B8 Ref. Ares(2024)4716717 - 01/07/2024

Grant Agreement No.: 101016509
Research and Innovation action
Call Topic: ICT-40-2020: Cloud Computing

CHARITY

Cloud for Holography and
Augmented ReallTY

Cloud for Holography and Cross Reality

D4.6: Evaluation, Validation and Showcasing Outcomes (final)

Version: v1.0

Deliverable type R (Document, report)
Dissemination level PU (Public)

Due date 30/06/2024 (Latest Amendment)
Submission date

Lead editor Antonis Protopsaltis (ORAMA)

Authors Antonis Protopsaltis (ORAMA), George Kokiadis (ORAMA), Antonios
Makris (HUA), Theodoros Theodoropoulos (HUA), Konstantinos Tserpes
(HUA), Joao Rodrigues (DOTES), Mike McElligott (UTRC), Massimiliano
Corsini (CNR), Massimo Coppola (CNR), Peter Gray (CS), Luis Rosa (ONE),
Luis Ferreira (ONE), Luis Cordeiro (ONE), Diogo Fevereiro (ONE); Tarik
Taleb (ICT-FI), Nora Taleb (ICT-FI), Hao Yu (ICT-Fl), Qize Guo (ICT-FI), Yan
Chen (ICT-FI), Tarik Zakaria Benmerar (ICT-FI), Giovanni Guliani (HPE),
Laura Sande (PLEXUS), Yago Gonzalez (PLEXUS), Alex Roibu (HOLO3D)

Reviewers Giovanni Guliani (HPE), Antonios Makris (HUA)
Work package, Task WP4, T4.3

Keywords Evaluation, use cases

Abstract

This document reports on the outcomes of the evaluation, validation and showcasing activities. It
reports on the set of experiments, technological setups and validations, to provide feedback to
technological Work Packages (WPs) and on the impact the evaluation and validation had on the
development process. A combination of different subtopics with related metrics is exploited, derived
primarily from log data to assess individual functionalities of the platform components/services as
well as Use Case related aspects and verify the functional aspects of their intended operation. This
document constitutes the final version of the validation and evaluation.



D4.4: Showcasing, validation and evaluation n.

Document revision history

Description of change List of contributor(s)

v0.1 23/04/24 Initial ToC ORAMA

v0.2 25/05/24 Initial document content ORAMA

v0.3 20/05/24 Partial Content editing all

v0.4 05/06/24 Partial Content editing all

v0.5 22/06/24 Partial Content editing all

V0.6 25/06/2024 Final Content editing ONE, HPE, CNR, ORAMA

V0.7 25/06/2024 Final parse editing ORAMA

V1.0 27/06/2024 Reviewers comments addressed ORAMA, HPE, CNR, HOLO3D, CS,

PLEXUS, TID, UTRC, ORBK, ONE

Disclaimer

This report contains material which is the copyright of certain CHARITY Consortium Parties and may
not be reproduced or copied without permission.

All CHARITY Consortium Parties have agreed to publication of this report, the content of which is
licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License®.

Neither the CHARITY Consortium Parties nor the European Commission warrant that the information
contained in the Deliverable is capable of use, or that use of the information is free from risk, and
accept no liability for loss or damage suffered by any person using the information.

@' CC BY-NC-ND 3.0 License - 2021-2023 CHARITY Consortium Parties

Acknowledgment

The research conducted by CHARITY receives funding from the European Commission H2020
programme under Grant Agreement No 101016509. The European Commission has no responsibility
for the content of this document.

! http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 2 of 107



D4.4: Showcasing, validation and evaluation n.

Executive Summary

The deliverable delves into the comprehensive process of validating and evaluating the CHARITY
prototype, a crucial step in ensuring its functionality and efficacy. It underscores the significance of
assessing not only the individual components and services but also their integration within the broader
context of the project's use cases. This evaluation takes place across diverse testbed environments
provided by partners, enabling controlled tests and data collection essential for thorough analysis.

To gauge the success of the project's ambitions and methodologies, a multifaceted approach is
employed, leveraging various metrics primarily derived from log data. These metrics serve as
guantitative indicators, shedding light on the technical characteristics and operational functionalities
of the CHARITY platform. By scrutinizing these metrics, valuable insights into the platform's
performance and its alignment with project objectives is gained.

The document delineates the validation and evaluation process into distinct phases, with this report
representing the initial stage. It focuses on reporting the outcomes of the set of experiments,
technological setups, and validation procedures. Moreover, it provides valuable feedback to the
technological work packages, informing future development endeavours.

A critical aspect of the evaluation involves defining and addressing specific subtopics linked to project
requirements, both functional and non-functional. Each subtopic is meticulously examined, with
appropriate metrics defined to measure its performance. Experimental procedures are outlined,
detailing the methodology, tools, and instruments utilized to gather relevant data during functional
tests. Validation of the platform is achieved through KPI assessment, and a lessons learnt discussion is
also conducted. Additionally, project showcasing is presented through pictures from specific events.

Furthermore, the document emphasizes the necessity of defining testbed characteristics and
capacities to facilitate the deployment of CHARITY components. This involves compiling detailed
descriptions of the testbed infrastructure, including production cloud resources and open-source
cloud stacks. Such information is crucial for ensuring seamless integration and optimal performance
across diverse environments.

Overall, the deliverable serves as a comprehensive guide to the validation and evaluation process,
providing invaluable insights into the progress and performance of the CHARITY prototype.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 3 of 107



D4.4: Showcasing, validation and evaluation n.

Table of Contents

EXECULIVE SUMIMATY ..ccuueeeeiiieeiieeeeeieteeeereeeeeeeeenssesessesssessssssesssssssssssssssssssssssssssssnssssssnsssssens 3
Table Of CONtENTS.......ccciiiiiiiiiiiiritt ettt sasssss s s s s s s s e sesssas 4
LISE Of FIGUIES... .ottt ceeceeetn e eeeseesaaeeeeesessssssssssesssnnssssssessssnssnnnnsesesnnnnnnnnans 7
List Of TableS...cceiiiiieeeitititi ettt sasase s e s s s s s e s e s s s s s ssannnane 10
AbDIeviations.......ccooiuiiiiiiiiiiiiiiieccr e aaa e 11
1 (L4 Tge T 1 Tt T PR 13
1.1 Scope, Motivation and ODJECLIVES...........ueeeieeeirrieeieecireeee et e eerre e e e e 13
1.2 MEENOAOIOZY «.eeeeeeeeeeeee ettt e e e e e e e e e e aaa e e e e e e anraeeeeeennnaaeeeas 13
1.3 Structure of the doCUMENt.......c.cooiiiiiie e 13

2 Preparatory activities for evaluation..........cceeeeeeeeeveeiiirreiirerncireeneeereeneereeneneeeennns 14
2.1 Evaluation subtopics definition ....cccoceeeiiiiiiiiiiiiieeeeeeeee e 14
2,11 PlAtfOrM e s s 14
2.1.2  XRSErvice ENAbBIErsS ......cooiiiiiiiiieeeeeeee ettt 15
2,13 USE CASES cuuerieiiiieiirieeeite ettt ettt ettt s na e s anae e e 16

2.2 Procedures and metrics definition ........cocceovieriieeiiiiniineeeeeeeeee e 16
2.3 Testbeds and reSOUICES........coouii ittt 16
2.3.1  CloudSigma Testbed Characteristics and Capacity......ccccoevvvrvveeereieeieeiieinciinnns 17
2.3.2  TID Testbed Characteristics and Capacity......cccccveeeieiiiiiieiicrnriereeeeeeeeeeeeeeeeenne 19
2.3.3  OneSource Testbed Characteristics and Capacity......cccccveeeeeeeeiieiiiriirenrerereeneen. 21
2.3.4 ORAMA Testbed Characteristics and Capacity......cccccevvvveeereeeieeiieiiciiennreeeveeenen. 22

3 Evaluation and results..............ueeeiiiiiiiiiiiiiiiiiiieeeciiiineeee 24
3.1 E2E CHARITY Orchestration WOrkflow ..........cceceeierienienienienieneeieeieeeeeeeeeee 24
3.1.1  Description, procedure, MELMICS...ccoovvvrveiiiiiieieiiieeeeeeetrereee e e eeeeaiaens 26
3.1.2  EXperimentation SCENAIiOS ....coovvuvviierieeeieecceeeeeeeerteree et ce e e raae e 26
3.1.3  Evaluation tests, data collection and analysiS........ccccvveeeeeeiiiiiiiiiiiiiiieeeeeeeeeeeen. 35

3.2 Point Cloud ENcoding/DeCOdiNG......cc.ueeeuieeiiieiieeiieeieeeieeeveesveesreesveesveesseessseenns 36
3.2.1  Description, procedure, MELICS...cooovvvvveiiiiiieieiiicieeeeeecereee e ee e eanaees 36
3.2.2  EXperimentation SCENAIIOS ...uuuuuucieeeeeeeeieieeeeeeeeeeeeeeeettrrreeeeeeeeeeeeeeeeeeereeeeeees 37
3.2.3  Evaluation tests, data collection and analysis........ccccvveeeeeeeiiiiiiiiiiiiireeieeeeeeeeen. 37
3.2.4  KPIS @SSESSMENT ....coiiiiiiiiiiiiieeeeeee et e eeeeeeeeee ettt e ee s e s e s e e eeeeeeeeeeneneees 37

3.3 MBS MBIEEN ..ttt ettt e te e e aeesvee s baeebeeebaeeseeesaeensaeensaessaennns 38
3.3.1  Description, procedure, MELIICS...ccoovvvureiieiieeieiiieiieeeeecertrrere e e eeeeeeeseaaeens 38
3.3.2  EXperimentation SCENAIIOS ...uuuuuucceeeeeeieieiieeeeeeeeeeeeeeet e ee e e e e e e e eeeeeeeeeeenees 39
3.3.3  Evaluation tests, data collection and analysis........cccvveeeeeeiiiiiiiiiiiiiiieireeeeeeeeen. 40

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 4 of 107



D4.4: Showcasing, validation and evaluation n.

3.3.4  KPIS ASSESSMENT ...eeeiiiiiiiiiiiiiiiittcctte ettt s 41
3.4 CHARITY EAZE StOrage (CHES)......covuiiiieieeeeeeeeeteee ettt e it seare e e eaaeeesasee s 41
3.4.1  Description, procedure, MELTICS. ..o evvvvveiieiiieieiieeeeeeeecetreree e eaaaees 41
3.4.2  EXperimentation SCENAIiOS ....coovvuvvviivieieieeiceeeeeeeereree e 42
3.4.3  Evaluation tests, data collection and analysiS........cccvveeeeeeeiiiiiiiiiiiiiieieeeeeeeee. 42
3.4.4  KPIS ASSESSIMENT c...eeeiiiiiiiiiiiieit ittt ettt rb e e e s ara e e s 43
3.5 CHARITY Adaptive Scheduling of Edge Tasks (ASET)......cccveeeerreeeireeeeereeeesreeeeenveeenns 44
3.5.1 Description, ProCedure, MELIICS ...ttt e e e e e e e e seans 44
3.5.2  EXperimentation SCENAIIOS ...uuuueecieeeeeeieieiiieeeeeeeeeeeeeeeet e eeeeeeeeeeeeeeeeesereeeees 45
3.5.3  Evaluation tests, data collection and analysis........cccvveeeeeeeiiiiiiiiiiiiriieeeeeeeeeeen. 45
3.5.4  KPIS ASSESSMENT .....euuiiiiiiiiiiiiiiiiiiicir s 47

4 Use case Evaluation and results............ccccevvvueiiiiiiiineeciiniinnneccinninneecenncsnneeens 48
4.1 UC1-1 Holographic Concert and UC1-2 Holographic meetings.......ccccceeeeeecuvveeeeennnes 48
4.1.1  Description, procedure, MELIICS.....coceeevvvvririiieiiieeeeieeeeerirrrrrreeeeeeeeeeeeeesssssannees 48
4.1.2  EXPerimentation SCENAIIOS. ....cccoiiiiiiiieiieieeeeeeeeeee e eeeeeeeeeeeeeeeeereeeeesesaaasaanes 49
4.1.3  Evaluation tests, data collection and analysis............uuueeuieiiieeeeeiiiiiiiiiieieeeeeen, 49
4.1.4  KPIS QSSESSMENT...cciiiiiiiiiiiiiiiiiiiiiiriccrrt ettt 51
4.1.5 Benefits from the use of the Platform/Component.........ccccvveeeeeeeeiieiieiieciiinnnns 52
4.2 UC2-1 VR MediCal TraiNiNG . ..uuuvverirriereeeeeeeeeiiieeieeirrereeereeeeeeeeeessessnsssssesssssssessesssesnens 52
4.2.1  Description, procedure, MErIiCS.....ccceeverrrrerrieieeeeeeieeeeerierrrrreeeeeeeeeeeeeeeeeessnnnnns 52
4.2.2  EXperimentation SCENAIIOS.......ccovveiieeriirrrrerereeeeeeeeeieeseennrrrreereeeeeeeeeessessessnssenes 53
4.2.3  Evaluation Tests, data collection and analysiS........ccccceeeeeeeieecerinreeeereeeeeeeeeeeenn, 54
4.2.4  KPIS @SSESSMENT c...eeiiiiiiiiiiiiieiteeeteee ettt 56
4.2.5 Benefits from the use of the Platform/Component...........ccccceuviieiiiiciieenennns 58
4.3 UC2-2 VR TOUF Creator ......cciiiiiiiiiiiiiiiiiiceiiiiieccneiitteeeeirree s seinee e e s ssanseeeessnnns 59
4.3.1  Description, procedure, MEIICS....ccouvvvvrirrirreiiiieeeeeeieieeiirrrrereeeereeeeeeeeeeeesnasenes 59
4.3.2  EXperimentation SCENAIIOS. ......ccovvviierriireerirereeeeeeeeeieeieessrrereerereeeeeeeeseessssnnssenes 60
4.3.3  Evaluation tests, data collection and analysis........cccoovvvmvvreeereereiiiiiiiiiiiicnnnns 60
4.3.4  KPIS @SSESSMENT c..eeeiiiiiiiiiiiiieieteee ettt ettt st 68
4.3.5 Benefits from the use of the Platform/Component...........cccocoiiiiiiiiiiiieeeennnns 68
4.4  UC3-1 Collaborative GamiNg.......eeeeeeeeiiiiiiiiiiiiiiierieeeeeeeeeeeeeeesseessrvnrereereseeeeessenssnnns 68
4.4.1  Description, procedure, MELIICS....couuvvivrurvieriieiieeeeeieeeeeiiierrereeee e e eeeeeeeesnannnes 68
4.4.2  EXperimentation SCENATIOS. .......covvviiveiiireerireeeeeeeeeeeeeeisssrrrereereeeeeeeeeeseesssssnssenes 70
4.4.3  Evaluation tests, data collection and analysis........ccooovvvmevreeeireieiiiiiiiiiiiinnnnns 71
4.4.4  KPIS @SSESSIMENT ....uuuiiiiiiiiiiiiiiiiiiiiiceertttre et ereeet e e e e e e e s s s s e s e snnnns 74

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 5 of 107



D4.4: Showcasing, validation and evaluation n.

4.4.5 Benefits from the use of the Platform/Component...........cccocooiiiiiiiiiiiieeecnnns 75

4.5 UC3-2 Manned-Unmanned Operation Trainer........ccccceevvevvvvvererereeeeeeeeeeeeieeissnnneenns 76
4,51  Description, procedure, MELIICS....couuvvivruvriirieeiieeeeeeeeeeeiiirrreree e eeeeeeeeeeessnaanens 76
4.,5.2  Evaluation tests, data collection and analysis........ccooovvvuvvreeeeriieiiiiiiiiiiiinnens 77
4.5.3  KPIS QSSESSMENT .cciiiiiiiiiiiiiiiiiiieeittcee ettt s s ra e s 92
4.5.4  Benefits from the use of the Platform/Component...........cccocoovveeiieciiiieeeeenns 95

5 Platform Validation & Lessons learnt.............ccooouueeeiiiiiiiiiiiiiiiiiiiniiinnneeeccecccnnnnnn. 96
6 Platform ShOWCASING.....cccvuuuueiiiiieeicceeetteetceeeeeceenneeeeeeeeennneeeeeeesnnnssneeeesnnnnes 100
6.1 Holographic Meeting & Concert ShOWCASING .......cccccuveireeeeiiiieeeeeeciree e 100
6.2 VR Medical Training SNOWCASING ......ccccuviieeeeciieee ettt et eeeareeeeeeeaneeeeeeeanns 102
6.3 VR ToUr Creator SNOWCASING ......cceieeeiviieeeeeiieeeeeeeeireeeeeeetreeeeeeeraeeeeeeennreeeeeennnnns 103
6.4  Collaborative Gaming SHOWCASING..........oeeeeeeiiiiieeieeiieeee et eeevre e e e e 105
6.5 Manned-Unmanned Operation Trainer ShOWcasing.......ccccceceeeeeeveeeeeeeciveeeeeeeennnen. 107

7 L0003 Tl T T TP 108

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 6 of 107



D4.4: Showcasing, validation and evaluation n.

