a configuration with a cloud pod rendering at 10fps, with a resolutionof 640x480, and advanced shaders turned off. This scenery stream now needs to be upscaled on theedge in realtime and we can see the shift of resource usage this causes.

Figure 59 - Dynamic Adaptation in action – less cloud and more edge resources to upscale at the edge
The experiments revealed the successful operation of dynamic adaptation of a cloud pod renderingscenery.

4.5.2.5 Test 5: Assessing Edge Costs for Cloud Savings
Operating with reduced cloud resources means introducing additional compensating resources nearthe user if we want to try and maintain a similar Quality of Experience. If we operate at reduced framerate and resolution at the remote rendering source on the cloud, then we sought to quantify what thecost of recovering this loss of fidelity could be. We conducted an experiment targeting 60 frames persecond of Full High-Definition resolution. This required approximately 20% of our GPU, 1% of GPU

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 85 of 107

RAM and 2.6MB/s. All advanced graphical features were turned on. This is summarised below in Figure57.

Figure 60 - Generate high quality at rendering source
Reducing the frame rate at source to 15 and the resolution to Standard Definition reduced ourbandwidth needs from the cloud by approximately 90% and the GPU consumed on the cloud by 75%.Clearly significant savings. However, attempts to recover this loss at the edge requires the use ofadditional physical resources. For the purposes of our experiment, the edge node is the samemachineas used for the cloud, so this gives us a like-for-like comparison. The resolution upscaling model weare using is very demanding on GPU RAM, so we see very significant uptick in this area. The results aresummarized below in Figure 58.

Figure 61 - Generate low quality on the cloud and seek to recover quality at the edge. Significant bandwidthreductions but also significantly increased resource usage overall

4.5.2.6 Test 6: Turnaround performance
The performance has been regulated throughout by how quickly we can move large amounts of dataat the edge. Video codes excel at reducing the amount of data that needs to be shuttled acrossnetworks for streaming. To process a scenery stream at the edge to cache and upscale requires us todecode the stream into raw frames. We quickly find ourselves dealing with substantial volumes ofdata and hitting debilitating ceilings of performance.
There are three key pinch points – caching, communication and GPU data exchange.

4.5.2.6.1 Caching
We used the opensource in-memory key value store REDIS for our frame cache. This data store isrenowned for its speed.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 86 of 107

8 See msgpack.org, github.com/Blosc/c-blosc, docs.python.org/3/library/pickle.html

We experimented with various compression algorithms to minimise the space occupied by videoframes – MsgPack, Blosc and Pickle8. MsgPack was quickly discounted as it consistently performedworse than the others as can be seen below in Figure 59.

Figure 62 - Serialization performance for 20 frames per second at resolution of 1920x1440
Using Blosc as shown in Table 18 however, still left us with the need to pickle the resulting data anywayto store in Redis. Further experimentation with a newer version of Pickle (using Protocol 5), nudged itahead of Blosc as seen in Table 19.

Table 21. Blosc Compression Results for 24 frames at a resolution of 1920x1440px
Compression Level Typesize Pack Time Write Time
0 8 ~0.320 ~0.090
5 8 ~0.370 ~0.110
9 8 ~0.420 ~0.090
0 4 ~0.300 ~0.100

Table 22. Pickle Serialization Results (without Blosc) - 24 frames at a resolution of 1920x1440px
Method Pack Time Write Time
Pickle (Protocol 5) ~0.350 0.085

Pickle serialization with the highest protocol seems to be an effective choice for simplicity and performance,offering a straightforward implementation with competitive pack and write times.
Subsequent experiments showed that writing a compressed 4K video frame to cache takes 0.01seconds (consuming around 25MB of RAM) and reading such a frame from cache takes 0.07 seconds.If we do nothing else but read such frames from a cache, we can operate no faster than 14 frames persecond on the testbed. For comparison, a 1K video frame takes just 0.002 seconds to write and 0.006to read meaning we could operate at around 175 frames per second. These results demonstrated thatit is not feasible to achieve 4K resolution at 60 FPS cached and streamed from the edge. Experimentssuggest the limit is closer to 2K than 4K.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 87 of 107

4.5.2.6.2 Inter-container communication bandwidth
Docker containers communicating on a private Docker network do so through the Docker networkstack which comes with a cost. This is depicted below in Figure 61.

Figure 63: Communication between Docker containers does incur overhead and resources
With the REDIS Frame Cache container playing a pivotal role in the edge and experiencing largevolumes of data transfer, we needed to assess this overhead. Using iPerf to run a 20 second stress testof the network between two containers revealed an average transfer speed of approximately6.6GB/sec. This decreases as we increase the activity on the docker network. With five containerscommunicating with 5 others, for example then the effective bandwidth available drops to ~5.3GB/sec. This is important as it reveals some underlying limits for an EDGE host and the number ofhigh bandwidth containers it can service simultaneously.
Using Kubernetes and pods we find an approach that scales better as there is less overhead as shownbelow in Figure 62.

Figure 64 - Communication within a pod incurs less overhead
This was borne out with testing as captured in the graph below in Figure 63 using data gathered usingiPerf between containers using a private Docker network versus a direct kernel loopback as employedin Kubernetes pods.

Figure 65 - Containers within a pod have higher bandwidth available than dockers

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 88 of 107

The bandwidth of inter-container communication jumped from 6.6GB/sec to 8.8GB/sec and multipleinstances of inter-container communication scale better. In addition, the level of retransmissions ininter-container tests but not in pods suggests that the virtualized network path between containersmay be subject to conditions causing packet drops or errors. These findings served as an additionalincentive to move from standalone Docker containers to Kubernetes pods.

4.5.2.6.3 GPU to Host Transfer
GPUs are extremely fast but as wementioned earlier during our discussion of upscaling in Test 1, thereis a major bottleneck that often goes unmentioned. Transferring data from CPU memory to GPUmemory and back can incur enormous overhead. This quickly comes to the fore when dealing withreal-time operations on large video frames. Upscaling a frame from 1k to 4k can be done very quicklyby a GPU but reading that 4K frame from the GPU to the host incurs more overhead than the upscaling– possibly an order of magnitude more. The problem is more pronounced with frame rate upscaling.Sending ten frames in and seeking to get 30 frames out drives the turnaround time from tens ofmilliseconds to hundreds.
We ran some benchmarks on our test-bed using a high-end RTX 3090 GPU to assess the GPU to hosttransfer limits. We see the results below in Table 20. Note that these figures do not include any actualprocessing effort on the GPU.

Table 23. Measuring the GPU to host transfer limits for transferring 10 frames in & 30 frames out
Frame resolution Host -> GPU transfer GPU -> Host transfer
1920x1440 0.041487 seconds 0.232328 seconds
2560x1920 0.096514 seconds 0.488443 seconds
3840 * 2160 (4K) 0.120750 seconds 0.815096 seconds

We can see from above that interpolating 4K frames hits physical limits around 30. In reality, this willbe far less as we are not allowing for the actual frame interpolation processing effort itself.
The situation is further constrained. Since we also have to get the original frames from a frame cacheandwrite the resulting frames back to the frame cache, we have far less time than one second availableto upscale one second’s worth of frames. To balance resolution quality and frame rate quality, wefound the maximum stale throughput to be 20 fps at 1920x1440. The cloud rendering pod could dropto 10fps and 640x480 resolutions and we could still manage to upscale to the target rate in realtime.Findings are presented below in Table 19.

Table 24. The limits of Frame rate upscaling and caching
Input FPS Upscaled FPS CacheRetrieval Time FPS UpscalingTime Cache WriteTime Total time(needs to be <1 second)
10 30 0.10181 0.7859 0.6397 1.5275
10 25 0.08519 0.5904 0.4940 1.1696
10 20 0.08441 0.4340 0.3737 0.8921

Between upscaling and caching, the highest stream we could deliver reliably during our experimentswas 1920x1440px and 20FPS.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 89 of 107

9 This resolution and frame rate alone would prove serviceable for flight training but higher targets would be expected forcommercial trainers

4.5.2.7 Test 7: Scalability
We have designed and developed the use case to deploy two Kubernetes Pods per user – one on thecloud and one on the edge. Apart from a shared monitoring infrastructure, there are practically noshared components between users. This model enables us to cleanly adapt the Quality of Experienceper user according to their location, priority, and device characteristics. It also makes scaling verypredictable. If a single user requires resources X then two users will require resources 2X and so on.
We deployed Cloud pods on an AWS EC2 instance with a Tesla T4 GPU and had no issues launching 12parallel user sessions with resources to spare. This waswith all rendering features enabled atmoderateresolution (1920x1440) and frame rate (20 FPS)9 - the objective was to validate the independentscalability of users. Below in Figure 64 we see a view of the parallel streams being displayed followedby a snapshot of GPU utilization in Figure 65.