List of Figures

Figure 1 - Location of CHARITY platform datacentres...........oooueeeiieciieei ettt e 14
Figure 2 - Dashboard: Overview of "cO1" dataCentre.........ooocuiiiieeceiieeeecee e e 15
Figure 3 - Dashboard: ClUSter rESOUICE USAZE.....cc.uuviieeeeiriieeeeeteeeeetee e ettt e e e e e e e e ae e e e e eaaaee e eeaneaeas 15
Figure 4 - High level view of CHARITY platform components.........cccoeeeeeiiieieeciiieeeeceeee e 24
Figure 5 - Single-Cluster Cloud-Native Application Deployment...........ccooeeeiiieiieciieeicecee e, 27
Figure 6 - Kubernetes Cluster BOOtStrapPing ....cccuvieeeeciiieeeeiiiieeeecitee et e e et e e e e aae e e e eeavaeeeeesaeaeeeas 28
Figure 7 - Resource status at 'e02' datacentre..........uuiii e 29
Figure 8 - AMF editor view of deployed XR application..........c..coeeeeiiiiieciiiiiieecieeeecee e 29
Figure 9 - Multi-Cluster Cloud-Native Application Deployment............eeeveeeieiiiiinivreeieeeeeeeeeeeeeeeeeee 31
Figure 10 - ClUuStEr SUCCESSTUI PEEIING ... .uuvurvrriieiiiiieeeiirieeeeeeeeeeeeeiirrrereeeeeeeeeeeesssssrsrsseseessesessssssesssees 31
Figure 11 - Multi-Cluster Application DePlOYMENt.........uvvviviiiiiiiieeeirereeeeeeeeeerrree e e eeeeenrraeeeees 32
Figure 12 - EUCNC & 6G Summit 2024 CHARITY Platform ShOWCASE.......ccccuveeeeeeiveeeeeireeeeeeiveeeeenenee, 32
Figure 13 - Cloud-Native Application Live Migration..........cccuveeieeeiveiieeiireeeeeneeeecenrreeeeesvrereeesnreeeens 33
Figure 14 - High CPU load on '€02' datacentre ClUSTErS......couveiieeevveieeeireeeeeireeeceireee e eerree e 33
Figure 15 - AMF editor displaying alerts and alarms...........eeeeeeveeieieeieieieeeee e e 34
Figure 16 - Placement after re-deploymMENT........coovveiieeiiieeeeee e e e e e 35
Figure 17 - A test scene reconstructed from 8 RGBD VIEWS. .........ccoeeeveeeeeiieeeeeeeineeeeceereeeeeeereeeeeennees 37

Figure 18 - Each Game Client can send a fragment of scanned environment and trough Game Server it
is sent to the Mesh Merger. Game Server is responsible for setting up a merging session with the Mesh
Merger Service, sending all the fragments, and after receiving merged mesh distributing it back to all
Game Clients connected to gIVEN SamME SESSION. ......ceeieeiiiieeeeiieeeeeceee e e eeere e e e e aee e e e rreeeeeeaneeeas 39

Figure 19 - Each Game Server can open its own mesh-merging session with Mesh Merger Service. It is
realised by assigning to each session its unique ID and using it every time Game Server is requesting
merge operation. This way, each instance of deployed Mesh Merger Service is able to serve single or

MUILIPIE GAME SEIVETS. .ccciiieeiteeeeeeeee ettt ettt eeeeraee e e e e e e seessssssaaeseeeeeessensssssassnseeesesesensssrsrnnees 40
Figure 20 - AVEIrage RPS - CHES ... .ttt ettt e ettt e e e et e e e e e tae e e s e sbaaeesensbaseeennssanaeanns 43
Figure 21 - Success percentage for different apps on the full-edge topology. ......ccccovveeeeiiireeeccnnnenn. 46
Figure 22 - Performance of ASET compared with static policies for (ab) the dc- cloud topology and (cd)
The CO-AC-ClOUA tOPOIOZY. ..oveiiiieeeteeeee et e e e e e e e eeeaabareeeeeeeseeessasssrssnseeeeseesennnnnns 46
Figure 23 - Performance of ASET compared with static policies for the full-edge topology. (a) (c) and
(d) show averages of multiple runs With A= 60.........ccuviieuiiiieeieeeeeeeceee e e 47
Figure 24 - Network load with 1280x720 resolution @ 25fps and an average 2500kbps...................... 50
Figure 25 - Latency with 1280x720 resolution @ 25fps and an average 2500Kbps.........ccccveeeevveeeeenne. 50

Figure 26 - Latency metrics, FPS, Packet loss and Bandwidth consumption on the HMD for Test 1....54
Figure 27 - Latency metrics, FPS, Packet loss and Bandiwidth consumption for Test 2........................ 55
Figure 28 - Latency metrics, FPS, Packet loss and Bandiwidth consumption for Test 3........................ 56

Figure 29 - Incoming and outgoing bandwidth consumption of the Physics server (LSPart2) while 53
users gradually €nter the VR SESSION.......ccccuiiieeeiiiieeeccreee ettt e eeereeeeeetreeeeeeareeeeeebreeeeesnsseeesesnsseeenns 56

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 7 of 107



D4.4: Showcasing, validation and evaluation n.

Figure 30 - Right: Physics server computations with 53 concurrent users in the same VR session. Left:

RENAEIEA SCENE......eeiiiiee ettt ettt et e st s bt e st e st e e bt e e mt e e bt e bt e smeesbeesneenas 57
Figure 31 - 6 different types Of VR HMDS...........uiiiiiiiiieecceee ettt e e e vte e e e vae e e seneaee s eeannes 57
Figure 32 - Right: Physics server computations for real-time deformations. Left Rendered scene......58
FIiSUIE 33 - BYLES FECEIVEM ...ttt e e et e eee e aaaee e e e e e eeeeessssssassseeeeeeessssssssrnnes 60
FISUIE 34 - BYLES SENL..uuiiiieiiiieiiiieeeitreeeee e eeeecttree e e e eeeeeeeeabsaaereeeeeeeeesessssssssseseeseesessssssasnseseessesnnnnes 61
Figure 35 - TOtal ROUNA TriP . uuiiiiiiiieiceiiteeeette ettt ee et e e e tre e e e vaee s e tba e e s e avaee e e nsaaeeennsanasesnnnens 61
Figure 36 - CUITeNt ROUNG THiD..iccuieeeiieeeiee et ettt e eieeeeetee e vee e tee e treesvaeessasesasaeessasenssaessseennsesesnseens 61
Figure 37 - Available inCOMING DItrate..........oeiciieiieeeee ettt re e e ee e e re e e rae e e 61
Figure 38 - Original mp4 video perceived qUAlity........ccueeveeeiviieeeeieieceeireeecectree e eerreee e 63
Figure 39 - Converted mp4 into HLS format perceived quality.......cccccueeeeeeireeiieeiieiiieeeeeeeeeeeee e, 63
Figure 40 - Original 3D model Metadata..........ccueieiiiieciiecie ettt re e e aeeeaes 64
Figure 41 - Original 3D Model QUAlity..........ooeuiiieiieeeeee e e e ae e e 64

Figure 42 - Converted 3D model on cyango-editor component which shows the loading of 14.2 Mb 65

FIgUIre 43 - HMD TESt SCENAIIO . uuviiieeiieeeeeeitreeeeeeitreeeeeeitteeeeeeireeeeeesreeeeeeasseseeesssseseeeasssesesesssseeeeennsseeenes 66
Figure 44 - Cyango-story experience loading time on HMD deVice........cuveveeeciviiecciiiieececieeeeeereeen, 66
Figure 45 - Smartphone/Tablet Test SCENAIIO.........iieiiiiecieiceeeceeee et e e 66
Figure 46 - cyango-story experience loading time on Smartphone/Tablet device..........cccccuvveeennnneen. 67
Figure 47 - DesKtop TSt SCENAIIO....ccccuiiieeeetiee ettt ee e e et e e e e ere e e e e aee e e e e asaaeeeeaneeeas 67
Figure 48 - cyango-story experience loading time on Desktop device.........ccceeecvieeiecciieeeecciieeeeee, 67
Figure 49 - Measured latency for sending mesh fragments from the game to the Mesh Merger........ 73
Figure 50 - Measured RTT: Game Servers <-> MeSh MEIZEIS........cciieciiieeieciieeeeeciree e eecteeeeeecveeeeeennes 74
Figure 51 - RTT values measured between Game Clients and Game Server [MS]........cooveevveeveenreeennenns 74
Figure 52 - Where the time goes - upscaling 640x480 resolution by a factor of three......................... 79
Figure 53 - Upscaling by a factor of four reveals the limits imposed by caching.......ccccceveeeeeveeeininnnnne. 80
Figure 54 - Where the time goes - upscaling from 10fps to 20fps with 1920x1440 resolution............ 80
Figure 55 - Predicted trajectory versus observed trajectory......ccccvvieeeieiiiceeccieeeeeec e 81
Figure 56 - Diversity of configuration channels for remote rendering components.............ccceeeuvenneee. 82
Figure 57 - Dynamic Software Adaptation using rolling updates for the Collins use case.................... 82

Figure 58 - Employing a Prometheus Operator and Kubernetes namespaces for segregated metrics.84

Figure 59 - Dynamic Adaptation in action - less cloud and more edge resources to upscale at the edge

............................................................................................................................................................... 85
Figure 60 - Generate high quality at rendering SOUICE..........ccoovvieeeeiiiiieeeceee e e 86
Figure 61 - Generate low quality on the cloud and seek to recover quality at the edge. Significant
bandwidth reductions but also significantly increased resource usage overall............ccceeeeurvreeennnneen. 86
Figure 62 - Serialization performance for 20 frames per second at resolution of 1920x1440.............. 87
Figure 63: Communication between Docker containers does incur overhead and resources.............. 88
Figure 64 - Communication within a pod incurs less overhead...........cccoccviiiieeiiiiiiccceee e, 88

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 8 of 107



D4.4: Showcasing, validation and evaluation n.

Figure 65 - Containers within a pod have higher bandwidth available than dockers........................... 88
Figure 66: Parallel deployment of cloud pods on an AWS EC2 instance........ccccccoveeeeeciieeecccieeeeecnnennn. 90
Figure 67: Resources are Not ovVerbUrdened.............ooeiieiiieiecciiiee e vae e e e 90
Figure 68 - Hololens demonstration of a scenery stream generated on the testbed........................... 91
Figure 69 - VR demonstration of a scenery stream generated on the testbed.........ccccceevvveeeennnnnnnnnnn. 92
Figure 70 - Integration of Collins Use Case with CHARITY design patterns and technology stack........ 95
Figure 71 - Studio for speaker in the holographic meeting.......ccccovvvvvveeiiiiieeiiieeeeeeeeee 100
Figure 72 - Example of Speaker displayed on the Dreamoc Diamond Holographic device................. 100
Figure 73 - Example of Musician displayed on the Dreamoc Diamond Holographic device............... 101
Figure 74 - 3 HMD users and 55 bots performing Knee surgery training........ccoeeeeeeeevvveeeeeeveeeeennnen. 102
Figure 75 - VR Medical training showcased at EUCNC 2024 ...........uveeeeeireeeeeeireeeeeeireeeeeeinreeeeesnneeeens 102
Figure 76 - XR EAItOr INTEITACE. .. ..uiiieieeee ettt cerrree e ee e e e eerae e e eearaeeeeeaneeeeeenneeeas 103
Figure 77 - cyango-StOry INEEITACE.....cciiii ittt eeeecrrrree e e e e e e e e raaesaeeeeeeeeesnnnnnns 103
Figure 78 - Portuguese TV use case showcase running on CHARITY ........ooooiiieieeiiieeeeecieeeeeereeeeeens 103
Figure 79 - AWE XR LiSDON SHOWCASE..........vviiieiiiieeeeieieeeecteee e ceetteeeeectreeeeeeareeeeeerraeeeeasreeeeenraeeenens 104
Figure 80 - Web Summit 2021 - Dotes Running on CHARITY ShOWCASE.........cceeveeeevvieeecireeeeenieeeeees 104
Figure 81 - Invited talk to present DOTES use case running on CHARITY ......cccvvieeeciiieeeeciieeeeecneeen. 104
Figure 82 - XR Conference Showcase at UNIVErSity.......cccouiieieciiiiiieeiieeeceeteee ettt eeree e eenens 105
Figure 83 - @UCNC 2023........eiiiieeeieee ettt et e e eetee e e eette e e e e bese e e e asaseesessasaeaesseaaasasssaeesenssasaeennsenes 105
Figure 84 - @UCNC 2024 SHOWCASE ... ...uviieeeeiieieeeeciiteeeeeciteeeeeeteee e e teeeeeesseseeseasseaeeeesssaeeesnssaseaennsenes 105
Figure 85 - Interaction with mixed reality iN UC 3.1.......ooiiiiiiceeeeeee et e 106
Figure 86 - Scanning the real space using 2 client deViCeS......cc.uuviiieciiiiiecieee e eees 106

Figure 87 - Promotion at national Al conference, in a public webinar, and during one of the research
CENIE’S INEEINAl OPEN HAYS....uvviiiiiiiiiieieeeie ettt e eeratre e e eesabeeeeeesaseeeesessssesessssssesesssrnneesns 107

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 9 of 107



D4.4: Showcasing, validation and evaluation

List of Tables

Table 1. SUMMATY Of SUDLOPICS.....uuveeeeeeieiiiieeeeeeeeeeeeee e eeeeeeiiteeeee e e e e eeessasaaeeeeeseesssesssssssseeeeesesssssnssssennes 16
Table 2. TESDEA TEMPIALE .........ueueeeeeeeeeeieeeeeeeeee ettt e e ee e e e e e e e eesssssssaseeeeeesesssnssnssnnnees 17
Table 3. CloudSigma Testbed CRArACEriStICS..........cccueeieecuieeeeeieee et ee et e e e e e e e eaaee e e e aeeas 18
Table 4. TID Testhed ChArACteriSiCS. ......c.uouuiritiiiieieeteeieetee ettt ettt ettt st estesbeesaeeeas 19
Table 5. TID Testbed Characteristics Without GPU SUPPOI T ........uueeeeeeeiiiiieeeiieeeeeeeeeeeeeeeiveveeeeeeeeeeennns 20
Table 6. OneSource Testbed CharACLeriStICS. .......ccouvuiiiiirririieeteeee ettt ettt 21
Table 7. ORAMA G CRAFACLEIISTICS ....co.eeeeeieiieiiieieee ettt ettt ettt sne et 22
Table 8. Description of evaluation subtopic -Platform services for XR applications...............cccceeeuune. 26
Table 9. Description of evaluation subtopic - Point Cloud Encoding/Decoding service......................... 36
Table 10. Description of evaluation subtopic - Mesh Merger SErviCe...........uuuueeeeeeeeevivvreeeeeeeeeeeeeernennns 38
Table 11: Description of evaluation subtopic - CHARITY Edge Storage component (CHES) & CHES
REGISEIY SUD-COMPONENL ......ccueveeeeeeireeeeeeeieeeeeectteeeeeeiteeeeeesiteeeeeesiseeeeeesseseesessseseesessseseesnsssseessnsssneessnnes 41
Table 12. CHARITY Adaptive Scheduling COMPONENT...........ccccvueeeeeiveieeeerreeeeeeieeeeeeirvereeesrrereeesseeeeens 44
Table 13. Characteristics of reference ApPlICAtiONS...........coocveeeeeeiveeeieeiieeeeeeieeeeeeeireeeeeeeveeeeeeiaeeeeennns 45
Table 14. Description of evaluation subtopic - Holographic Concert and Holographic meetings.......... 48
Table 15. Description of evaluation subtopic - Realistic simulation in VR medical training .................. 52
Table 16. Description of evaluation subtopic - Virtual Experiences Builder for the web........................ 59
Table 17. Description of evaluation subtopic - Mobile multiplayer game utilising AR technology........ 68
Table 18. Description of evaluation subtopic - Cloud Native Flight Simulator...............ccccceeeeevuveeeennneen. 76
Table 19. Experimental results of evaluating upscaling tecChniqQUEs.............cccueeeeeeerveeeeccieeeeeecieeeeeens 78
Table 20. Resource usage profiles across various configurations...............cccceeeeeeueeeeeccereeeecirereeeeennn 83
Table 21. Blosc Compression Results for 24 frames at a resolution of 1920X1440DX.....cccuueeeeeeeeeeeennn. 87
Table 22. Pickle Serialization Results (without Blosc) - 24 frames at a resolution of 1920x1440px...... 87
Table 23. Measuring the GPU to host transfer limits for transferring 10 frames in & 30 frames out...89
Table 24. The limits of Frame rate upscaling and CACING .............cc.ueeeeecuiiiieeciiieeeectee e e 89
Table 25. Requirements status for Flight Simulator Use Case............cccoueieeeceieeeecciieeeeecieeeeeecieee e 92

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 10 of 107



D4.4: Showcasing, validation and evaluation

D

Abbreviations
5G-PPP 5G Infrastructure Public Private Partnership
AAA Authentication, Authorization, Accounting
AAE Adversarial Autoencoder
Al Artificial Intelligence
API Application Programming Interface
AR Augmented Reality
CCu Concurrent User
CPU Central Processing Unit
CUDA Compute Unified Device Architecture
DASH Dynamic Adaptive Streaming over HTTP
EDSR Enhanced Deep Super Resolution
ESPCN Efficient Sub-Pixel Convolutional Neural Network
ESRGAN Enhanced Super-Resolution Generative Adversarial Network
ETSI European Telecommunication Standard Institute
FSRCNN Fast Super-Resolution Convolutional Neural Network
GPU Graphics Processing Unit
GSM Game Server Manager
HD High Definition
HDD Hard Disk Drive
HLO High Level Orchestrator
HLS Http Live Streaming
HMD Head-Mounted Display
HPC High Performance Computing
IPFT Intelligent proactive Fault Tolerance
JSON Javascript Object Notation
LAPSRN Laplacian Pyramid Super-Resolution
LHLS Low Latency Http Live Streaming
LLO Low Level Orchestrator
LSTM Long Short-Term Memory
MILP Mixed-Integer Linear Programming
PLY Polygon File Format
RIFE Real-Time Intermediate Flow Estimation
QoE Quality of Experience
QoS Quality of Service
RAM Read Access Memory
REST-API  Representational State Transfer Application Programming Interface
RFT Reactive Fault Tolerance
RTMP Real-Time Messaging Protocol

Copyright © 2021 - 2023 CHARITY Consortium Parties

Page 11 of 107



D4.4: Showcasing, validation and evaluation

L

RTSP
RTT
SRGAN
SSD
uc
uDP
VDI
VPN
vGPU
VM
VR
XR

ZSM
ki>

Real-Time Streaming Protocol
Round Trip Time

Super Resolution Generative Adversarial Network
Solid State Drive

Use Case

User Datagram Protocol

Virtual Desktop Infrastructure
Virtual Private Network

Virtual Graphics Processing Unit
Virtual Machine

Virtual Reality

Extended Reality

Zero Touch Management

Copyright © 2021 - 2023 CHARITY Consortium Parties

Page 12 of 107



D4.4: Showcasing, validation and evaluation n.

1 Introduction

1.1 Scope, Motivation and Objectives

The CHARITY approach is based on a two-stage prototyping and evaluation cycle which focuses on
researching, designing, implementing and evaluating a cloud-native framework to be able to use
specific mechanisms to support the deployment and life-cycle management of a set of Cloud-based
XR Services (e.g., distributed holographic, AR and VR applications) and improving the overall
applications’ performance and user experience.

The deliverable focuses on the validation and evaluation of components and services of the CHARITY
prototype as well as the Use Cases in different testbed environments. The testbed environments are
provided by the partners and allow the execution of controlled tests and collecting the required
measurements for the assessment. The validation and evaluation aim to provide insight to whether
the project ambitions and approaches provide tangible outcomes to the use cases of the projects. A
combination of metrics is exploited, derived primarily from log data to draw conclusions on the
platform's technical characteristics and functionalities.

This document constitutes the final of two versions of the validation and evaluation, reporting on the
final set of experiments, technological setups, and validation. It aims to provide feedback to
technological WPs and on the impact the evaluation and validation had on the development process.

1.2 Methodology

We mainly devised the content presented in this deliverable based on the following approaches:

® Via regular communication between CHARITY partners using suitable communication tools
(e.g., cross WPs meetings, offline communication through e-mail or Slack messages)

e Sharing examples to guide partners on drafting their evaluation subtopics and providing
different rounds of feedback to support a common approach and alignment between the
different subtopics handled

e Each partner responsible for an evaluation subtopic has conducted the required functional
tests and experiments to collect and analyse relevant data. For the evaluation subtopics
related to the use cases reference to relevant KPIs was provided.

1.3 Structure of the document

Section 2 reports on the preparatory activities for evaluation with reference to the evaluation subtopic
definition. The subtopics were linked to the requirements devised in D1.2 and categorized according
to platform components, services and use cases. The section further reports on the testbeds and
resources that will be used for experimentation and validation.

Section 3 details the evaluation results of the platform and for specific enablers hosted in the platform.
Section 4 details the use case evaluation results exploiting the CHARITY platform.
Section 5 summarizes the validation and lessons learnt.

Section 6 presents the showcasing of CHARITY platform through use case applications.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 13 of 107



D4.4: Showcasing, validation and evaluation n.

2 Preparatory activities for evaluation

2.1 Evaluation subtopics definition

In order to assess individual functionalities of the platform components/services as well as Use Case
related aspects, and verify the functional aspects of their intended operation, a number of related
subtopics was provided. The subtopics were linked to the requirements devised in D1.2 and the non-
functional requirements addressing different attributes of the system. For each subtopic, appropriate
metrics were defined and the necessary tools have been utilized by each partner to gather the relevant
evaluation data during the functional tests (i.e., log data).

2.1.1 Platform

As reported in D4.2, the integrated components are evaluated in the scope of T4.3. The efforts of this
task are reflected in two document versions: D4.4, which describes the evaluation and
experimentations of the first phase of the integration of the isolated components, and D4.6, which
contains the experimentations and evaluations conducted on the final version of the integrated
components. The integration activities conducted to arrive to the integrated version of the platform
components is described in detail in D4.5.

The CHARITY Platform is responsible for the deployment, monitoring, adaptation, and release of
resources of the XR applications inside the platform. The general “XR Application Journey” of an XR
Application stored in the CHARITY platform is described in detail in the D4.5, together with the CHARITY
project pilots prepared to test it. The platform components have been deployed in a dedicated cluster
specifically created at CloudSigma premises in Zurich, and resources for XR applications have been
onboarded from three datacentres: “c01” from CloudSigma in Zurich (Switzerland), “e01” from
CloudSigma in Sofia (Bulgaria) and “e02” from OneSource in Coimbra (Portugal), as depicted in the
following picture (taken from a screenshot of a demo support dashboard).

Charity Datacenters

) / 9
H ) ot e Kuig
aris NG
® 2 Slovensk
-_— Y|
Chisindu
Fra £ Ma gyarorszag &
® Zagreb Romania
Hrvatska Cpbu @
by, ucuresti
LArapnA
= arcelon - &
{;;3 B a Italic Crbnie Istanbul
= nj
Espana
rtugqa A
EMMGC Lzmir
. g Antalya
Rabat @ .
06F Alger
LL AX320

Figure 1 - Location of CHARITY platform datacentres

Besides the AMF web interface, two Grafana enabled dashboards have been developed/customized
to help troubleshooting and demonstrating CHARITY Platform functionalities.

The first dashboard has been developed to show, for each datacentre, the total and free resources
(e.g., CPUs , GPUs, flavour sizes), the available clusters and their occupancy in terms of CPU and

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 14 of 107



D4.4: Showcasing, validation and evaluation n.

memory load and, the deployed XR applications. Figure 2 provides the overview of the “c01”
datacentre.

vaajuv
LT
blue

L

Figure 2 - Dashboard: Overview of "c01" datacentre

Figure 3 - Dashboard: cluster resource usage

The second dashboard (cf. Figure 3) is an open-source Kubernetes dashboard that has been customized
to select CHARITY clusters and directly retrieve metrics used by the Monitoring manager.

Figure 3 presents the displayed information regarding the detailed resource usage by the “blue” cluster
inside the “c01” datacentre as follows: the top row gauges show cluster memory, CPU and filesystem
usage, while the graphs in the lower part depict the last values of various detailed metrics aggregated
in several grouping modes.

2.1.2 XR service Enablers

As reported in D3.2 specific data services were developed as part of the project and are exploited by
a subset of XR applications of the CHARITY project. Even if these data services are targeted to the use
cases of CHARITY, it is envisioned by the partners of the consortium that such services can be
used/adopted by other XR applications with similar needs, beyond the ones involved in the project
itself. As part of this deliverable the following XR services have been evaluated:

e The Mesh Merger service which employs geometry processing algorithms to build virtual
environment for AR applications, that enables the UC3-1 Collaborative Game.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 15 of 107



D4.4: Showcasing, validation and evaluation n.

e The Point cloud encoder/decoder service, that is the main component of the UC1-3 Holo
Assistant and supports the efficient transmission of a huge amount of 3D data from the cloud
to the edge (the holographic display).

2.1.3 Use Cases

All the application Use Cases and the developed components following the integration and
experimentation plan reported in Section 5 of D4.2. The evaluation is reported in this deliverable,
except for the Use Case UC1-3 Holographic Assistant, that left the consortium at the end of the Q4-
2023.

2.2 Procedures and metrics definition

For each of the listed subtopics, proper experimental procedures and metrics are defined. The main
items related to the evaluation subtopics definition were focused on providing information on a) the
evaluation scope of each subtopic, b) the related requirements, c) the relevant platform application
components, d) the measurement points for collecting and storing the data, e) the instruments and
tools exploited, f) the methodology and procedure and g) the metrics to analyse the results. Table 1
provides a summary of the subtopics that are handled in this deliverable, along with a reference to
which category they belong (platform, XR services, Use Cases) and the metric used in the evaluation.
Detailed descriptions and results of the individual subtopics are reported in Section 3.

Table 1. Summary of subtopics

Subtopic description Category Metric/Evaluation

CHARITY platform Platform Usability and  functional
metrics

Point Cloud encoding/decoding (PC E/D) XR services Number of views, number of

3D points, FPS, KPIs

Mesh Merger XR services Data  transmission  time,
processing time, KPls

Holographic Concert and holographic meetings Use Case Several metrics, KPIs
Realistic simulation in VR medical training Use Case Several metrics, KPIs
Virtual Experiences Builder for the web Use Case Several metrics, KPIs
Mobile multiplayer game utilising AR technology Use Case Latency, RTT between Game

Client and Game Server, and
between Game Server and
Mesh Merger, KPIs

Cloud Native Flight Simulator Use Case Several metrics, KPIs

2.3 Testbeds and resources

This section describes the general testbed characteristics and capacity of the combined testbed
infrastructure consisting of CloudSigma’s production cloud and supplementary testbed deployments.
We detail each operator's general characteristics, resource capacity, account creation and access
criteria. We also describe the ongoing technical support and maintenance required to ensure
continuous operation throughout the project.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 16 of 107



D4.4: Showcasing, validation and evaluation n.

The main objective is to support the integration of the components developed in WP2 and WP3,
according to the technical requirements of the CHARITY architecture and provide the underlying
infrastructure to deliver a working proof-of-concept for validation and demonstration

To support the deployment of CHARITY components on the combined testbed infrastructure, we must
first define testbed descriptions with the characteristics and capacity available per provider/operator.
This information is collected using Table 2 as a template,. As stated, the CHARITY testbed combines
production cloud resources (e.g., CloudSigma) with private clouds based on widely used open-source
cloud stacks (e.g., Openstack).

Table 2. Testbed Template

Short description

General configuration

Hypervisor

laa$ stack/version

VM Monitoring

Access methods

Connectivity

Cloud interface

Provisioning

Integration/drivers

Networking

Compute capacity (available for project use)

CPU (Ghz)

RAM (GB)

Number of VMs

Storage capacity (available for project use)

SSD (GB)

HDD (GB)

Image format

Networking

Max internal network bandwidth
per VM (Gb)

Max external network bandwidth
per VM (Gb)

Max inter-VM latency (ms)

Total cloud external network
bandwidth (Gb)

2.3.1 CloudSigma Testbed Characteristics and Capacity
CloudSigma has provided testbed infrastructure comprising a testing environment in Sofia, Bulgaria,

and three production cloud environments in Geneva and Zurich, Switzerland and Boden, Sweden.
During the project, CloudSigma provided accounts to project partners along with the required

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 17 of 107



D4.4: Showcasing, validation and evaluation n.

computing resources and provided expertise and support on configuration and infrastructure
optimisation. CloudSigma tested and validated a number of high-performance GPUs in their testlab in
Sofia using the project use case specifications, including NVIDIA TESLA V100 and A100 Tensor Core
GPUs. Eventually, CloudSigma was able to integrate and expose the NVIDIA RTX A6000 into one of
their production cloud locations in Boden, Sweden for testing only in Q3 2023. The Sofia testlab
retained the NVIDIA A100’s. The NVIDIA RTX A100’s are optimised for data analytics workloads and
applications like VDI, high-performance computing (HPC), and Al/Deep learning. However, it is
essential to note that some advanced settings are not yet exposed via the CloudSigma Web Interface.

During the validation phase, CloudSigma explored both passthrough and vGPU (virtualised GPU) for
VM allocation, with passthrough typically being preferred for workloads that require dedicated access
to the GPU.Passthrough is typically preferred for workloads that require maximum GPU performance,
such as high-performance computing or deep learning applications, but require dedicated access to
the GPU. At the same time, vGPU is more suitable for scenarios where GPU resources need to be
shared among multiple VMs or containers, such as VDI or multi-tenant environments, offering a
balance between performance and resource consolidation. While CloudSigma has successfully tested
both options, only passthrough is enabled at the time of writing, meaning project partners can only
attach one GPU per VM. A ClusterAPI (CAPI) CloudSigma provider was developed that facilitates the
management, provisioning, and lifecycle of Kubernetes clusters across different infrastructure
environments. The CloudSigma provider implementation for Cluster APl provides a declarative API
and tooling to simplify the management and lifecycle of Kubernetes clusters.

Table 3. CloudSigma Testbed Characteristics

CloudSigma Cloud Locations: Geneva, Switzerland (GVA) and Boden, Sweden (LLA)

Short description Test environment in Sofia, Bulgaria. Production environment in
Geneva (GVA), Zurich (ZRH) and Boden (GVA). The platform
combines a proprietary stack with open-source technologies to
provide a utility approach to laaS provisioning. The platform offers
a high level of control and flexibility in the provision of
computational power, RAM, storage, and networking.

General configuration

Hypervisor KVM

laasS stack/version Proprietary CloudSigma stack

VM Monitoring Intra-VM testing tools, at the discretion of the VM owner, NewRelic
third-party integration

Access methods API via HTTPS

Connectivity Internet, VPN, Secure Remote User Access, Direct private patch to
local switch

Cloud interface WebApp, API

Provisioning API, APl middleware, WebApp, Python library (Pycloudsigma).

Integration/drivers Ansible, CloudInit, Apache Libcloud, JClouds, Fog, Abiquo Hybrid

Cloud, pycloudsigma Library, Terraform, Cluster API

Networking API, WebApp

Compute capacity (available for project use)

CPU (Ghz) 400Ghz
RAM (GB) 400GB
VvGPU (instance spec.) Multiple:

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 18 of 107



D4.4: Showcasing, validation and evaluation

L

e A6000 (specializing in  graphics computations)
commissioned in Boden testbed on November 2023 and
decommissioned since December 2023.

e A100 (specializing in Machine learning computations) in
Sofia testbed

Number of VMs

Unlimited

Storage capacity (available for project use)

NVMe SSD (GB) 5000
HDD (GB) N/A
Image format RAW
Networking

Max internal network bandwidth | 20
per VM (Gb)

Max external network bandwidth | 10
per VM (Gb)

Max inter-VM latency (ms) 1

2.3.2 TID Testbed Characteristics and Capacity

Leveraging TID expertise, a second testbed was deployed at TID premises (Valladolid) (c.f. Table 4) for
internal experimentation. This testbed is also an important milestone that helps test the developed
technologies with huge computational resource requirements in a customized infrastructure with a
three GPU support, and 3 small clusters without GPUs.

TID also installed a less powerful workstation in TID offices (Barcelona) to test on-site components
with extremely low latency requirements. TID has installed NVIDIA RTX 3090 graphics cards in both
locations. One VM is supported. NVIDIA RTX 3090 GPU is ideal for data analytics workloads and
applications like VDI, HPC, and Al/Deep learning. Being a testing platform enables easy testing of
various GPU settings to evaluate the Adaptive Scheduling workload algorithm.

Table 4. TID Testbed Characteristics

TID Cluster Location (Valladolid)

Short description

Test laaS workstation in Valladolid (Zrh). The workstation uses
open-source technologies to provide a utility approach to laaS
provisioning. The workstation offers a large computational resource
with GPU support.

General configuration

Hypervisor -

laasS stack/version OpenNebula
VM Monitoring -

Access methods ssh

Connectivity

Internet, VPN, Secure Remote User Access

Cloud interface

Provisioning API, Python library
Integration/drivers Flexible
Networking N/A

Copyright © 2021 - 2023 CHARITY Consortium Parties

Page 19 of 107



D4.4: Showcasing, validation and evaluation

£

Compute capacity (available for project use)

CPU (Ghz)

100Ghz

RAM (GB)

126GB

vGPU (instance spec.)

3x Titan RTX 3900

Number of VMs

Currently up to 1 VM

Storage capacity (available for project use)

SSD (GB) 500
HDD (GB) 9Tb
Image format RAW
Networking

Max internal network bandwidth | N/A
per VM (Gb)

Max external network bandwidth | N/A
per VM (Gb)

Max inter-VM latency (ms) N/A

Table 5. TID Testbed Characteristics without GPU support

TID 2 Cluster Location (Pefiuelas)

Short description

Test laaS cluster uses open-source technologies to provide a utility
approach to laaS provisioning. The workstation offers a medium
computation without GPU support

General configuration

Hypervisor -

laasS stack/version OpenNebula
VM Monitoring -

Access methods ssh

Connectivity

Internet, VPN, Secure Remote User Access

Cloud interface

Provisioning API, Python library
Integration/drivers Flexible
Networking N/A

Compute capacity (available for project use)

CPU (Ghz) 100Ghz
RAM (GB) 32GB
vGPU (instance spec.) N/A

Number of VMs

Currently up to 1 VM

Storage capacity (available for project use)

SSD (GB)

50

HDD (GB)

1Tb

Copyright © 2021 - 2023 CHARITY Consortium Parties

Page 20 of 107



D4.4: Showcasing, validation and evaluation n.

Image format RAW

Networking

Max internal network bandwidth | N/A

per VM (Gb)
Max external network bandwidth | N/A
per VM (Gb)
Max inter-VM latency (ms) N/A

2.3.3 OneSource Testbed Characteristics and Capacity

Leveraging the expertise of OneSource, a third testbed has already been identified at OneSource
premises to support further the integration and experimentation of the CHARITY framework. This
testbed features a robust 3-node Kubernetes cluster (refer to Table 6), vital in facilitating the testing
and evaluation of distributed scenarios encompassing hybrid edge-cloud domains. Additionally, it
enables the exploration of multi-cluster deployments utilizing cutting-edge overlay networking
technologies, such as Ligo. Besides the 3-node cluster, an OpenStack provider is also hosted within the
testbed, which is leveraged by Cluster API, integrated in the low-level orchestrator component of the
CHARITY framework. Also, considering the newly added support for deployment and management of
on-premises Kubernetes clusters within the low-level orchestrator, OneSource’s datacentre became
usable by the Low-level orchestrator (LLO) as an additional datacentre, where Cloud-Native
applications can be deployed.

Furthermore, it offers an opportunity to assess further the performance and effectiveness of the Low-
level orchestrator within the CHARITY framework, while also being an asset for integrating and
showcasing the framework with the project UCs, each exploiting respective features.

Table 6. OneSource Testbed Characteristics

OneSource Coimbra, Portugal

Short description Testbed is located in OneSource’s datacenter. The testbed
comprises a 3-node Kubernetes cluster for CHARITY project
experimentation and validation, along with an OpenStack provider
integrated with Cluster APl and the datacentre itself as an additional
provider leveraged by the LLO.

General configuration

Hypervisor VMWare ESXi
laas$ stack/version N/A

VM Monitoring N/A

Access methods Kubectl
Connectivity VPN

Cloud interface -

Provisioning N/A
Integration/drivers N/A
Networking N/A

Compute capacity (available for project use)

CPU (Ghz) 100Ghz

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 21 of 107



D4.4: Showcasing, validation and evaluation n.

RAM (GB) 32
vGPU (instance spec.) 0
Number of VMs 3

Storage capacity (available for project use)

SSD (GB) 150

HDD (GB) N/A

Image format -

Networking

Max internal network bandwidth | -
per VM (Gb)

Max external network bandwidth | -
per VM (Gb)

Max inter-VM latency (ms) -

2.3.4 ORAMA Testbed Characteristics and Capacity

Utilizing ORAMA's expertise and infrastructure, a fourth testbed has been established at the ORAMA
lab to enhance the integration and experimentation of the CHARITY framework. This lab is equipped
with Windows machines, each featuring a dedicated public IP, a powerful CPU and memory, and an
Nvidia GPU for real-time interactive VR rendering. These machines can host network applications and
software that complement the CHARITY infrastructure at other testbeds. They are essential for testing
and evaluating distributed scenarios, including hybrid edge-cloud setups, thereby allowing further
assessment of the CHARITY framework's performance and effectiveness.