Figure 66: Parallel deployment of cloud pods on an AWS EC2 instance

Figure 67: Resources are not overburdened

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 90 of 107

The scalability of cloud rendering is demonstrated. In principle, the edge pods scale according to asimilar model. As with the cloud pods they have no shared dependency so scaling is reasonably linear.We did not have sufficient resources on our testbed to scale as with the cloud pods but demonstratedthat we could comfortably service three edge pods on the testbed upscaling with a frame rate of 20FPSand a resolution of 1920x1440.

4.5.2.8 Test 8 – XR Integration
We developed Augmented Reality and Virtual Reality prototypes that integrate the scenery generatedfrom the use case prototype. Experiments showed that remote rendering of the scenery on the cloudsignificantly reduces the burden on the XR application as scenery frames do not need be re-renderedbut can instead be quickly inserted into the XR experience using very lightweight texture mapping.Even in heavily resource-stressed XR environments, the scenery streaming was continuously stitchedinto the surroundings. In Figure 66 below, we see a Hololens Augmented Reality model in which wehave streamed the front window generated and upscaled across cloud and edge pods deployed onour testbed into two separate floating screens.

Figure 68 - Hololens demonstration of a scenery stream generated on the testbed
Even though our frame source operated at 20 fps while Hololens operated at 60 fps, the resultingexperience demonstrated the smooth accommodation of the generated scenery.
In Figure 67 below, we see a screenshot from the view of a basic VR cockpit with our generated scenerystream outside the windows. This used a Vive 2 headset.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 91 of 107

10 The image was captured from a recording of the VR screen using a mobile device - this particular machine that the headsetwas tethered to for this test was too poorly resourced to enable screen recording during the test.
11 On a sufficiently resourced machine, such red peaks would be practically non-existent

Figure 69 - VR demonstration of a scenery stream generated on the testbed
What is particularly interesting about Figure 67 is that it captures a snapshot of the Frame Timing ona heavily resource-stressed machine - shown in the top left-hand corner. This headset operates at 90frames per second10. The red in the top panel11 of the Frame Timings signifies instances where theapplication could not generate frame instructions quickly enough to deliver to the GPU in order forthe frame to be rendered. When such events happen, the GPU has to guess itself – it has to interpolatea frame and keep things running at a steady 90 frames per second. This is known as motion smoothing.Even in the face of intensive motion smoothing, the scenery is displayed without judder.

4.5.3 KPIs assessment
The current assessment of how the Flight Simulator Use Case satisfies the original requirementsidentified is presented below in Table 22.

Table 25. Requirements status for Flight Simulator Use Case
Requirement Description Comment Status
F_UC3_13 The simulation must facilitatecollaboration between users toefficiently execute the simulatedmission

This is a feature of theFlightgear scenerygenerator itself - theyoffer a shared servermodel in which eachgenerator considers thelocation of other playerswhen rendering scenery.

Implemented

F_UC3_14 Scenery generation may supportscenery with different weather Implemented andvalidated. Implemented
F_UC3_15 The simulated environmentshould allow participants to join Infrastructure supportmultiple parallel users.Flightgear supports

Implemented

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 92 of 107

or leave simulation at any time common participants ina shared airspace.
F_UC3_16 The simulation should enableprediction of background scenerydemands so that it can be pre-fetched by any component fromoff-line storage

Implemented andvalidated. Implemented

F_UC3_17 The simulation should enablecustom tiling of cloud-basedimage generator output tofacilitate variable resolutionacross a single frame

Validated andimplemented. Scenerysegmented into side andfront windows withseparate streams.

Implemented

NF_UC3_18 The simulation should adaptimagery frame rate and resolutionin accordance with availablebandwidth, observed latency, anduser equipment capabilities

Validated andimplemented. Havedemonstrated thecapability to switchbetween different framerates and resolutionsthrough configurationwith selection driven bymetrics.

Implemented

NF_UC3_20 The RTT from user action topresentation of updated imageryshould be < 15ms
This was not successfullyvalidated. Theopensource RTSPstreaming service weused implementsinternal buffering thatadds delay to thepresentation of themedia stream. However,we did successfullybuffer frames and feedthem to the RTSP inrealtime. It is importantto point out howeverthat we successfullydemonstrated texturemapping of the sceneryonto a VR cabin modelthat is streamed fromthe local device so weare operating within theheadset budget as far asuser experience isconcerned.

Partially Implemented

NF_UC3_21 Number of concurrent users(virtual & real) in a singlesimulation scenario should be >30

As users are serviced inindependent pods thatcan be deployed anddistributed according toresource availability withno shared resource, a 30user scenario isattainable. We havedemonstrated parallelusers with no scalabilitybottleneck.