Table 7. ORAMA lab characteristics

ORamaVR, Heraklion, Crete, Greece

Short description Testbed is located in ORAMA's lab. The testbed comprises a set of
supplementary machines with public IPs.

General configuration

Hypervisor N/A

laaS stack/version N/A

VM Monitoring N/A

Access methods Internet, AnyDesk
Connectivity Internet

Cloud interface N/A

Provisioning N/A
Integration/drivers N/A

Networking Ethernet

Compute capacity (available for project use)

CPU (Ghz) 148Ghz

RAM (GB) 144GB

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 22 of 107



D4.4: Showcasing, validation and evaluation

£LH

vGPU (instance spec.)

Multiple (1x RTX 3060, 2x GTX 1070, 1x RTX 2070S)

Number of VMs

4

Storage capacity (available for project use)

SSD (GB) 200GB
HDD (GB) 1TB
Image format N/A
Networking

Max internal network bandwidth | 0.5
per VM (Gb)

Max external network bandwidth | 0.5
per VM (Gb)

Max inter-VM latency (ms) 1

Copyright © 2021 - 2023 CHARITY Consortium Parties

Page 23 of 107



D4.4: Showcasing, validation and evaluation n.

3 Evaluation and results

The following sections present the evaluations and the results of the test activities performed on the
CHARITY platform as a whole, and separately for each CHARITY enabler.

3.1 E2E CHARITY Orchestration Workflow

This section describes the scenarios combining the integrated CHARITY framework components
devised for evaluating the E2E CHARITY Orchestration workflow as a whole. These scenarios intend to
recreate the main reference usage scenarios of the CHARITY platform for demonstrating the CHARITY
deployment options and the life cycle management of Cloud-Native applications. These range from
the user interaction with the CHARITY dashboard to the allocation and deployment of resources (i.e.,
applications, clusters) in the multi-domain infrastructure. They also include the monitoring and
forecasting capabilities of the CHARITY platform. Moreover, this section focuses on component
interactions rather than their detailed description, which can be found in deliverables D2.2, D3.2 and
D4.5. For the sake of readability, Figure 4 depicts the high-level diagram of the CHARITY components.
A brief description of components is also provided.

2 6 High Level
o » | | Orchestrator
b j

Low Level
Orchestrator

Resource
Indexer

Monitoring

Forecasting - R

Monitoring
Agent(s)

Figure 4 - High level view of CHARITY platform components

Application Management Framework (AMF): The external user interface for XR developers and
application managers is provided by the CHARITY Application Management Framework. To use any
feature offered by CHARITY, end users need to authenticate themselves through the AMF login
process; then they can upload to the internal registry their XR application container images and have
them automatically scanned for security vulnerabilities. XR developers are guided through an easy-to-
use Web GUI to create XR Blueprints for their applications. Finally, these Blueprints can be deployed
to the platform and XR application managers can track their execution state and operate un-
deployment and re-deployment actions.

AMF also provides a REST API for all management operations, so that they can be automated by
external controller applications.

High Level Orchestrator (HLO): The High-Level Orchestrator module (HLO) performs the high-level
phase of resource allocation in the platform, choosing the most suitable deployment topology for a
specific XR-application initial deployment request, as well as deciding dynamic re-orchestration for XR
applications requesting specific constraints in terms of QoS. HLO abstracts resources in groups at the
domain level (e.g., Data centres and Edge clusters).

The HLO architecture interacts with the AMF receiving the user input and with the LLO to perform
concrete deployment over computing, storage and computing resources. The HLO is the core of the

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 24 of 107



D4.4: Showcasing, validation and evaluation n.

MAPE loops performing dynamic orchestration of application and services in the CHARITY platform,
thus it receives input data from the MON, the RES and FOR modules. The collected information allows
on the one hand resource allocation, and on the other hand to detect the current and forecasted status
of in-use and available resources.

The HLO leverages a plug-in interface to potentially select, for each platform instance, the most
suitable subcomponent version to perform the solution search and optimization for initial deployment
as well as for dynamic re-deployments. The Complex Scenario Optimal Solver Plug-in (CSOC) is based
on a Mixed Integer Linear programming model of the deployment problem instance and employing
state of the art optimization technology to solve said MILP instance to perform multi-objective and
hierarchical optimization of application deployment and dynamic management. The simple Solver
Plug-in (SIS) version employs a simpler, linear heuristic algorithm to quickly achieve results for simple
topologies, thus speeding up the integration and evaluation activities, demonstrating the end-to-end
deployment workflow and leaving the way open to a future integration with more sophisticated, full-
powered optimal solvers, like the CSOC.

Low-level Orchestrator (LLO): LLO is responsible for processing the data provided by the user through
the AMF and abstracting that input to Kubernetes Custom Resources (e.g., clusters, deployments,
services, ingresses) in the available domains, following additional information from decisions provided
by the High-Level orchestrator (HLO). Furthermore, the LLO orchestrator is also responsible for
orchestrating and managing the deployed Cloud-Native applications and the infrastructure where the
applications are hosted, as it is the only component which interacts directly with the infrastructure.

Monitoring Manager (MON): The Monitoring Manager manages, collects and serves monitoring data
to other components of the platform. This data is used to take deployment decisions, feed forecasting
models, notify predictions of performance failure and provide the developer a permanent picture of
the status of the components deployed in the CHARITY Platform. The Prometheus server monitors the
clusters and all the components deployed in it, while the Monitoring Manager analyses and transforms
the raw data to avoid the complexity of PromQL, the Prometheus query language, and the mathematic
calculations behind the metrics used. The collected data is available to the rest of the platform
components through a REST API.

Resource Indexing (RES): The Resource Indexing gathers data from all the clusters to provide the HLO,
the most accurate performance representation of the available resources distributed across the
different datacenters. This component communicates with the Prometheus servers deployed in each
cluster to check CPU, memory and storage metrics; these data are provided by cAdvisor, a tool that
analyses running containers performance. The performance picture completes with the analysis of the
different links dynamically established between clusters according to the architectures of the use case
scenarios. The Resource Indexer leverages additional cluster network metrics such as latency and
bandwidth provided by Liqo, a tool which is integrated within the LLO, complementing the monitoring
of the platform.

Forecasting Manager (FOR): The Forecasting Manager is in charge of providing accurate multi-step
predictions regarding various specified metrics. This component communicates with the Monitoring
Manager. For each specified metric, the Forecasting Manager entails a designated forecasting model
that is based on a novel Deep Learning architecture that has been developed within the frame of the
CHARITY project and that has been extensively presented in prior deliverables and corresponding
publications. The XR applications whose metrics shall be subjected to the forecasting process are
included in a dedicated Forecasting List. Based on the requests performed by the Monitoring Manager,
the Forecasting Manager is capable of adding / removing elements to / from the Forecasting List and
constructing multi-step predictions regarding a single or multiple elements of the Forecasting List.

3.1.1 Description, procedure, metrics

Table 8. Description of evaluation subtopic -Platform services for XR applications

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 25 of 107



D4.4: Showcasing, validation and evaluation n.

Subtopic Title: CHARITY Platform services for XR applications Partners: HPE - CNR

Short description and evaluation scope:

The evaluation of the platform's features supporting the development of XR application blueprints and the deployment
of XR applications with adaptive behaviors to guarantee QoS has been conducted using various test applications under
different topology load conditions across three scenarios

1. Deployment of a simple XR application Blueprint
2. Deployment of multi-cluster distributed applications
3. Adaptation of XR application deployment for best QoS (OODA loop)

Components involved: All CHARITY platform component are involved in these 3 scenarios

Where are data collected and stored - measurement points:

The functional aspects are evaluated using the AMF Web GUI support as well as external custom dashboards (see
Grafana screenshots in 2.1.1). Moreover, direct access to the clusters of the datacentres is provided through Kubernetes
config files generated by the platform and displayed to XR developers by AMF interface, so that traditional Kubernetes
troubleshooting techniques can be used to check CHARITY platform component actions directly at the lower levels.
Typically, this kind of inspection does not require any storage of the data.

The Monitoring component of the CHARITY platform collects infrastructure metrics from the clusters and XR
applications: the data is collected by Prometheus and Thanos and stored inside the management cluster of CHARITY]
platform together with the forecasted data (based on the monitoring ones) that get stored inside a local private
database.

When are data collected?
The platform automatically collects only infrastructure metrics of the clusters and XR applications.

Custom metrics internal to XR applications are collected only of the XR application explicitly exports them to
CHARITY platform using the custom metrics REST API.

Instruments/tools:

Prometheus and Thanos are the main Open-Source software used by the Monitoring system, together with a local
private database for the forecasted metric values

Grafana is used to create additional custom dashboard to support troubleshooting and demos
IAMF Web GUI provides a rich set of information to track XR applications deployments

K8s command line tools (kubectl) to inspect cluster resources and XR applications pod logs

Methodology/Procedure:

A series of tests will be performed on the platform in a default state, which request a fixed set of applications, with
pseudo-randomized key request parameters and application execution order, to allow for significant and repeatable
experiments. The execution order will cause different load condition on the platform and trigger adaptation behaviours.

Metrics to analyse the results
The different scenarios will be analysed to validate

1. Correctness of placement decisions
2. Network connectivity between XR application Blueprint internal and external VNFs
3. Adaptation actions to guarantee QoS

3.1.2 Experimentation Scenarios

This section documents the experimentation scenarios where the metrics stated in the previous
section will be collected and evaluated in the next section, while also showcasing the features provided
by the CHARITY Framework. The scenarios described in this section highlight the more technical
features of the Framework, using generic Cloud-Native applications, showcasing the gentle learning
curve for software developers when using the CHARITY platform. The user-related features will be
highlighted further in this document, in the sections dedicated to each project use-case.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 26 of 107



D4.4: Showcasing, validation and evaluation n.

3.1.2.1 Scenario 1 - Deployment of a Simple XR Application

This section describes the scenario of deploying a simple XR application using the CHARITY platform.
The goals of this scenario are the following:

e E2E Integration of CHARITY framework components

* Deployment of a Single application on a Single Domain (cluster)

e Validate the CHARITY orchestration features, such as placement decisions, allocation of
resources, monitoring and access to the application.

Figure 5 depicts the scenario and the components involved, including the AMF, HLO, LLO, MON/RES
and FOR. The tests were conducted on multiple datacentre testbeds (cf. Section 2.1.1) Mainly two
Kubernetes clusters were used as part of the tests: namely a management cluster, for hosting the
CHARITY platform components, and a workload cluster, for the deployment of XR applications. For the
latter we leveraged the LLO capabilities and integration with ClusterAPl/Openstack to replicate a cloud
computing infrastructure. The tests consisted in replicating the steps of a XR application deployment
from its specification until the service is running and observe the behaviour. The validation occurred
under three conditions: the observation of all components logs, the monitoring of application through
the CHARITY dashboards, and the application reachability from the outside.

@)

.Management
Cluster
Application ==
Management F e App
Framework
Monitoring Manager
& Resource Indexer
O High Level -
| Orchestrator ]
‘ o Forecasting ‘
Low Level
Orchestrator i
/
e ’
- —
/
|
o *
Workload
Cluster 1

Q *™r™

Figure 5 - Single-Cluster Cloud-Native Application Deployment

Next, we describe the test execution details (and the application deployments). Through the AMF, a
blueprint was created by defining the requirements of a reference application, i.e. “Super Mario Bros”
XR application. This application was chosen as a lightweight web-based single microservice application
which can run on a single Kubernetes cluster without additional specific requirements. The application
details were introduced through the AMF web graphical interface. At deployment decisions time, the
details are converted by AMF to TOSCA and sent to the HLO. The HLO used this information - facilitated
by the Solver plugin - to decide where the application should be deployed. For this purpose, HLO
leverages the data provided by the MON/RES to determine the optimal deployment decision (case 1).
If the Solver can’t find suitable resources in the clusters of the various domains, HLO can request LLO
the creation of a new cluster and use it to perform the deployment (case 2). Both cases were tested
(cf. Figure 6). The placement decision and application details get merged inside TOSCA model and are
then forwarded to the LLO. The latter translated TOSCA application topology specifications and HLO
placement decisions to Kubernetes environments. LLO's role included the optional step of

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 27 of 107



D4.4: Showcasing, validation and evaluation n.

bootstrapping a Kubernetes cluster, installing ancillary packages and dependencies, creating
Kubernetes Custom Resources (e.g., deployments, services, ingresses) and their enforcement into the
actual cluster. Lastly, the LLO returns to the AMF the corresponding application accesses (i.e., URLs
and Kubeconfig), enabling the user to access the deployed application's components. The application
deployment's success was observed through the Monitoring Dashboards, including the visualisation
of the application components, infrastructure, and CHARITY statistics.

ThFRRUw

Figure 6 - Kubernetes Cluster Bootstrapping

The conducted experiment validated the aforementioned goals, demonstrating how CHARITY platform
versatility can be used to orchestrate and manage containerized Cloud-Native applications. The further
sections describe additional platform features and the performed UC validation. Its relevant to
highlight, this scenario and the E2E CHARITY orchestration capabilities were showcased in project
showcasing activities, including the last EUCnC & 6G Summit 2024. Such capabilities were also
published in various scientific venues during the course of the project, namely “Cross-Cluster
Networking to Support Extended Reality Services”, submitted to the IEEE Network Magazine,
“Intelligent Multi-Domain Edge Orchestration for Highly Distributed Immersive Services: An Immersive
Virtual Touring Use Case” submitted to 2023 IEEE International Conference on Edge Computing and
Communications (EDGE) and “Towards Establishing Intelligent Multi-Domain Edge Orchestration for
Highly Distributed Immersive Services: A Virtual Touring Use Case” (extended version) submitted to
Cluster Computing - The Journal of Networks, Software Tools and Applications, in which similar
scenarios were devised and tested, further validate the goals, component integration and features
described.

~ Charity Resource Map

Charity Datacenters
e02 Y

Free Cpus Free Gpus

Madrid

Clusters Peer clusters latency (millisecond|

name control fiv control # workers flv workers #

external3 millarge 1] [ RETCTY ]

externald ml.large 1 mil.large 0

Clusters Cpu Load Forecast Ram Usage XR Applications

external3 y 3
) Q 246% (.
)] 23.3% Sevmas

external4 (
M1 208% || 218% || |

externald

Figure 7 - Resource status at 'e02' datacentre

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 28 of 107



D4.4: Showcasing, validation and evaluation n.

Application Instances Management

Blucprind for Network Service GG-SMB cned hy ginliani

Loz Geolocation dmousy R soan s M Exact match

Deveioper mose: M9 Apo set-saacnesion moce: 1B

= SL0ATONT-TII4I N DESCINTI2TIIG G RUNNING
Tpatogy
+| S S 4
- | 1 .., " r‘r 1,
T kg 1 v
sy \
NG s
i
’\"
.
s
3
3
| = v | Cownen
input parameders

Loc Seoiocation (ecusl) S spain maarid

Output parameders

smo_stans Funning

SME_oascaner L

safversion: v1
chsters: A
- chuser:

St carateas e certcane-sumort e

SME_mepioymans_come: LS50S 1CRUGUTIBORVIUSUZI0FURSOIL S0SCK1 JSURCVENDOWLZ0FssusEZ. V'

D

Figure 8 - AMF editor view of deployed XR application

The following screenshots illustrate deployment decisions for the Simple XR application Blueprint
being deployed for a gamer located in Madrid (Spain): the selected datacentre will be ‘€02’ in Coimbra
(Portugal), in one of the available clusters (external3 or externald). Figure 7 shows the Grafana
dashboard view of the resources in that domain.

The AMF dashboard, once the XR application has been deployed, returns the status information about
the target datacentre and cluster, together with K8s configuration file to be used to troubleshoot the
pod containing XR application. Figure 8 is a screenshot of this information from AMF editor.: the green
marker is for the location of the client, the blue one is where the XR application has been deployed
(the closest datacenter, i.e. ‘€02’ in Coimbra).

At the end this scenario demonstrated the capabilities of the CHARITY platform for deploying an XR
application by selecting the optimal placement in the managed domains, and the setup of
monitoring/forecasting infrastructure, without requiring any domain specific skills to the XR
developers.

3.1.2.2 Scenario 2 - Multi-Cluster Distributed Application

This section describes the scenario of a Cloud-Native application distributed across two different
clusters.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 29 of 107



D4.4: Showcasing, validation and evaluation n.

The goals of this scenario are to validate the following:

® E2E Integration CHARITY component integration and deployment of applications (similar to
the previous)

* Bootstrapping of a multi-domain environment (composed of multiple Kubernetes clusters
dynamically peered)

These experiments were conducted in the same testbed of the previous scenario. The same
management cluster was used, while two work clusters dynamically created upon request (cf. Figure
9). Next, we describe the test execution details (and the application deployments). Similar to Scenario
1, the application blueprint was created in AMF. In this case, the UC2.3 VR Tour Creator (cf. Section
4.3) was used. This UC is composed of 5 components: Cyango-Backend, Cyango-database, Cyango-
worker, Cyango-cloud-editor and Cyango-story-express which were all specified in AMF. The
specification introduced through the AMF web graphical interface were similarly converted to a TOSCA
specification and sent to the HLO. Again, the HLO used this information to decide where the application
should be deployed. Nevertheless, in this case we recreated a distributed application deployment
where different application components were split across the two workload clusters to guarantee the
right level of computing resources availability and required connectivity across them. Hence, upon the
request of HLO, the LLO leveraged Ligo’s peering and offloading features (cf. Figure 11 - Multi-Cluster
Application Deployment ) to create a dynamic VPN tunnel (cf. Figure 10). This ensures that regardless
of the location of application components (across the two clusters), they communicate with each
other. Last, as stated in Scenario 1, the LLO returns to the AMF the corresponding application accesses
(i.e., URLs and Kubeconfig), granting the user access to the deployed application's components. The
application deployment's success was observed through the Monitoring Dashboards, including the
visualisation of the application components, infrastructure, and CHARITY statistics, similar to the the

previous scenario.

¥
Application |

Management

Cluster

1 o Management b~ Cyango Studio
Framework J
Monitoring Manager
& Resource Indexer
| High Level “«
l | O Orchestrator 1
O Forecasting ‘
O Low Level |
Orchestrator |
\
,.// ~
/’ ™
| “\
[ |
. Workload . Workload
Cluster 1 Cluster 2
‘ ’Cyango—buckend Ligo VPN Cy.nmloud-‘ |
| Toee O editor
- —
OCyanno—dahhau
—_——— O Cyango-story-
‘ o Cyango-worker ‘ Eexpress

Figure 9 - Multi-Cluster Cloud-Native Application Deployment

The conducted experiment validated the aforementioned goals, demonstrating the CHARITY
platform's capabilities in orchestrating and managing multi-cluster environments dynamically. The

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 30 of 107



D4.4: Showcasing, validation and evaluation n.

further sections describe additional platform features and the performed UC validation. It is also
important to highlight that this scenario, features and goals described in this section were also
showcased in the events and papers (cf. Figure 12), mentioned in Scenario 1, previously explained in
this document.

$ kubectl reen.kubeconfig get foreignclusters.d
TYPE ING PEERING  NETWORKI AUTHENTT [
stration-rose  InBand abi blis Estab Established

\rretrieving netwerk confip \rT configuration

guration correctly retrieved: endpoint TP *18.20 \rretrieving authenticat

\FINFO: authen
\rretrieving network configun
1eved\n\r

ly retrieved: endpoint 1P *10.28.20.184" seems to be private.\n\r

Figure 11 - Multi-Cluster Application Deployment

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 31 of 107



D4.4: Showcasing, validation and evaluation n.

; =52
Figure 12 - EUCNC & 6G Summit 2024 CHARITY Platform Showcase

This scenario demonstrates how the CHARITY platform helps developers to deploy their application in
a complex multi-domain environment, allowing them to ignore the final topology details, through
CHARITY’s transparent network setup.

3.1.2.3 Scenario 3 - Adaptation of XR application deployment for best QoS (OODA loop)
This last scenario capitalizes on the previous ones: the XR application has already been deployed by

CHARITY platform, and monitoring/forecasting has been setup taking into account the infrastructure
metrics of the XR application affecting the QoS (let’s assume as an example the CPU load).

@)

Management
Cluster

i App'nc-ﬁon |
‘ O Menagement | Web App

& _Framework - |

Monitoring Manager
& Resource Indexer \
| | High Level
s l : ‘} | O Orchestrator
| Orchestrator |
; : y
_/“ \' —
\“/_ - --\\
\
. Workload 4“— . Workload
Cluster 1 Momioring ‘ Cluster 2
System
SuperMario Bros
O Pod (Previously SuperMario Bros
_Instantiated) | Pod (Migrated)
() stresspod

Figure 13 - Cloud-Native Application Live Migration

Inside the cluster where the XR application has been placed by CHARITY, we also deploy another
application running the typical Linux stress tests for CPU. When the CPU load of the cluster grows

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 32 of 107



D4.4: Showcasing, validation and evaluation n.

above attention limits, FOR and MON notify the Alert and Alarm conditions to HLO, that analyse the
impact on affected XR applications, and might decide to re-deploy the CPU-QoS sensitive application
to another less loaded cluster, so that it will be able to provide the requested QoE. Figure 14 shows
the high CPU load of both clusters of ‘e02’ datacentre.

9

Home > Dashboards

v Charity Resource Map

e02

CPUs
Free Cpus Free Gpus

Clusters
name control flv control # workers flv workers #
external3 millarge 1 ml.large

externald ml.large 1 ml.large

Clusters Cpu Load Forecast Ram Usage

external3

Q 18.7%

T T

external4 (
|

N 71.9% externald

Figure 14 - High CPU load on 'e02' datacentre clusters

At this point MON and FOR notify HLO that sets alerts and alarms for the impacted XR applications, as
displayed in Figure 15.

HLO decides to re-deploy the XR application and invokes Solver to find the new optimal placement.
Once the redeployment has been completed by LLO, AMF editor will display the new deployment
decisions, as displayed in Figure 16. Specifically, the “closest” datacentre with enough free resources
is ‘c01’ located in Zurich inside cluster “vaajuv” (‘e02’ in Coimbra is closer, but its CPUs are overloaded).
The strange name of this cluster derives from the fact that this has been created automatically by
CHARITY platform during a previous deployment that did not find enough resources in the existing
clusters but allocated a new one using datacentre free CPUs.

The simple XR application used in the scenario does not use cloud-native storage support (like CHARITY
CHES for instance), therefore once migrated the client sessions restart from scratch. This would not
have happened if the sessions state was stored in CHES.

This scenario shows an example of the OODA loops realized by CHARITY platform: MON and RES
“Observe” the status of the infrastructure and notify HLO in case of significative events. HLO analyses
the impact of the event on the running XR application that specified QoS requirements, thus it
“Orients” the platform re-deployments. The HLO Solver “Decides” how to perform the re-placements
of the XR applications, and finally the LLO “Acts” by actually re-deploying (migrating) the XR
applications in different domains.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 33 of 107



D4.4: Showcasing, validation and evaluation ﬂ.

Application Instances Management

Blueprint for Network Service GG-SMB owned by giuliani

Input parameter name Input Type - Reqi

Loc Geolocation (textual) cqion

Country City

spain madrid 1 Exact maich

Developer mode: ~ J® App sel-adaptation mode: 1

Deploy new application

xrApplication id Requestor Status Alerts Alarms Action

. o 2 0 0
Details 92bacd0b-7331-4311-b55c-2p9124754993 giuliani RUNNING Q. Q Undeploy

Figure 15 - AMF editor displaying alerts and alarms

Application Instances Management

Blucprt for Nerwork Service GG-SMB owned by pindiasi

Loc Geolocation pecusy | o spmin macr B Sccimech
Davsloper mode: WD Aposetsaspmsonmoce B
Degiloy new appiication
Demis o 423%e3as-tooe 405 aT-2 054000450 gian )
Topsiogy
= = i i =
+ b hersars B
3 Mursther:
St :
= 4 Ty < Budap
e Soortoeriy
fra d
- e
{amsre e v Zigen €
Vo =
R [
Borces i s
| #w Bologna :
= oy Gz ghgan Hreatics
pcess PO s Macens 5
fae - Monseo d . T
e 2 F s
Marieite
pal e
= s, > s ¥
o
_____ s AR v —
- i
Barcelons
Cans .4
Fapats A ) g
Claerns e
aetugal iy
- = [P PEE——
input parameders
Loz Geciozasion (el Rl span macrd
Ousiput parameders.
o ot -
smo_sins Fumning
s
Casges paracaucar rac ain
SUE_omacemer o1
nvemsion: vi A
cusaer
Casper caracar rara cerficas o e
ZME_emigment_comms LE0R S 1CRUGUTIEORVOUSUZIO0RUR S0 SOk SSUMI DI RL 0SSRz Y

Figure 16 - Placement after re-deployment

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 34 of 107



D4.4: Showcasing, validation and evaluation n.

3.1.3 Evaluation tests, data collection and analysis

The following section outlines the evaluation of the features tested by the previously described
scenarios.

1. Simple XR application deployment:
a. Simple to use AMF Editor to create Blueprints
b. Intuitive AMF interface for XR application management
c. Successfully tested deployment placement with multiple diversified workload and
network topologies
d. Useful information returned to XR developer to access XR applications endpoints
i. If the domain does not have public addresses for K8s cluster ingress, a VPN
needs to be setup to access deployed resources
ii. If the domain does not have a dynamic integration with DNS, K8s cluster
ingress IP address needs to be manually inserted into client HOST file
e. Useful information returned to XR developers to troubleshoot XR application
resources in K8s
i. effective kubectl configuration support, but it required K8s skills
2. Multi-cluster Distributed XR application
a. Simple creation of complex Blueprints using AMF editor
i. simple topology graph provides a clear summary
b. Success tests with different XR applications resource requirements (e.g. CPUs, GPUs,
etc) that force certain components to powerful enough domains
c. Transparent network connectivity among XR applications VNFs allow programmer to
interconnect them in a simple way
i. same internal resource endpoints independently on their placements in
different domains
3. Adaptation of XR application deployment for best QoS/QoE
a. Easy declaration of relevant metrics for QoS/QoE in AMF editor
b. Automatic setup of monitoring, forecasting and alarming systems
c. Automated XR application life cycle management provided by CHARITY platform
i. Optional support for custom metrics and self-adaptive management
d. Example of OODA loop

3.2 Point Cloud Encoding/Decoding

3.2.1 Description, procedure, metrics

Table 9. Description of evaluation subtopic - Point Cloud Encoding/Decoding service

Subtopic Title: Point Cloud Encoding/Decoding service Partners: CNR

Short description and evaluation scope:

The Point Cloud Encoding/Decoding (PC E/D) component is used for the fast compression/decompression of point|
clouds. The main intended use is to transmit a huge amount of coloured 3D points. This may be useful in application
context like the ones where a device/display receives coloured 3D points generated on a edge/cloud.

Related requirements:

No particular requirements. GPU is needed to speed up the performance.

IComponents involved:

Point Cloud Encoding/Decoding component.

\Where are data collected and stored - measurement points:

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 35 of 107



D4.4: Showcasing, validation and evaluation n.

The data used has been created specifically for test purposes. The test data has been provided by the SRT. It consists in
an animated 3D scene where a person (the Assistant) talks about weather conditions. Another scene where a people is
inside a room has been also created and used to test such component (see Figure 17). These synthetic scenes are
generated in real-time using Unity. The measurements have been conducted with the component in isolation and
using the SRT prototype.

'When are data collected?

The test 3D scenes have been created during the Q1-Q2 2023 period. Before this period other data has been used to
conduct preliminary tests on 3D points encoding and to test the component in isolation. This dataset is described in
Deliverable 1.7.

Instruments/tools:

C++, ffmpeg, GPU shaders

Methodology/Procedure: in which way data are collected

The PC E/D component is integrated in the UC1-3 Holo Assistant as a software library. The scenes generated by the
Unity rendering engine is represented as a set of RGBD images taken from different viewpoints. Since camera calibration
is known for each RGBD image, each pixel represents a 3D point with colour. This representation of the point cloud
permits to the system, taking into account the viewpoint of the user, to transmit a set of RGBD images around such
viewpoints to the holographic display. The holographic display splats the coloured points creating a 3D virtual scene
that appears real. The PC E/D is a view-dependent compression algorithm that is specifically designed to compress and
decompress efficiently this type of RGBD images.

Metrics to analyse the results

Number of 3D points (i.e. resolution of the RGBD images), number of views (i.e. number of RGBD images to compress),
Frame-Per-Seconds (FPS).

Figure 17 - A test scene reconstructed from 8 RGBD views.

3.2.2 Experimentation Scenarios

Essentially, we have two experimentation scenarios. The first scenario was used during the
component's development and for its performance optimization, involving testing the component in
isolation. This phase of experimentation utilizes the dataset described in Deliverable 1.7.

The second scenario is the test of the component inside the SRT use case (UC1-3 Holo Assistant). In
this second case the PC E/D is used to transmit the 3D-coloured points representing a bunch of views
related to the viewpoint of the observer from the Unity engine, that generate them, to the Holographic
display. For a schematization of the UC, see Section 2 of the Deliverable 1.2.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 36 of 107



D4.4: Showcasing, validation and evaluation n.

3.2.3 Evaluation tests, data collection and analysis

The algorithm at the base of the PC E/D component, and the design motivations, are described in detail
in the Section 5.6 of the Deliverable 3.2. This component has been tested separately and in the pipeline
of the UC1-3. The overall frame rate measured after the integration for the test scene is around 5 fps.
Further optimization of the streaming parameters of the video parts (that is achieved using ffmpeg)
obtain a considerable gain of performance, reaching 15-20 fps. This frame rate is measured for the
transmission of 8 viewpoints of resolution 1280 x 752. This number of views is sufficient to permit to
the user of the holographic display slightly changes of viewpoint without the need to transmit other
data (more details about this point can be found in the D3.2). This performance reported are related
to the C++ version. The GPU version is obviously more performing, but it has not been tested inside
the UC1-3 as this requires a tight integration in the image generation pipeline of the UC. Such
integration would allow to save computations and memory transfers between the application and the
component. Tests of the GPU version of the component in isolation show promising results. The results
indicate that achieving over 30-40 fps with the GPU-integrated version appears feasible.

3.2.4 KPIs assessment

Regarding the general objectives of the CHARITY project, this component has been developed in the
ambit of the Objective #4 - Develop highly interactive and collaborative services and applications, and
it satisfies the KPI-4.3 Specialized data services support: streaming, rendering, compression, caching
and encoding. The performance obtained by the CPU version, particularly the version with the
optimized ffmpeg parameters, satisfies the speed performance required by the Holographic Assistant
application to reach an acceptableQoE. The GPU version is more performing, ensuring high levels of
QoE even with high-resolution images.

3.3 Mesh Merger

3.3.1 Description, procedure, metrics

Table 10. Description of evaluation subtopic - Mesh Merger service

Subtopic Title: Mesh Merger service Partners: CNR

Short description and evaluation scope:

IThe Mesh Merger service is a XR data service to assemble together pieces of geometry of an indoor environment to set
up a corresponding virtual environment for AR applications. The same service, with slightly modifications, can be used
to update an existing virtual environment according to the changes of the real environment. The pieces of geometry
are assembled in a mesh called mesh collider, since it is used to resolve collisions enabling the interaction of the virtual
objects with the real environments.

Related requirements: No particular requirement.

IComponents involved: Mesh Merger, Game Server (UC3-1)

\Where are data collected and stored - measurement points:

IThe data about indoor environment are collected on-the-fly through a test application (Game Client) developed by the
ORBK which allows to scan a part of the environment using a smartphone equipped with a Lidar. Different mesh colliders
of different indoor environments have been created.

'When are data collected?

The Mesh Merger has been tested with different acquired single mesh colliders during the Q2-Q3 2023 period. In this
last period the Mesh Merger has been modified to be integrated in the CHARITY platform. At this point, it works together
with the Game Server, which request to the service to assemble the pieces of geometry acquired at the begin and
during the game. The current version works with data collected on-the-fly by the gamers’ devices, i.e. smartphone
lequipped with Lidar camera.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 37 of 107



D4.4: Showcasing, validation and evaluation n.

Instruments/tools:

C++, C#, ARKit2, Unity AR Foundation, TEASER++%, OpenVDB*, Node.js

Methodology/Procedure:

The methodology for the test procedure is as follows: It has been evaluated the time to transmit the pieces of geometry,
i.e. the single mesh colliders, provided by the ARKit on the smartphone device equipped with the Lidar, the processing
time for the alignment, and the processing time for the fusion of the aligned mesh to create the final mesh collider.
First, this evaluation has considered the component with the data acquired by an application developed by the ORBK.
Then, the Mesh Merger component has been turned into a service, based on a REST-API. This service can receive
requests of fuse a new single mesh collider into the current mesh collider of the indoor environment or create a new|
environment for another game. The processing time and the transmission time have been evaluated also in the server
iversion, which exploits Node.js to manage the HTTP requests.

Metrics to analyse the results

Data transmission time, processing time, quality visual inspection.

3.3.2 Experimentation Scenarios

A first set of experiments have been conducted was adopted during the development and the initial
steps of the integration. In this case, the Game Server directly sent a set of acquired meshes to the
Mesh Merger and retrieve the results. In a second round of experiments, the requests are one at a
time, i.e. one mesh at a time is aligned and fused to obtain the final mesh collider for the virtual
environment, and more than one Game Server can use the same instance of the Mesh Merger. The
Mesh Merger processes the requests in an asynchronous way and each Game Server identifies itself
by a unique id. This allows two type of communications mode between the Mesh Merger and the
Game Server, schematized in Figure 18 and Figure 19.

Game Mesh
scaned frangment Server Merger

frangments

scaned frangment <
merged mesh :
i

scaned frangment

CH
T

merged mesh

Figure 18 - Each Game Client can send a fragment of scanned environment and trough Game Server it is sent to
the Mesh Merger. Game Server is responsible for setting up a merging session with the Mesh Merger Service,
sending all the fragments, and after receiving merged mesh distributing it back to all Game Clients connected to
given game session.

2 https://developer.apple.com/augmented-reality/arkit/
3 https://github.com/MIT-SPARK/TEASER-plusplus

4 https://www.openvdb.org

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 38 of 107



D4.4: Showcasing, validation and evaluation ﬂ.

Game Game

; Game Game
Clients Server

Clients Server

i r"«z,l

| marged mash

merged mesh frangments
Mesh
Merger
. \ .
frangments

Game Game
Clients Server
- miesh frangmants

mergad mesh
merged mash

frangments

Game Game
Clients Server
i,

Figure 19 - Each Game Server can open its own mesh-merging session with Mesh Merger Service. It is realised
by assigning to each session its unique ID and using it every time Game Server is requesting merge operation.
This way, each instance of deployed Mesh Merger Service is able to serve single or multiple Game Servers.

3.3.3 Evaluation tests, data collection and analysis

The tests conducted are based on real data acquired through an ad hoc application developed by ORBK
based on the ARKit. The Mesh Merger service implemented is based on Node.js and follows a REST-
API paradigm. The registration and fusion algorithm are based on two open-source codes, the
TEASER++, for the alignment, and the OpenVDB library, for the fusion of the aligned pieces of geometry
into the Mesh Collider, respectively. More details about the alignment and the fusion algorithm can
be found in the Section 5.9 of the Deliverable 3.2.