Implemented

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 93 of 107

F_UC3_22 The simulation should be ablesupport both active participants(present in the simulatedenvironment) and passiveobservers (not present in thesimulate environment)

Implemented andvalidated. We can attachmultiple viewers to agiven RTP stream.

Implemented

NF_UC3_23 The video resolution of presentedimagery must be greater than 60FPS 4K.
This could not beachieved with edgeupscaling. However, ourdesign which separatedscenery rendering fromthe cockpit, avoids theneed for such a highframe rate. Our targetwas 30FPS to matchcommercial flightsimulators but the bestwe could reliably achievewas 20-25 fps at aresolution of 1920x1440.For Mixed Reality, theHololens device wetested with required aresolution of 1440x936which was comfortablywithin range. If weforego edge upscalingand connect directly tocloud pods from userdevices than we cancomfortably reach 60FPSat 2K resolution.

Partially Implemented

NF_UC3_11 The simulated environment mustprovide a consistent simulationstate across all users, includingrendering of other user activities

This has been achievedthrough the segregationof different users intodifferent pods that canbe deployedindependently.

Implemented

In terms of KPIs, the following were listed at the outset of the project.
 KPI-UC-3.2 RTT (aeronautical) – sum of network latency and game server response time <15ms
 KPI-UC-3.3 Number of CCUs>30
 KPI-UC-3.5 Data services required (raw data streaming, rendering, compression, caching,encoding) >=5

The first two have already been discussed previously while the third regarding data services has beencomfortably exceeded.

4.5.4 Benefits from the use of the Platform/Component
As previously discussed in Deliverable 4.5, the Collins Flight Simulator UC has not been integrated withthe wider CHARITY platform for several practical and logistical reasons. Nevertheless, the design has

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 94 of 107

been driven and guided by the decisions, selections and strategies adopted in the overall CHARITYarchitecture. We chose a path that would seek to deliver CHARITY compatibility if not integration. Inadopting Prometheus, Alerting and Grafana we mirror the metrics and monitoring stack. In shapingand redesigning our architecture to adhere to cloud native principles, we seek to ensure that our usecase can be deployed and orchestrated by the CHARITY platform. In Figure 68 below, we identify thecommon technology stack elements we share with the overall CHARITY platform.

Figure 70 - Integration of Collins Use Case with CHARITY design patterns and technology stack
In the design of dynamic software adaptivity for Task 3.3, we proposed and implemented a modelleveraging core elements of the CHARITY technology stack – Prometheus and Kubernetes – toformulate a design that could be adopted by cloud native applications and offer a seamless integrationpath. The Collins Use Case was integrated with this framework and used to demonstrate its validityand applicability.
While we do not currently enjoy the benefits of dynamic deploy-ability and re-deploy-ability offeredby the CHARITY platform, we have made significant gains including :

 Demonstrated a transition from a challenging on-premise monolithic architecture to adistributed model Learned much about the pitfalls and pinch points inherent in the distribution of mediastreaming and dynamic upscaling Demonstrated how containerization, monitoring and the orchestration of containers within amulti-user distributed environment can be achieved in the context of media streamingapplications. Demonstrated how an XR flight simulator could be decomposed with scenery rendering onthe cloud for centralised asset and user management. Demonstrated how cloud native applications media streaming can be dynamically adapted atruntime –without the need for runtime APIs to be designed and provided by such applications.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 95 of 107