The Mesh Merger service is currently available on the CHARITY platform and can be deployed alongside
the ORBK Game Server to meet the needs of UC3-1 Collaborative Gaming Application. In this setup,
the Game Server communicates with the Mesh Merger to establish the mesh collider for the game
environment. For this AR game, the tests conducted demonstrated that the processing time is
sufficiently fast to provide to the gamers a high QoE, (i.e., less than 2 seconds are necessary to
download and process a new acquisition into the Mesh Collider). In particular, the transmission time
is made efficient by using a binary version of a JSON containing a PLY format of the mesh. Even if this
data format is not compact, the number of triangles of a single mesh collider, that is in the order of
100K-200K triangles, is such that it is sufficient for the purpose of an interactive experience and it is
easy to manage. The processing is asynchronous, so that multiple users can scan different parts of the
indoor environment and set up the game quickly. Even if this service works tightly with the Game
Server, it is a general mesh processing data service and it can be used by any graphics application that
needs to register and fuse mesh together. If a higher resolution of the merged mesh is required, the
service can be further optimized by using entropy encoding of the geometry to maintain reasonable

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 39 of 107



D4.4: Showcasing, validation and evaluation n.

performance. This simple solution makes it useful not only by other AR application but also for other
types of graphics/geometry processing applications.

3.3.4 KPIs assessment

Regarding the general objectives of the CHARITY project, this component has been developed
according to the Objective #4 - Develop highly interactive and collaborative services and applications,
and it fulfils the KPI-4.3: Specialized data service support: streaming, rendering, compression, caching,
and encoding.

3.4 CHARITY Edge Storage (CHES)

3.4.1 Description, procedure, metrics

Table 11: Description of evaluation subtopic - CHARITY Edge Storage component (CHES) & CHES Registry sub-
component

Subtopic Title: CHARITY Edge Storage component (CHES) & CHES Registry sub-component [Partners: HUA, DOTES

Short description and evaluation scope:

CHES component aims to provide a hybrid distributed cloud/edge storage framework spread across heterogeneous
ledge and cloud nodes with considerations on performance (QoS), emphasizing on the resolution of the problem of data
distribution and offloading based on CHARITY application’s requirements.

CHES Registry aims to provide a localized Docker registry using CHES as its storage backend. It combines the official
Docker registry image with Kubernetes orchestration, CHES object storage backend, and a set of automated deployment
and configuration scripts in order to store and distribute container images closer to the edge.

Related requirements: No particular requirements.

Components involved: CHARITY Edge Storage component and CHES Registry sub-component

\Where are data collected and stored - measurement points:

ICHES component
e The data originating from DOTES UC (UC2-2 VR Tour Creator) are acquired and stored within a designated
bucket in MinlO managed by CHES. This bucket serves as the repository for the collected data.
CHES Registry sub-component
e The data collected and stored for evaluation primarily comprise the 10GB-sized LSPart1 VM image utilized in
the UC2-1 VR Medical Training (ORAMA). The VM image is stored within a bucket in MinlO managed by CHES.

'When are data collected?

The data was collected during the 2nd quarter of 2024.

Instruments/tools: MinlO, MinlO client (mc), Prometheus, Kubernetes Dataset Lifecycle Framework provided by IBM’s
Datashim, Python3, shell, Docker

Methodology/Procedure:
ICHES component

e To assess the component’s performance and effectiveness, several metrics are collected utilizing the
Prometheus system. The performance evaluation was performed through Locust, an open-source load-testing|
framework that enables the definition of user behaviour and supports running load tests distributed over
multiple machines.

CHES Registry sub-component

e The effectiveness of the sub-component is evaluated through the latency involved in fetching the VM image
from both a remote and the local registry.

Metrics to analyse the results

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 40 of 107



D4.4: Showcasing, validation and evaluation n.

® Cache hit ratio
®  Transaction rate
® Latency

3.4.2 Experimentation Scenarios

Three distinct experimental scenarios were devised to evaluate CHES and CHES Registry. The first two
scenarios aimed to measure the cache performance and the transaction rate of CHES, while the third
scenario focused on assessing the feasibility and efficiency of the CHES Registry, specifically in terms
of latency.

3.4.3 Evaluation tests, data collection and analysis

Assessment of CHES cache performance

The caching performance of CHES was assessed with the utilization of Locust. For the purposes of the
experiment, 20 users were configured to execute distributed query requests (read operations). Metric
data were collected using Prometheus agents running on the node responsible for data storage.
Specifically, these metric data was collected at 2-minute intervals throughout the operational span of
the component, i.e. for the whole duration that CHES was active and ready to serve data requests. The
performance of MinlO's native "disk cache" feature was evaluated using a collection of small to
medium binary files ranging from 5MB to 99MB. These files, originated by DOTES UC (UC2-2 VR Tour
Creator), comprised the evaluation dataset stored in a MinlO bucket managed by CHES.

The most important metric for assessing the cache performance of CHES is the Cache Hit Ratio, defined
as follows:
Hit Ratio = #cache hits / (#cache hits + #cache misses)

A cache hit denotes the successful retrieval of content from the cache instead of the original storage.
Conversely, a cache miss indicates the absence of the requested data in the cache memory, prompting
a query to the origin storage. Following a cache miss, the request is redirected to the origin storage,
and upon retrieval, the content is transferred to the user and, if feasible, cached for future access. The
metrics for cache hits and cache misses were derived from Prometheus, collected at a two-minute
interval. Specifically, minio_cache_hits_total and minio_cache_missed_total were utilized to quantify
cache hits and cache misses, respectively.

The results indicate a cache hit ratio of 93%: Hit Ratio = 6124 / (6124 + 412) = 0,93 = 93%

Analysis of CHES transaction rate performance

The transaction rate in a storage system refers to the capacity at which the system can handle read
and write operations, typically measured in transactions per second (TPS) or requests per second
(RPS). It indicates the system's ability to process data access requests efficiently and quickly, reflecting
its overall performance and responsiveness.

The evaluation of CHES's transaction rate was performed using Locust, yielding an average result of
6.1 RPS, as illustrated in Figure 20. In alignment with the preceding experiment, a configuration of 20
users was established to execute distributed query requests (read and write operations) over the data
provided by DOTES UC (UC2-2 VR Tour Creator) and stored within a bucket in MinlO managed by CHES.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 41 of 107




D4.4: Showcasing, validation and evaluation n.

Total Requests per Second

Figure 20 - Average RPS - CHES

Additionally, a blockchain database, namely BigchainDB was explored as an alternative solution. More
specifically, BigchainDB supports both blockchain (decentralization, immutability, and owner-
controlled assets) and database properties (high transaction rate, low latency, indexing, and structured
data querying). Experimental results demonstrated that CHES is able to achieve a higher RPS compared
to BigchainDB (3.9) for a specific class of experiments.

Evaluating CHES Registry sub-component

The seamless delivery of XR applications on resource-constrained edge devices, poses unique
challenges due to limited network bandwidth, latency constraints, and intermittent connectivity.
Additionally, the size of XR application images is often significant, and downloading these images from
remote repositories can put a burden on the limited network bandwidth and introduce significant
latency. CHES Registry sub-component serves as a crucial component, addressing the need to bring
application images closer to the edge while minimizing network traffic and image download durations.

The feasibility and efficiency of the CHES Registry are evaluated through the examination of one
specific use case scenario: UC2-1 VR Medical Training. During the pilot evaluations of the VR medical
training application, retrieving the 10GB-sized LSPart1 VM image from a remote repository led to
considerable network congestion, causing delays in image download and concurrent network
operations. This issue was addressed by pre-positioning the VM image within the CHES Registry on the
same edge node before initiating a new VR session request. This change, which involved deploying the
new VM from a local repository rather than a remote one, significantly reduced deployment times. In
the tests without CHES Registry pre-loading, the application took over 10 minutes to deploy, and in
some cases, even up to 20 minutes. With CHES Registry pre-loading, deployment times dropped to 1-
2 minutes. These results indicate that CHES Registry achieved deployment times up to 10 times faster
than raw Kubernetes deployment.

Overall, the evaluation reveals a significant reduction in application deployment time, indicating the
positive impact of the proposed solution.

3.4.4 KPIs assessment

Regarding the general objectives of the CHARITY project, this component has been developed in the
ambit of the Objective #2 - Provide holistic support for the orchestration of advanced media solutions.
More specifically, the KPIs that are satisfied are the following:
e KPI-2.2 Storage formats: at least one (block, file, object)
o As already mentioned, as a storage solution, an open-source framework created by
IBM is utilized, called MinlO. This framework uses object storage over block storage,
so itis in fact a combination of the two systems, preserving the lightweight distributed
nature of block storage while providing the plethora of metadata and easy usage of
the object storage.
= Extensive research has been conducted in the field of storage solutions in
edge computing infrastructures. A scientific journal entitled “A Lightweight

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 42 of 107



D4.4: Showcasing, validation and evaluation n.

Storage Framework for Edge Computing Infrastructures/EdgePersist” has
been published in Software Impacts (Elsevier) presenting the proposed edge
storage solution.

e KPI-2.3 Edge storage hit rate: higher than 70%

o The native “disk cache” feature of MinlO has been utilized. Disk caching feature refers
to the use of caching disks to store content closer to the tenants allowing users to
have the following: i) object to be delivered with the best possible performance and
ii) dramatic improvements for time to first byte for any object. Experimental results
revealed a hit ratio exceeding 93%.

e KPI-2.4 Blockchain for edge storage transaction rate: more than 4 transactions per second

o A blockchain database, namely BigchainDB was explored as an alternative
solution. Experimental results demonstrated that MinlO is able to achieve a higher
transaction rate (6.1) compared to BigchainDB (3.9) for a specific class of experiments.

= A scientific journal in the context of performance of storage systems in edge
computing infrastructures entitled “Performance Analysis of Storage Systems
in Edge Computing Infrastructures” has been published in Applied Sciences
(MDPI) to the Special Issue Cloud, Fog and Edge Computing in the loT and
Industry Systems.

o In addition, we conducted extensive experiments within a distributed computing
environment, utilizing a configuration consisting of four nodes, and once again, we
observed consistent outcomes. Specifically, MinlO demonstrated a superior
transaction rate in comparison to BigchainDB and also achieved a better performance
in both read and write operations. This reaffirms the robustness and efficiency of
MinlO across varied deployment scenarios, further underscoring its potential as a
high-performance data storage solution.

= A scientific conference paper entitled “A Study on the Performance of
Distributed Storage Systems in Edge Computing Environments” has been
accepted to the 15th IEEE International Conference on JointCloud Computing
(IEEE JCC 2024), showcasing the aforementioned results.

3.5 CHARITY Adaptive Scheduling of Edge Tasks (ASET)

3.5.1 Description, procedure, metrics

Table 12. CHARITY Adaptive Scheduling component

Subtopic Title: CHARITY Adaptive Scheduling component Partners: TID

Short description and evaluation scope:

IAdaptive scheduling (ASET) component focuses on the problem of scheduling inference queries that have to be
allocated to DL models/resources available in the edge-cloud network at short time-scales (i.e., few milliseconds) with
considerations on performance (QoS) and security, emphasizing on offloading workloads depending on CHARITY|
application’s requirements. ASET components is based on Kubernetes, Kafka, Prometheus, and Reinforcement Learning
technologies.

IASET aims at selecting the best policy from a set of several policies in a realistic network settings and workloads of a
large European ISP. Some policies enable real-time applications in realistic settings, but a dynamic scheduling policy is
required to adapt to different network conditions, topologies, and workloads. Our results show the dynamic policy
automatically adapts to conditions and effectively improves performance over baselines for edge-enabled
deployments.

Related requirements: No particular requirements.

IComponents involved: CHARITY Adaptive Scheduling component

\Where are data collected and stored - measurement points:

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 43 of 107



D4.4: Showcasing, validation and evaluation n.

Client generator has been created to simulate incoming app users following a Poisson distribution. This generator runs
on average lambda clients per minute querying the scheduler of a given geographical area (antenna). Once spawned,
each client requests for processing a stream featuring randomized characteristics in terms of frame rate, required end-
to-end latency, required model accuracy, frame sizes, stream duration. To capture realistic queries characteristics, we
modelled metrics of generated streams according to the reference edge applications in Table 10.

\When are data collected? The data was collected during the 1st semester of 2024.

Instruments/tools:

Prometheus, Kubernetes, Pytorch, Kafka, Python3, shell, Docker, Object Detection algorithms
Methodology/Procedure: in which way data are collected

IA series of tests have been performed on the platform with different settings in order to compare the static policies
over a distributed pool of edge resources. The comparison is based on success, failure and rejection rates.
Metrics to analyse the results

Latency, success queries, rejection queries and failure queries.

Table 13. Characteristics of reference applications

Edge app Tolerated Frame Streams  Required
delay rate duration accuracy

Pool 95 ms 5 FPS 5-10 s 10 mAP
Workout Assistant 300 ms 2 FPS 90 s 10 mAP
Ping-pong 150 ms | 15-20 FPS 20-40s | 15 mAP
Face Assistant 370 ms 5 FPS 1-5s | 30 mAP
Lego/Draw/Sandwich 600 ms | 10-15 FPS 60s | 25 mAP
Gaming 20-30 ms 25FPS | 1030 m | 35 mAP
Connected Cars 150 ms | 10-15 FPS 15-30 m | 40 mAP
Tele-Robots 25-35 ms 10 FPS 5m | 40 mAP
Remote-driving 20-30 ms 20 FPS | 1530 m | 50 mAP
Interactive AR/VR 30-50 ms 25 FPS 30-60 s | 35 mAP

3.5.2 Experimentation Scenarios

Two distinct experimental scenarios were devised to evaluate ASET. These scenarios aimed to measure
the success, failure and rejection rates and the feasibility of the ASET by changing the network
topology, cloud and edge.

3.5.3 Evaluation tests, data collection and analysis

Initially, we compared the performance of the baseline policies, e.g., closest, farthest, load balancing,
least impedance, random, rp-latency, rp-load and cheaper, distinguishing results for different
applications described above. As a performance metric we consider the percentage of queries that are
successfully processed by the system satisfying the application QoS requirements. Figure 18 shows
results of multiple runs with lambda = 60, suggesting that there is no one-size-fits-all policy, as various
applications may benefit differently from each policy. Varying the rate of stream requests on the
antenna may further increase the uncertainty of relying on a single policy.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 44 of 107



D4.4: Showcasing, validation and evaluation ﬂ.

OAYRTITI

8 80
-
[}
>
»n 60
1%
3
o
o
7 40
s B |oad-balancing B farthest
® 20 m rp-load B cheaper
I |east-impedance B rp-latency
B closest m ASET
0
pool workout pingpong face lego gaming cars robots driving ar/vr
(a) Average values for clients rate A = 60
100 T ﬁ F
& 8o | t ”! { ‘,
e ¢
@ T |
&
o 60 ’
%] i
g | i
13
S 40
"
b - |oad-balancing B farthest
X 20 = rp-load Bl cheaper
W |east-impedance [ rp-latency
0 BN closest EEE ASET
pool workout pingpong face lego gaming cars robots driving ar/vr
(b) Average values for episodes with dynamic clients rates.
Figure 21 - Success percentage for different apps on the full-edge topology.
100
100 load-balancing —— cheaper - load-balancing = cheaper
80 rp-load - rp-latency 90 rp-load mmm  rp-latency mmm
_ﬂ least-impedance random --—- _@ 80 least-impedance random N
o 80 closest ----- ASET — o closest W ASET mmm
3 farthest ——— 3 farthest
a 70 A
g g g
S E \
" 60 " ’
N N
5] 5]
R ES
0 100 200 300 400 20 40 60 100
time (s) # of streams per minute (poisson A)
(a) Time avg on dc-cloud for A = 60. (b) Different clients rate on dc-cloud.
100
100 load-balancing —— cheaper - load-balancing . cheaper
90 rp-load - rp-latency 90 rp-load . rp-latency
_@ least-impedance random ---- _Q 80 least-impedance s random s
o 80 | closest ----- ASET == o closest N ASET mmm
& farthest - 3z 70 arthpest |
" "
n 70 0
3 60 3
R 0 R 40
40 30
0 100 200 300 400 20 40 60 100
time (s) # of streams per minute (poisson A)

(c) Time avg on co-dc-cloud for A = 60. (d) Different clients rate on co-dc-cloud.

Figure 22 - Performance of ASET compared with static policies for (ab) the dc- cloud topology and (cd) the co-
dc-cloud topology.

Cloud deployment

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 45 of 107



D4.4: Showcasing, validation and evaluation n.

First, we focus on testing the performance when all the available resources are located in a few
centralized clusters. Static policies have small differences in performance and a dynamic approach has
little room for improvement. The results for the dc-cloud topology, shown in Figure 19, indicate that,
for this topology, ASET does not improve over static policies, and it even performs worse for higher
lambdas. However, moving some resources to Central Offices (co-dc-cloud topology) makes a huge
difference. In general, all the policies achieve a higher success ratio on this configuration, as they can
exploit the additional lower latency spots, and the higher level of distribution gives to ASET a certain
margin of improvement.

Edge deployment

As shown in Figure 20, the benefits of using a dynamic scheduling approach become more concrete in
a full-edge topology, where resources are better distributed on multiple smaller clusters in different
locations. In fact, the dynamic approach of ASET is able to achieve a constant improvement over any
static policy, with a higher success ratio over time while maintaining the same rejection rate as the
best static-policy. ASET effectively reduces the number of queries that are handled violating one or
more QoS requirements.

100

load-balancing —— cheaper -
RN rp-load rp-latency | |
,6 90 \) least-impedance random _6 !
@ TR closest - ASET —— B N I
= 80 11y % farthest 5 N I |
o o '
g 70 g ‘ . ] + |
2 2 40 mmm load-balancing eapeil’
S 60 s B rp-load [ rp-latency
X - X 20 [ |east-impedance [ random
I closest N ASET
,,,,,,,,, I farthest
40 0
0 100 200 300 400 20 40 60 100
time (S) tel:0%20100%20200%20300%20400 # of streams per minute (poisson A)
(a) Queries handled successfully. (b) Different clients rate on full-edge.
35 l“\_",’,«»:;‘? = 30
" 30 4 25
2 5
0 R R A CA— e T T v e gt
NI = 320 e
20 ! °
= ; ) () e :
& iS5 : load-balancing — cheaper - v Io;ré‘o ancing —— cheaper -
Y i /o
00 10 rp-load rp-latency 5 A0 7 rp-load rp-latency
B least-impedance random ---- R 5| ast-impedance random ----
54§ closest ---- = ASET = closest - ASET =
0! farthest ——- 0 - farthest -
0 100 200 300 400 0 100 200 300 400
time (s) time (s)

(c) Queries delivered with QoS violations. (d) Queries rejected for lack of resources.