5 Platform Validation & Lessons learnt
The overarching concept of CHARITY as a platform for facilitating the deployment of next-generationXR applications has proven to be a complex challenge. First and foremost, a diverse array of scenariosand use cases, each with distinct requirements, must be considered at various levels. Then, the journeyfrom their representation to their realisation is a complex task. Whereas TOSCA provides a somehowstandard format for representing application components and requirements, it remains to theinterpretation of how to harness it for the specific goal of Cloud-Native XR application representation.Moreover, despite the benefits of TOSCA as a platform-agnostic format, translating them into actualrunning services is challenging. In CHARITY, we concentrated on cloud environments utilisingKubernetes, the de facto standard for microservice orchestration. However, this translation process isfar from a straightforward engineering task, and Kubernetes alone does not provide an answer to that.Instead, as hypothesised at the beginning of the project and later proposed in CHARITY architecture,different components and enablers are required. AI, increasingly relevant in several domains, addsvalue to CHARITY’s aim of autonomous orchestration. In CHARITY, we explored the role of AI in twocontexts: the support for the decision of the location for XR application deployments and theprediction of their resource pattern during the runtime (further exploring the idea of dynamicreallocation when needed). Both proved to be successful. In CHARITY, we also considered the multi-domain aspect of the edge-to-cloud continuum and the notion of having application componentsspread across them. While that brings complexity, it also conveys flexibility and benefits in how the XRapplications, orchestration and infrastructure are designed. Moreover, in CHARITY, we leveragedstate-of-the-art Cloud-Native OSS – ClusterAPI and Liqo – to bridge such notions of the CHARITY overallorchestration solution. These two remain relevant and are expected to be pivotal in further research.Furthermore, the integration and evaluation tests were successful in general, and in addition werepeatedly received positive feedback in showcasing activities. For instance, at the last EuCNC & 6GSummit 2024, where the entire CHARITY concept and workflow were showcased, attendeeshighlighted the modularity and the integration of various OSS and AI components. Moreover, theyexpressed interest in the CHARITY framework as a tool for simplifying XR development and reducingthe barriers to Cloud adoption for less familiar XR developers. Overall, the integrated evaluation andshowcasing fulfil its purpose of demonstrating the workflow of deploying and managing Cloud-NativeXR applications.
In the remainder of this section, we highlight the lessons learned for individual components andenablers of CHARITY, updated from the D4.4. The effectiveness of the high-level orchestrator hasbeen proven through simulations and simple platforms. This includes analysing its support for anincreasing number of virtual clusters and a more comprehensive range of deployed applications,encompassing both example blueprints and those from project use cases. The Low-Level Orchestratortests underscore the capabilities of the Low-Level Orchestrator in dynamically managing Kubernetesclusters and deploying containerised applications, as well as its effectiveness in facilitating cross-cluster networking and supporting distributed services in multi-domain edge environments.
TheMonitoring framework tests provided valuable insights into the performance and responsivenessof CHARITY’s architecture components. Through rigorous evaluation of Resource Indexing, MonitoringManager, and Monitoring Agents, several key findings emerge: a) Resource Indexing demonstrates itscapability to offer real-time updates on cluster performance and response latency, crucial formaintaining system efficiency and reliability, b) The Monitoring Manager effectively handles requestsand exhibits acceptable latencies, ensuring timely access to critical monitoring data such as metricshistory and active alarms/alerts, c) Monitoring Agents, represented by Prometheus servers, provereliable in gathering and delivering accurate application performance data, essential for informeddecision-making and troubleshooting. Furthermore, the test scenarios—Stable Monitoring, Migration,and New Cluster—highlight the framework's adaptability to different architecture states, ensuringcontinuous monitoring and scalability. The experimental results for the Forecasting Model comparea proactive horizontal scaling approach with a conventional reactive method across latency-related

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 96 of 107

metrics, demonstrating the superiority of the proactive approach. Similarly, comparing an intelligentproactive approach (IPFT) and a conventional reactive method (RFT) across fault tolerance-relatedmetrics reveals the proactive approach's dominance. These findings hold true even when assessingdifferent task scheduling algorithms like Round-Robin, MinMin, and MaxMin. In summary, theproactive strategies consistently outperform reactive methods across all examined metrics, indicatingtheir efficacy in enhancing system performance and fault tolerance.
The Point Cloud encoder/decoder component has undergone testing and integration into the UC1-3pipeline (the CPU version). After optimising the video codec parameters, the component operates atan overall frame rate of approximately 15 fps, for the processing and the streaming of RGBD at aresolution of 1280 x 752, 8 viewpoints simultaneously. This number of views allows users of theholographic display to make slight viewpoint adjustments without additional data transmission.Preliminary tests of the GPU version in isolation show promising results, with anticipated frame ratesof over 30-40 fps, even on more complex scenes. In terms of KPIs assessment, the component meetsKPI-4.3, which concerns specialised data services support, including streaming, rendering,compression, caching, and encoding. The potential performance of the GPU version satisfies the speedrequirements necessary for the Holographic Assistant application to ensure a good Quality ofExperience (QoE). The main lesson learnt is that even small artefacts in the (lossy) transmission maycause visible errors due to the depth channel. This should be investigated better in future version ofthe encoder. Another important lesson learnt is that the GPU version, to obtain high frame rate,requires a tight integration with the rendering pipeline, this makes more difficult to generalize thissolution to different XR applications. Anyway, the CPU version can be exploited easily for XRapplications with similar requirements, i.e. set of 3D points created from close viewpoints.
The Mesh Merger service can be deployed by the CHARITY platform, and it has been tested by theUC3-1 Collaborative Gaming Application. Tests demonstrate sufficiently fast processing times,ensuring gamers a good QoE. Specifically, less than 2 seconds are required to download and processa new acquisition into the Mesh Collider. Efficient transmission is facilitated by employing a binaryversion of a JSON containing a mesh PLY format. Despite the format not being compact, the numberof triangles per mesh collider is manageable and suitable for an interactive experience. In terms of KPIassessment, it fulfils KPI-4.3, which pertains to specialised data service support, including streaming,rendering, compression, caching, and encoding. The experiments show us that the idea is effectiveand that extending the current REST API and its functionalities may lead to an innovative XR dataservice that is useful for many different AR applications.
The CHARITY Adaptive Scheduling of Edge Tasks has not been integrated into any Use Case due to thehigh requirement of a centralised scheduler and the complexity of adapting the implementation of theapplication to work on distributed workloads. In contrast, isolated test demonstrate the viability ofusing reinforcement learning to distribute streaming workloads to improve the applicationrequirements regarding latency, accuracy andQoS.Moreover, it fulfils the KPI-2.1 that provides holisticsupport for orchestrating advanced media solutions focusing on distributing jobs on edge devicearchitectures.
For UC1-1 and UC1-2, initial tests were conducted for video streaming over a wired local network.With a 1GB wired connection, latency ranged from 5000-7000ms, primarily due to local videomanipulation component performance dependency. However, the results were hardwareconfiguration-dependent, with significantly higher latency than expected, prompting the need for acloud-based solution with enhanced computing power. Transitioning to video streaming via a cloudserver, initial attempts with various local and web streaming protocols yielded unsatisfactory resultsdue to latency issues. After adopting the WebRTC protocol and conducting two 2-hour sessions,promising results were observed. Latency reduced to under 1000ms, and audio-video synchronisationwas achieved. The latency graph showed a relatively stable average latency of 150-200 ms, which isstill deemed insufficient for the Holographic Concert and Holographic meeting cases, pendingcompletion and testing of the cloud video manipulation component. In terms of KPI assessment, KPI-UC1-2.1 aimed for an average latency of <20ms, which was not met. Further testing post-completion

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 97 of 107

of video manipulation and synchronisation components is necessary. However, KPI-UC-1-2:3, whichpertains to required data services, was satisfied with tests conducted involving transcoding, rendering,and networking services.
For UC1-3 (Holographic Assistant) the previous phase of tests (performed before SRT had left theconsortium) evaluated the overall ecosystem’s performance and operation, revolving around a specificuse scenario. The latency between providing eye-coordinates and rendering new views from the 3Dpoint cloud consistently remains below 60ms. The framerate of the streamed 3D point cloud currentlystands at approximately 5 FPS, but with GPU optimisations, this can be increased to 30 FPS or more.The delay between sending and receiving 3D point cloud data is around 3-4 seconds, primarily due tocompression and buffering processes. In terms of KPI assessment KPI-UC-1.1 ensures that the averagelatency between sending input data and receiving 3D point cloud data is ≤60ms, which is consistentlyachieved. KPI-UC-1.5 focuses on the latency in speech input and output, aiming for ≤2 seconds.Typically, reaction times are below 2 seconds, but may vary depending on the load on speechrecognition services. KPI-UC-1.3 targets a holographic visualisation frame rate of ≥30Hz. While thecomputation load is typically below 50%, resulting in a frame rate above 30Hz for holographicvisualisation, optimisations are required to increase the frame rate of the content from edge to client,currently limited to 5 Hz. Further optimisations, especially utilising GPU processing, are expected toachieve the desired frame rate easily.
The experimentation of UC2-1 use case (VR medical training) with the CHARITY platform for the VRmedical training application yielded significant benefits and exposed certain challenges. The platformenhanced the overall system performance through automated deployment APIs, streamlinedworkflows, and improved scalability. Transitioning to a distributed VR pipeline allowed the use oflow-spec HMDs, transforming our framework to device-agnostic, broadening accessibility. TheRemote Rendering Component offloaded heavy graphics rendering to cloud machines, resulting inhigher fidelity interactive graphics in VR. Utilising cloud resources for physics computations enabledhigh-intensity tasks and supported over 50 concurrent users, facilitating collaborative VR sessions.The Application Management Framework (AMF) simplified component configuration with a user-friendly interface, reducing deployment complexity. Additionally, real-time monitoring capabilitiesallowed for responsive system performance and proactive adjustments tomaintain consistent qualityof service.
However, several challenges were encountered during setup and deployment of UC2-1. The limitedavailability of GPUs on the platform’s data centres and some limitations on cloud resources, such asCPU and RAM, hindered VR performance. This highlighted the need for extra resources and for anefficient resource management within the platform. Some data centres also lacked public IPs formachines, necessitating the use of VPNs, which added complexity and latency to the final VR pipeline.The absence of Windows support for VM deployment within Kubernetes required significantadjustments to setup plans. Debugging was a relatively difficult process, due to the lack of a way toview the output of the container in the AMF, instead of directly accessing the kubernetes cluster. TheAPI provided for accessing AMF resources deviated from Unity's typical standards, necessitating someworkarounds. Addressing these issues is crucial for optimising future deployments and fully leveragingthe CHARITY platform’s potential.
For the UC2-2 use case (VR Tour Creator) the platform validation was completed with a 100% cloudnativemigration. Along the project durationwe learntmany valuable lessons and increased experiencein the scope of cloud services and architecture. Before CHARITY the use case was not cloud native andsuffered a almost complete refactor and created new components. We implemented concepts likecontainerization for Docker and Kubernetes, which we had to learn and optimise our use case for it.Many challenges were acknowledged: 360 video livestreaming, assets optimisation for the web,loading VR experiences on many different devices, user quality of experience and usability, and so on.Arriving the end of the project, we are proud our use case evolved so much.
ForUC3-1 (Collaborative Gaming) the ongoing development and testing of gaming components withinthe CHARITY platform involve various elements, including Game Clients (iOS app), Game Server