Figure 23 - Performance of ASET compared with static policies for the full-edge topology. (a) (c) and (d) show
averages of multiple runs with A = 60.

3.5.4 KPIs assessment
Regarding the general objectives of the CHARITY project, this component has been developed in the

ambit of the Objective #2 - Provide holistic support for the orchestration of advanced media solutions
focusing on distributing jobs on edge device architectures KPI-2.1.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 46 of 107



D4.4: Showcasing, validation and evaluation n.

4 Use case Evaluation and results

4.1 UC1-1Holographic Concert and UC1-2 Holographic meetings

4.1.1 Description, procedure, metrics

Table 14. Description of evaluation subtopic - Holographic Concert and Holographic meetings

Subtopic Title: Holographic Concert and Holographic meetings Partners: HOLO3D

Short description and evaluation scope:

Our plan is to measure latency and data rate. Since the number of consumers and devices is finite and quite low,
the latency is expected to be related to the internet connection, rather than anything else. We need to conduct
testing to determine the maximum acceptable latency that is acceptable while not degrading the QoE (video
quality and synchronization).

Related requirements:
F_UC1_01: CHARITY provides Cloud server with resources necessary to achieve KPlIs.

F_UC1_02: CHARITY provides cloud-based software to receive, decompress and render / modify the content in
the cloud in real time.

F_UC1_03: CHARITY software renders in real time several types of pre-set video modes and resolutions, for|
several types of Holographic Displays.

F_UC1_04: APPLICATION PROVIDER provides speaker PC, video camera, lights, black background, secondary
screen.

F_UC1_05: APPLICATION PROVIDER provides speaker PC with software to retrieve the raw, 2D video from the
video camera and send it to the Cloud server.

F_UC1_06: APPLICATION PROVIDER provides client PC, Holographic Display, webcam, mic for 2-way
communication with the Speaker PC.

F_UC1_07: APPLICATION PROVIDER provides client PC with software to send live video/sound stream to the
Cloud server.

F_UC1_08: APPLICATION PROVIDER provides client PC with software to receive the scrambled, 3D adapted video
from the Cloud Server and send it to the Holographic Display.

F_UC1_09: APPLICATION PROVIDER provides client PC with software to synchronize with the other connected
client PCs.

F_UC1_10: APPLICATION PROVIDER, the software F_UC2_08 can choose to retrieve a different type of|
scrambled, 3D adapted stream from the Cloud server according to the connected Holographic Display.

F_UC1_11: APPLICATION PROVIDER provides speaker PC with software to convert the shared content (jpg, pdf,
doc, ppt, mp4) to the same type of raw,2d video as in F_UC1_05 (Holographic meetings scenario).

NF_UC1_01: The video resolution should be > than full HD (1920x1080) @ 30 fps.

NF_UC1_02: Average latency between receiving the raw, 2D video stream from Speaker PC and rendering it for
the specific Holo Display resolution and format required by the Client PC<= 30-600 Seconds

NF_UC1_03: Average latency between receiving the raw, 2D video stream from Speaker PC and rendering it for
the specific Holographic Display resolution and format required by the Client PC<=1000ms (second scenario).

IComponents involved: Cyango-media-server

Where are data collected and stored - measurement points:

Data is directly computed in the Speaker and Client PCs. We do not intend store any data.

\When are data collected?

Several sessions of 60 minutes each.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 47 of 107



D4.4: Showcasing, validation and evaluation n.

Instruments/tools:

Full hd/4k cameras that support RTMP streaming,

Methodology/Procedure:
Data is directly computed in the Speaker and Client PCs.

Metrics to analyse the results

Available Incoming Bitrate
Available Outgoing Bitrate
Bytes Discarded On Send
Bytes Received

Bytes Sent

Current Round-Trip Time
Total Round Trip Time

4.1.2 Experimentation scenarios

The video livestreaming scenario involves a speaker streaming from a streaming device (such as a
camera or webcam) to the cyango-media-server component. This component initiates data processing
and optimization to deliver real-time streaming video and high-quality audio.

This scenario involves cyango-media-server, where the goal is to achieve an average latency < 20 ms.

The same applies to the client PC connected to the holographic display, essentially performing the
same function in reverse.

4.1.3 Evaluation tests, data collection and analysis

Initial tests: Video Streaming over wired local network
Our first tests were relevant to both UC1-1 and UC1-2 use cases.

Our initial tests were conducted using TCP. As anticipated, the stability was satisfactory, but latency
was high.

Over a 1gb wired connection, we observed a 5000-7000 ms delay between the Musician and the Client
PCs when streaming a 1280x720 video at 25 fps with approximately 3500 kbps. The latency was mostly
induced by the local video manipulation component that vastly depends on the computer
performance.

We utilized the most challenging template for the Dreamoc Diamond, a four-sided holographic device

We then transitioned to UDP for local streaming. We made some video and error handling
optimizations, which slightly improved latency to 3000-4000 ms for the same 1280x720 video stream
at 25 fps and ~3500 kbps. However, we encountered another issue: the sound was no longer
synchronized with the video stream. We used the same video manipulation template designed for the
most challenging four-sided holographic device.

The results were not conclusive, as performance largely depended on the hardware configuration of
both the Musician's and Client PC. The observed latency was much higher (up to tenfold) than expected
for a local streaming solution, leading us to conclude that a cloud-based solution with significantly
enhanced computing power was necessary.

Video Streaming - Cloud Server

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 48 of 107



D4.4: Showcasing, validation and evaluation n.

We successfully integrated our local streaming app with the CHARITY Edge Cyango-media-server.
Initially, we tested various local and web streaming protocols, but most yielded unsatisfactory results
due to high latency. As a result, we opted to implement the WebRTC protocol.

The streaming occurred during two sessions of 2 hours each, and the following results were recorded.
For the sake of consistency, we tried to use the same video settings for the stream:

® Device: Microsoft LifeCam HD-3000
Resolution: HD (1280x720)

Bitrate (kbps): 2500-3500

Frame rate: 25

Video codec: H264

The findings indicate that latency has been successfully reduced to below 1000 ms, with synchronized
audio and video. These results are derived from the analysis of raw, unedited videos, given that the
development of the cloud video manipulation component is ongoing.

Netwark load with 1280x720 resolution @25 fps and an average 2500kbps 10 Mbps

end Receive 60 minutes
2.8 Mbps | 2.9 Mbps
Figure 24 - Network load with 1280x720 resolution @ 25fps and an average 2500kbps

Network load shows a stable average of 2.8 Mbps sent and 2.9 Mbps received over a 60-minute
session.

Latency with 1280x720 resolution @25 fps and an average 2500kbps 1000 Ms
[

60 minutes

Figure 25 - Latency with 1280x720 resolution @ 25fps and an average 2500kbps

The latency graph indicates a relatively stable latency of 150-200 ms on average over a 60-minute
session. While this raw, unaltered video stream exhibits latency levels that are insufficient for the
Holographic Concert Use Case, ongoing testing will involve the cloud video manipulation component.
Upon its completion, subsequent tests will assess any additional latency introduced by video
manipulation.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 49 of 107



D4.4: Showcasing, validation and evaluation n.

We have integrated the video editing tool for the large Holographic Device (Dreamoc Diamond) and
have also incorporated sound. Our findings indicate that the impact on performance is negligible.
Despite testing with longer-distance connections (specifically, between Bucharest-Istanbul and
Bucharest-Munich), we have maintained latency under 1000 ms.

4.1.4 KPIs assessment

KPI-UC-1.1: Average latency < 20 ms.

Description: This KPI measures the time delay from the transmission of input data to the reception of
3D-point cloud data. Ensuring low latency is crucial.

The average latency currently exceeds 20 ms. It remains uncertain whether this meets the
requirements for the Holo Concert use case; further tests are necessary, particularly after the
completion of the video manipulation and synchronization components.

KPI-UC-1.2: Decrease in bandwidth by 50%

This KPI focuses on reducing the amount of data transmitted over the network by half. This is crucial
for optimizing network resources and reducing costs.

This has not yet been achieved, but the following implementation strategies will be attempted:

. Data Compression: Implement advanced data compression techniques to reduce the
size of the transmitted data.

. Efficient Data Encoding: Use efficient encoding schemes that reduce the data size
without significant loss of quality.

. Selective Data Transmission: Transmit only essential data needed for the task, possibly
using data filtering or aggregation methods.

. Caching: Use caching mechanisms to store frequently accessed data locally, reducing
the need to transmit data repeatedly.

KPI-UC-1.3: Frame rate of the holographic visualization >= 30Hz

Description: This KPI ensures that the holographic visualization operates at a minimum of 30 frames
per second (FPS), providing a smooth and seamless visual experience. This has been achieved, further
improvements can be obtained through the following Implementation Strategies:

. Optimize Rendering Pipeline: Enhance the rendering pipeline to ensure efficient
processing of visual data, maintaining high frame rates.

. High-Performance Graphics Hardware: Use high-performance GPUs to handle
intensive rendering tasks.

. Efficient Resource Management: Allocate resources effectively to ensure consistent
frame rates, avoiding bottlenecks in the rendering process.

. Parallel Processing: Utilize parallel processing techniques to distribute the rendering
workload across multiple processors or cores.

KPI-UC-1.4: Data services required (raw data streaming, rendering, compression, caching, encoding)
=>5,

Description: This KPI indicates that at least five different data services are necessary for the use case,
ensuring a comprehensive and robust data processing workflow.

¢ The tests were made with five different data services: i.e.raw data streaming, rendering,
compression, caching, encoding.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 50 of 107



D4.4: Showcasing, validation and evaluation n.

4.1.5 Benefits from the use of the Platform/Component

The CHARITY platform provides three key benefits to UC1-1 and UC1-2:

® (Cost-efficient video processing capabilities— by optimizing how and where the video editing
is performed and by removing the dependency on local third party software;

® Scalability and flexibility — CHARITY platform can quickly scale resources up or down based
on demand, providing flexibility to handle varying workloads. The local software that was used
before needed a separate licence for every instance run simultaneously.

® Reliability and failover elastic mechanisms for ensuring high availability and minimizing
downtime. The initial local software did not offer any reduncy nor failover mechanisms.

4.2 UC2-1 VR Medical Training

4.2.1 Description, procedure, metrics

Table 15. Description of evaluation subtopic - Realistic simulation in VR medical training

Subtopic Title: Realistic simulation in VR medical training Partners: ORAMA

Short description and evaluation scope:

IORAMA plans to use the metrics of latency, data rate and number of users in order to determine the maximum latency
that is supported in relation to the number of concurrent users in a VR session. The end-to-end latency derives from
three factors: processing in the edge /cloud resources, transmission over the network and processing on the HMD. End-
to-end latency includes the rendering and the streaming latency, HMD Decoding time and Time to latch frame as well
as the jitter and refers to the time since a user movement is registered by the system and for the corresponding image
to be displayed on the headset’s screen. In addition, we aim to approximate both the data cost and the latency cost
(network related) each additional user adds to a VR session.

Related requirements:

F_UC2_01: APPLICATION DEVELOPER: Use the mirror networking service or similar for matchmaking, creation of session
and selection of an already existing session (IP, location, userid master) photon.

F_UC2_03: APPLICATION DEVELOPER: Session management through a relay server or message broker in the cloud.

F_UC2_07: APPLICATION DEVELOPER: The application component running on the HMD should be aware of the
connected resources (app instance on edge) where part of the application has been offloaded.

F_UC2_08: APPLICATION DEVELOPER: The application running on the HMD should be able to connect via standardized
protocols to the resources (app instance on edge) where part of the application has been offloaded.

F_UC2_11: APPLICATION DEVELOPER: Support continuous streaming of produced frames, that combines two images
(one per eye) per user, from the edge resource node to the HMD.

F_UC2_13: APPLICATION DEVELOPER: The resource discovery mechanism of CHARITY should offload part of the
application functionality from the HMD to nearby edge resource considering lowest average latency.

F_UC2_17: APPLICATION DEVELOPER: Establish communication of the HMD and the Remote Service (RS) in the
cloud/edge when launching the app on the HMD.

NF_UC2_01: USER, APPLICATION DEVELOPER: Round trip time (RTT) latency <15ms.
NF_UC2_04: USER, APPLICATION DEVELOPER: Connectivity from user HMD device <10 ms.

NF_UC2_10: APPLICATION DEVELOPER: Receive error messages on potential problems with existing resources, continue
the VR app by communicating with another newly discovered resource (discovery and placement).

NF_UC2_17: USER, APPLICATION DEVELOPER: Performed actions from all users must be synchronized to the output
rendered image of each individual user’s HMD with lowest average latency.

IComponents involved: Activation Proxy, LSPart1, HMDApp, Photon

\Where are data collected and stored - measurement points:

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 51 of 107



D4.4: Showcasing, validation and evaluation n.

Network statistics regarding the streaming of rendered images is measured on the LSPart1 and is stored on the HMD.
User login information, and User analytics is stored on the LSPart1 and sent to the Microsoft Azure Cloud.

'When are data collected?

Each session of tests lasts approximately 5 minutes.

Instruments/tools:

Mobile HMD, LSPart1, LSPart2

Methodology/Procedure:

Data is captured and timestamped on the HMD from the streamer client and stored temporarily on the HMD. At specific|
time intervals, every 40 secs, all captured metrics are transmitted to the Analytics Engine through the AMF. User input
can greatly vary in each VR session. We aim to scale to over 50 users in the experiments.

Metrics to analyse the results

®  Frames Per Second: The frames per second rendered by the machine

e  Frame Delivery Time: Time from the creation of the frame to the time it is displayed on the HMD
e  Bandwidth Utilization (kbps): Throughput used by the streaming application

e Bandwidth Utilization (%): Estimated throughput usage based on available throughput estimates
e Round Trip Delay (ms): Network Latency from the Streaming Machine to the HMD

e Jitter (us): Variance of Network Latency

e  Packets Received (total): Total packets sent to the HMD

e  Packets Lost (cumulative): Total packets lost by the HMD

e  Packets Dropped (cumulative): Total packets dropped due to high latency

e  Packets Lost (Percentage): Percentage of packets lost

4.2.2 Experimentation scenarios

A number of testing sessions were conducted, in which experiments were incrementally staged to
reach a large number of CCUs, exploiting both real users with available HMDs and simulated users via
the exploitation of bots. Simulated Bot users, spawned by a script developed by ORAMA, behave as a
real HMD user and generate the same overhead on the network bandwidth and on the CPU load of
the LSPart2 server, reaching the target of 50 CCUs. The experiments in this deliverable aimed to
separately assess the Use Case components and the orchestration of the CHARITY platform. On one
hand, the focus was on evaluating the deployment of the developed components within one of the
project's testbeds. On the other hand, the goal was to assess the metrics and KPIs before further
leveraging the orchestration functionalities of the CHARITY platform. The HMDs for the experiment
were provided from ORAMA and the participants were members from the ORAMA team located in
Greece. The LSPart1 and LSPart2 components were deployed in CHARITY platform, specifically at the
Sofia Testbed provided by OneSource. For each LSPart1, an XR Application Activator Blueprint with a
docker image is created and acts as a proxy, which activates an always-on Machine, which runs the
LSPart1 software, in the ORAMA Lab. In addition, another Machine was exploited for simulating up to
55 users, depending on the scenario, via bots. The LSPart2 was deployed in a separate Blueprint as a
docker image. Each participant’s HMD was connected to a separate machine, where the LSPart1 was
running. The HMD would connect to the LSPart1 proxy created in the CHARITY Platform and would get
assigned on a physical machine where it would then connect. The machines were connected using
Ethernet. The HMD was connected through 5Ghz Wi-Fi. The following tests were conducted:

Test 1 - 1 HMD User and 20 Bots

The test was conducted via the deployment of 1 container for the XR Activation Proxy (Blueprint with
Docker image), 1 machine (Windows 10 with RTX 3060 GPU) for the LSPart1 and 1 container for the
LSPart2 (Blueprint with Docker image), and 1 machine (Windows 10) to run the 22 Bots.

Test2 - 2 HMD Users and 30 bots

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 52 of 107




D4.4: Showcasing, validation and evaluation n.

The test was conducted via the deployment of 2 containers for the XR Activation Proxy (Blueprint with
Docker image), 2 machines (Windows 10 with GTX 1060 GPU) for the LSPart1 and 1 container for the
LSPart2 (Blueprint with Docker image), and 1 machine (Windows 10) to run the 33 Bots.

Test3 - 3 HMD Users and 50 bots
The test was conducted via the deployment of 3 containers for the XR Activation Proxy (Blueprint with
Docker image), 3 machines (3 Windows 10, with 1x RTX 3060 GPU and 2x GTX 1070 GPUs) for the
LSPart1 components, 1 container for the LSPart2 (Blueprint with Docker image), and 1 machine
(Windows 10) to run the 55 Bots.

4.2.3 Evaluation Tests, data collection and analysis

Test 1- 1 HMD User and 20 Bots

In the first test, the distributed VR pipeline was evaluated with one HMD user and 20 bots. The system
maintained a steady frame rate of 75 fps, which is suitable for interactive VR simulations, ensuring a
smooth and immersive experience. Packet loss was minimal, indicating reliable network performance.
The streamed encoded frames were produced utilizing H.264 adaptive compression, where p-frames
(predicted-frames) are encoded in greater compression rate, for frames that slightly differ from each
previous one, and i-frames (intra-coded-frames) are encoded in lower compression rate, for frames
differ significantly from each previous one. In that respect, the bandwidth consumption was variable,
since the recorded user was constantly changing the camera orientation during the experimentation
scenario, reflecting the dynamic nature of the XR pipeline. Additionally, the average latency for
encoding, decoding, and rendering was recorded at 22.1 ms, demonstrating efficient processing, very
close to the set KPI value. Network processing, including network and send latency, was measured at
an average of 25.5 ms, in total 45 ms. These results highlight the system's capability to handle VR
simulations with low latency and high frame rates, crucial for user immersion and interaction.