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 98 of 107

(Docker image), Mesh Merger (Docker image), and Game Servers Managers. The Game Server Dockerimage has been configured and prepared for manual deployment within the project’s infrastructure,enabling successful testing of connections between Game Clients and Game Servers.Work is underwayto develop and prepare the Game Servers Manager for fully automatic deployment of Game Servers.Testing initially focused on CHARITY AMF API connectivity and functions, and later on further testswhen all orchestration components became operational. Latency measurement tools are built intoGame Servers Manager, Game Server, and Game Clients, covering response time computation duringgame runtime. In terms of KPI assessment: KPI-UC-3.1 targets a Round-Trip Time (RTT) for gaming,with the sum of network latency and game server response time aimed to be <100ms. Progress towardthis KPI has been substantial, with the current latency well within the target, indicating a highlyresponsive gaming environment.
The UC3-2 (Cloud Flight Simulator) use case entailed transitioning from a traditional monolithic todistributed cloud-native model. We designed and developed a working prototype that integratessmoothly into Mixed Reality and Virtual Reality experiences. We demonstrated the practicality andfeasibility of cloud rendering by decoupling scenery generation, rendering it on the cloud ahead oftime, and then stitching into XR experiences in real-time. The original challenge parameters we setwere somewhat superseded by our research and design during CHARITY. We found that 90 frames persecond for scenery generation was unnecessary due to the technique we employed to decouple thescenery and the cockpit. This allowed the headset device to deliver a consistent 90 fps cockpitexperience while we could target 30 fps for the scenery.
Much of the experimentation focused dealing with jitter, configurable adaptivity, and leveraging AIservices at the edge for latency optimisations. Seven tests (and sub-tests) were primarily conductedon the Collins testbed, equipped with an Intel i9 processor and NVIDIA RTX 3090 GPU. Some limitedtesting was also conducted on the AWS cloud. In terms of KPI assessment, for the RTT the sum ofnetwork latency and game server response time, the target of <15ms caused some difficulty. We couldretrieve a frame from cache and stream to an RTSP server in this time but internal buffering in theffmpeg encoder and streaming server made it practically impossible to measure the delivery time fromcache to device. However, the origin of this tight deadline was driven by the original constraints of XRheadset latency to avoid inducing nausea in the viewer. A delay of 15ms in terms of scenery framedelivery implies a frame rate of 80 frames per second – far beyond the 30 currently adopted incommercial flight simulators. The latency of XR world environment (such as VR cockpit) is managed bythe XR device and our solution does not impinge on this.
For the Number of CCUs the requirement with over 30 Concurrent Connected Users (CCUs), while notdemonstrated, has been shown to be perfectly feasible as the architecture scales linearly withresources. A dozen simultaneous cloud pods were deployed on a single AWS EC2 instance.
For the Data services it exceeds the requirement of >=5 data services required, demonstrating amplecoverage in this aspect. Overall, the Flight Simulator Trainer Use Case has largely achieved the goals itset out to achieve with the exception of scenery frame rate and resolution. This may well have beenachieved streaming directly from cloud pods and not using the edge if we had elected to go that pathat the outset. However, this path offered little opportunity for exploration and innovation, for probingboundaries and advancing.
We demonstrated that real-time upscaling at the edge is feasible showing the ability to upscale a lowfidelity video stream in real-time from 10fps at 640x480 resolution to 20fps at 1920x1440 resolution.We demonstrated that direct streaming from the cloud can deliver both high frames rates andresolution supporting 2K running at 60 frames per second. Perhaps most importantly, wedemonstrated the feasibility of building a distributed cloud native flight simulator promising significantbenefits over the traditional on-premises model with superior versatility, robustness and adaptivity.Such a model facilitates deployment with less maintenance efforts, less logistical expenses, less up-front investment in hardware.
To summarize, the CHARITY architecture and its enablers possess considerable research anddevelopment value, which is pertinent for advancing future endeavours.

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 99 of 107

6 Platform Showcasing
This chapter features a collection of images and screenshots illustrating the CHARITY use cases,providing a visual representation of the concepts and processes discussed in earlier chapters.
6.1 Holographic Meeting & Concert Showcasing

Figure 71 - Studio for speaker in the holographic meeting

Figure 72 - Example of Speaker displayed on the Dreamoc Diamond Holographic device

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 100 of 107

Figure 73 - Example of Musician displayed on the Dreamoc Diamond Holographic device

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 101 of 107

6.2 VR Medical Training Showcasing

Figure 74 - 3 HMD users and 55 bots performing Knee surgery training

Figure 75 - VR Medical training showcased at EUCNC 2024

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 102 of 107

6.3 VR Tour Creator Showcasing

Figure 76 - XR Editor interface

Figure 77 - cyango-story interface

Figure 78 - Portuguese TV use case showcase running on CHARITY

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 103 of 107

Figure 79 - AWE XR Lisbon Showcase

Figure 80 - Web Summit 2021 - Dotes Running on CHARITY showcase

Figure 81 - Invited talk to present DOTES use case running on CHARITY

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 104 of 107

Figure 82 - XR Conference Showcase at University

Figure 83 - euCNC 2023

Figure 84 - euCNC 2024 Showcase

6.4 Collaborative Gaming Showcasing

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 105 of 107

Figure 85 - Interaction with mixed reality in UC 3.1

Figure 86 - Scanning the real space using 2 client devices

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 106 of 107

6.5 Manned-Unmanned Operation Trainer Showcasing
The Flight Simulator Use Case challenged Collins Aerospace to rethink, redesign and redevelop thetraditional on-premises model for flight simulation. This, combined with adopting cloud nativearchitecture principles to put forth a use case to apply the proposed solution for Task 3.3 (DynamicSoftware Adaptation), proved to be a highly challenging task. The evolution of the current prototypehas beenmonitored with interest within Collins Aerospace and drew inputs from a number of businessunit groups across the company with a stand at numerous internal exhibition days held by the CollinsApplied Research Centre in Ireland.
The separate research and development strands of work undertaken by UTRC in the use case beganto coalesce and combine into a demonstrator in the final months of the project. One of the strands –that of real-time video upscaling at the edge using AI – was promoted at a national Irish conference onArtificial Intelligence while the move to Cloud Native was discussed in a public CHARITY webinar.Demonstration of integration with a commercial grade flight simulator has not been possible outsideof the confines of Collins Aerospace due to the commercially sensitive nature of the flight simulationbusiness.

Figure 87 - Promotion at national AI conference, in a public webinar, and during one of the researchcentre’s internal open days

D4.4: Showcasing, validation and evaluation

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 107 of 107

7 Conclusions
The document presents the outcomes of the final version of the validation and evaluation ofcomponents and services of the CHARITY platform prototype as well as the Use Cases in differenttestbeds environments. The experimentation involves the evaluation of individual subtopics whichaddress core functionalities and aspects of the platform and are linked to the functional and non-functional requirements. The evaluation of each subtopic was undertaken by the partner responsiblefor developing the respective modules of the platform, services and use cases, the procedure andmetrics were detailed upon which the analysis was conducted and reported in the present deliverable.Furthermore, based on the related KPIs the analysis comprised of different experiments. The outcomesof the evaluation are summarized as lessons learnt. In this final version of the deliverable use caseUC1-3 Holographic Assistant was not evaluated, due to SRT leaving the consortium. All use cases wereused to evaluate the deployment, monitoring and orchestration features of the CHARITY platform.

[end of document]