Frames Per Second

Test 1 Latency Breakdown

50 140

120

45

40

22,91865443

35

Packets lost (%)

30

25

20

15

10

Bandwidth Utilization (Mbps)

1 30

® Rendering M Encoding

m Decoding Network 0

m Send Latency

Figure 26 - Latency metrics, FPS, Packet loss and Bandwidth consumption on the HMD for Test 1

Test2 - 2 HMD Users and 30 bots
In the second test, the system was evaluated with two HMD users and 30 bots. The frame rate
remained steady at 75 fps, suitable for interactive VR simulations, and packet loss was minimal.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 53 of 107



D4.4: Showcasing, validation and evaluation n.

Bandwidth visualization showed variability during moments where the user changed the HMD camera
orientation, especially towards the end of the simulation. The average latency for encoding, decoding,
and rendering increased to 29.8 ms, attributed to the use of a lower-spec machine (LSPart1) with a
GTX 1070 GPU, compared to a high-end machine with an RTX 3060 GPU used in the other two tests.
This underscores the importance of high-end GPUs in maintaining low latency. Network processing,
including network and send latency, increased to 32.6 ms, also due to the lower specifications of the
LSPart1 machine, increasing the total latency of the frame in the HMD to 62 ms, showcasing a
satisfactory QoE even with low spec machines. These findings emphasize the critical role of hardware
specifications in achieving optimal performance in distributed XR environments.

Frames Per Second

Test 2 Latency Breakdown

70

60

50
29.13085107

Packets lost (%)

40

3517730496
30

20

10 Bandwidth Utilization (Mbps)

1
M Rendering M Encoding
® Decoding Network 0

m Send Latency

Figure 27 - Latency metrics, FPS, Packet loss and Bandiwidth consumption for Test 2

Test3 - 3 HMD Users and 50 bots

In the third test, the system's performance was assessed with three HMD users and 50 bots. The frame
rate consistently remained at 75 fps, ensuring a suitable environment for interactive VR simulations,
with minimal packet loss. Bandwidth visualization varied when the users' camera orientation changed
significantly especially at the start and end of the simulation. The average latency for encoding,
decoding, and rendering was recorded at 19.7 ms, demonstrating efficient processing even with
increased user load. Network processing, including network and send latency, was measured at 27.2
ms, indicating effective handling of network communication. The physics server's incoming bandwidth
gradually increased as users joined the VR session, stabilizing at around 0.35 Mbps after all 53 users
were connected. The outgoing bandwidth followed a similar pattern but remained lower due to the
relay server's role in distributing user positions, reducing the load on the LSPart2 machine. These
results showcase the system's scalability and robustness in managing multiple users and bots in a
distributed XR environment.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 54 of 107



D4.4: Showcasing, validation and evaluation ﬂ'

Frames Per Second

Test 3 Latency Breakdown

50 250
45

40

6:31:52
6:32:48

35

Packets lost (%)

30

25

20

15

10

1

®Rendering M Encoding
m Decoding m Network

W Send Latency

LSPart 2 Incoming Throughput (Mbps)

06
0.5
0.4
0.3
0.2

0.1

21
26
31
36
41
46
51
56
61
66
71
76
81
86
91
96
101
106
111
116
121
126
131
136
141
146
151
156
161
166
171
176
181
186
191
196

LSPart 2 Outgoing Throughput (Mbps)

0.03
0.025
0.02
0.015
0.01
0.005

0

NP HUOED LN H R NO ARG Do) PR PR D s ot P
- NN ®™ A T T ] NN o oo =3 - = NN ™ < 9 0 @ N~ O oo®
e R R e I s I B I T B B R i R e - -

Figure 29 - Incoming and outgoing bandwidth consumption of the Physics server (LSPart2) while 53 users
gradually enter the VR session.

4.2.4 KPIs assessment

KPI-UC2.1: Average latency < 20 ms. In all above experiments (see Figure 23, Figure 24, Figure 25) the
encode/decode/rendering latency is below 20 ms.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 55 of 107



D4.4: Showcasing, validation and evaluation n.

KPI-UC-2.2: Number of CCU >50. This KPI was achieved with 38 users (3 HMDs and 50 bots), as it is
documented in Figure 26 and Figure 27. It is expected that in the future with certain optimizations we
could reach to even higher amount of CCUs.

Figure 30 - Right: Physics server computations with 53 concurrent users in the same VR session. Left: Rendered
scene

KPI-UC-2.3: Number of different VR HMDs >5. We conducted successful tests with 6 different HMDs:
Meta Quest-1, Meta Quest-2, Meta Quest-3, Meta Quest-Pro, Pico-4, HTC-Vive-Focus (Figure 28). The
achievement of this KPI indicates that our solution is device agnostic and easily scalable to both low
and high spec HMDs.

Figure 31 - 6 different types of VR HMDs

KPI-UC-2.4: Data services required (rendering, compression, caching, encoding) =>4. The VR medical
training use case involves 5 different data services: rendering, encoding, decoding, networking and
physics. In all conducted experiments we recorded the processing times for all involved services (see
Figure 23, Figure 24, Figure 25, and Figure 26.

KPI-UC-2.5: Automated configurable soft-body simulation for objects with large number of
vertices >= 8.000 vertices. The VR medical training sample application from ORAMA, which serves as
the pilot prototype for testing the developed services and exploiting the functionalities of the CHARITY
platform, includes various rigged objects with varying numbers of vertices (e.g., the patient’s leg with

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 56 of 107



D4.4: Showcasing, validation and evaluation n.

8252 vertices). As these are not softbodies, to achieve this KPl we have experimented the dissected
physics server with the Standford Bunny model that is modelled as a rigged softbody with 17,260
vertices (Figure 29).

Figure 32 - Right: Physics server computations for real-time deformations. Left Rendered scene.
4.2.5 Benefits from the use of the Platform/Component

The CHARITY platform brings considerable advantages for deploying and managing our use case
components. The integration of CHARITY's capabilities has resulted in a seamless and efficient
workflow, significantly enhancing our overall system performance and deployment strategy. The
inclusion of advanced features like automated deployment APIs has notably improved the system's
performance, scalability, and user experience.

Within CHARITY, we transformed our VR pipeline from monolithic to distributed, allowing the VR
HMD to be light. This fact enabled the use of our VR medical training application by even low spec
HMDs, providing a device agnostic framework. The Remote Rendering Component offloads heavy
graphics rendering to powerful machines in the cloud, allowing for higher fidelity graphics than what
is possible on untethered HMDs. The Physics server component excels in executing VR physics
computations, a critical aspect for maintaining the integrity and performance of our VR pipeline. By
utilizing cloud resources for physics computations, the system supports high-intensity physics tasks,
such as soft-body simulations, and enables over 50 concurrent users to collaborate and interact
within the same VR session, thereby providing an enhanced overall quality of experience.

The Application Management Framework (AMF) simplifies the configuration of our use case
components through its dedicated website, which offers a user-friendly interface. This ensures that
setting up Blueprints for our Physics Server and remote rendering components is intuitive and
efficient, significantly reducing the complexity associated with manual deployment and configuration
processes. A major benefit of the CHARITY platform is its ability to automate the deployment of use
case components. Leveraging the AMF's APIl, we can programmatically manage the deployment
process, ensuring optimal deployment of the Physics Server and remote rendering components,
which minimizes latency and enhances the user experience. The API integration allows for flexible
and dynamic deployment, adapting in real-time to changing conditions and demands. The CHARITY
platform supports multiple deployment strategies, providing the necessary scalability to grow and
adapt our system. Whether deploying simultaneously using a single Blueprint or managing separate
Blueprints for more flexibility, the platform optimizes resource utilization and effectively meets
varying demands.

Additionally, the CHARITY platform supports real-time monitoring and management of deployed
components. By integrating latency data collection and monitoring capabilities, the system remains
responsive and efficient. The Physics server can leverage these insights to trigger necessary actions,

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 57 of 107



D4.4: Showcasing, validation and evaluation n.

such as redeploying in optimal locations and adapting resources, ensuring consistent performance
and quality of service.

4.3 UC2-2 VR Tour Creator

4.3.1 Description, procedure, metrics

Table 16. Description of evaluation subtopic - Virtual Experiences Builder for the web

Subtopic Title: Virtual Experiences Builder for the web Partners: DOTES

Short description and evaluation scope:

\We plan to measure latency, data rate and number of consumers to understand the overload limits and the maximum
latency that is acceptable while not degrading the QoE of the number of concurrent users and the number of requests
from the client side.

Related requirements:

F_UC2_22: APPLICATION DEVELOPER: Cloud video 360 editor. Allows USER to edit the virtual experiences with video
and audio on the cloud

F_UC2_ 23: APPLICATION DEVELOPER: Real-time video streaming. The VIEWER must be able to consume the live
streaming video on the Story Front-end, 2D or 360 videos can be used.

F_UC2_24: APPLICATION DEVELOPER Real-time 3D Model server-side render. The VIEWER should be able to see the 3D
model with adaptative quality depending on the network quality.

F_UC2_25: APPLICATION DEVELOPER: Real-time audio translation. The edge cloud should be able to process the audio|
of a live streaming video and transcribe it on the APPLICATION DEVELOPER: Cloud processing power. The edge cloud
should have enough resource allocation depending on the demand of the media files that the VIEWER requests.

NF_UC2_19: USER, APPLICATION DEVELOPER: Data rate >50 Mbps supported by at least 5Ghz wifi or 5G.

NF_UC2_20: APPLICATION DEVELOPER: Receive error messages on potential problems with existing resources,
icontinue the VR app by communicating with another newly discovered resource (discovery and placement).

NF_UC2_21: USER: Continue using the application in case of problems in network resources with minimal delay.
NF_UC2_22: ADMINISTRATOR: Maintain application integrity and user’s security.
NF_UC2_23: APPLICATION DEVELOPER, USER: Proximity of the relay server based on the users’ footprints.

NF_UC2_24: APPLICATION DEVELOPER: GPU and CUDA acceleration capabilities available at edge nodes, where part of|
the application is instantiated.

IComponents involved: cyango-story, cyango-backend- cyango-database, cyango-worker- cyango-media-server,cyango-
cloud-editor

\Where are data collected and stored - measurement points:

Data is collected on the cyango-story or cyango-cloud-editor and stored on the Prometheus instance

'When are data collected?

IThe amount of time to collect the data depends on usage of the end-user, but typically it can be around 5 hours.

Instruments/tools:

360 Cameras that support RTMP streaming, cyango-story, cyango-backend- cyango-database, cyango-worker- cyango-|
media-server, cyango-cloud-editor, HMDs

Methodology/Procedure:

Data is directly computed in the cyango-story or cyango-cloud-editor on the client’s browser side, that can be desktop,
mobile or HMD. The data is sent to cyango-backend and then exposed and stored via an endpoint to a Prometheus
instance.

Metrics to analyze the results

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 58 of 107



D4.4: Showcasing, validation and evaluation n.

e Available Incoming Bitrate;
e Available Outgoing Bitrate;
e Bytes Discarded On Send;
e  Bytes Received;

e  Bytes Sent;

e Current Round Trip Time;
e  Total Round Trip Time;

4.3.2 Experimentation scenarios

The VR video livestreaming scenario where a creator can start streaming from any streaming device
(360 camera, webcam) to the cyango-media-server component which starts the data processing and
optimization to deliver a real-time streaming of up to 8k resolution video and high quality audio. This
scenario involves cyango-media-server, cyango-story, cyango-backend, cyango-editor and cyango-
database. The goal is to achieve an average latency < 20 ms.

The content processor scenario where video, audio, images and 3D models are converted from almost
any format to optimized formats for web content streaming and consumption. This scenario involves
cyango-editor, cyango-backend, cyango-worker and cyango-database

The number of different HMD headsets test scenario where we load the Cyango XR experiences from
cyango-story component.

The 100 Rooms/Scenes scenario is where we test the loading times of XR experiences with a big
amount of assets distributed on up to 100 XR scenes/rooms and still deliver a good QoE to the end-
users.

4.3.3 Evaluation tests, data collection and analysis

VR Video Livestreaming Tests

The livestreaming use case was implemented on the cyango-media-server component which is hosted
in the edge. There were many experiments and tests to achieve a working prototype of a real time 360
video experience. This was achieved by using the WebRTC protocol, after many unsuccessful tests
with HLS, LHLS and DASH, which are also streaming protocols, but introduced too much delay.

We implemented the Livestreaming VR functionality with a metrics middleware to evaluate a set of
bandwidth and video conditions parameters. We made a test by streaming a 5.7k video to the cyango-
media-server and consuming it via the cyango-story component on different premises. The streaming
was made for 2 hours, which we retrieved some metrics. Some of the most relevant metrics gathered
are shown in Figure 30, Figure 31, Figure 32, Figure 33, Figure 34 below:

Figure 33 - Bytes received

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 59 of 107




D4.4: Showcasing, validation and evaluation ﬂ.

™) b o o1 1820 =

® tytesSeniinstange " cyange bckend Suaes 32777 Job-"sireaming metnes’)

Figure 34 - Bytes sent

B il T Dastance s cyaros-backerd Somi STTT" Jabe stresrsing mamics'|

Figure 35 - Total Round Trip

“oparge SZTTT - "strearung memy)

Figure 36 - Current Round Trip

ML

7 Jobe strearsing ey}

Figure 37 - Available incoming bitrate

Content Processor Tests

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 60 of 107



D4.4: Showcasing, validation and evaluation n.

The video converting use case has the most progress in terms of testing and implementation. This
feature requires a continuous improvement and trials with multiple video formats and sizes. We want
to enable our users to upload any kind of video and stream it in the most effective way. The custom
algorithm we implemented derives from the cyango-worker component and it is responsible for
receiving the uploaded file and convert it using the open-source ffmpeg library. The algorithm uses a
encoding ladder strategy that generates many quality levels of that file (video, image and audio),
allowing a better experience. We also found out that there are limitations on the video quality that
can be played in the VR headsets, particularly concerning the bitrate and resolutions. To achieve a
good balance between quality and performance for any kind of video is hard, because there are many
factors and fine-tuning parameters that can improve or degrade the user experience. We conducted
tests with many video formats and resolutions with different bitrates for multiple combinations of
ffmpeg commands. We have achieved a considerate good relation between quality, size and bitrate
that converts any video format up until 500 Mb to a streamable HLS playlist.

We found that the main difference between running a ffmpeg command for each resolution separately
versus running a single ffmpeg command with all resolutions at once affects the encoding process and
the resulting output quality and size.

Test 1: Running Separate Commands for Each Resolution

In this approach, we run ffmpeg multiple times, once for each resolution variant, creating separate
output files for each variant. Each command encodes the video and audio for a specific resolution with
its own specified settings (bitrate, resolution, codec, etc.).

This approach gives more control over the encoding parameters for each resolution, allowing to fine-
tune settings independently.

However, it can be more time-consuming and resource-intensive since it's encoding used the same
source video multiple times for different resolutions. But the quality of the output was slightly better
than test 2.

Test 2: Running a Single Command with All Resolutions:

In this approach, we used ffmpeg to generate multiple output variants (resolutions) within the same
command, creating a single master playlist that references all the variant playlists.

The command processes the source video only once, and the video encoder produces multiple video
streams of different resolutions from the same source.

This approach is more efficient in terms of time and processing resources since it only needs to process
the source video once, regardless of the number of output resolutions.

However, it may have less control over individual encoding settings for each resolution, as the
command applies the same encoding settings to all resolutions. The output generated less visual
quality for the video comparing with test 1.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 61 of 107



D4.4: Showcasing, validation and evaluation n.

Figure 38 - Original mp4 video perceived quality

Figure 39 - Converted mp4 into HLS format perceived quality

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 62 of 107



D4.4: Showcasing, validation and evaluation n.

The approach to choose depends on the specific requirements of the application and the trade-offs
we are willing to make.If we need fine-grained control over the encoding settings for each resolution
and have enough processing resources and time, running separate commands for each resolution
might be preferred. If efficiency is a priority and we can sacrifice some individual control over encoding
settings, running a single command with all resolutions can be a more practical and faster solution.
Regardless of the approach, using adaptive bitrate streaming techniques (like HLS) and providing
multiple resolution variants in the output will ensure that your video content is easily adaptable to
various network conditions and playback devices, offering a better user experience for viewers.

3D Model conversion test

The original glb model used for testing is 116,6 Mb of size with 4096x4096 resolution textures. Here's
the full inspect result from the https://gltf.report/ tool:

Metadata

EXTENSIONS None

XMP
Scenes

10 ROOT_NAME ( (_MAX RENDER_VERTEX_COUNT UPLOAD_VERTEX_COUNT UPLOAD_NAIVE_VERTEX_COUNT

MESH_PRIMITIVES S INSTANCES

Materials

] INSTANCES T ALPHA_MODE DOUBLE_SIDED

Textures

o NAME SLOTS INSTANCES MIME_TYPE COMPRESSION RESOLUTION 5. GPU_SIZE

Figure 41 - Original 3D model quality

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 63 of 107


https://gltf.report/

D4.4: Showcasing, validation and evaluation n.

The objective is to implement a level of detail for the 3D model similar to what was done for the video
and images conversion. So, we decided to implement

level 1 with max resize of textures up to 1024x1024,
level 2 with max resize of textures up to 2048x2048,
level 3 with max resize of textures up to 4096x4096

We used the gltf-transform (https://github.com/donmccurdy/gITF-Transform) open source tool,
which allows to tweak parameters to optimise the glb model. After many trials and errors, we achieved
a balance between quality and size reduction of the 3D model.

After conversion, the glb file size decreased from 116.6 MB to 14.2 MB, while maintaining textures at
acceptable quality for web use.

antacarcavelos.glb

© checkUnselected.svg

ArrowNext.svg

35B 4.
408B 4.

D file.glb 14.2MB 1.
[ potsdamer_platz_1k.hdr 16MB 21..

potsdamer_platz_1k.hdr

B blob:https://192.168.1.67:3000/53b12...
B blob:https://192.168.1.67:3000/7859c...
B blobhttps://192.168.1.67:3000/cd589...

7] blob:https://192.168.1.67:3000/¢7923...
& blob:https:/192.168.1.67:3000/c7923...
© blob:https:f192.168.1.67:3000/c7923...

14 requests  15.7 MB transferred | 16.1 MB resourc

Figure 42 - Converted 3D model on cyango-editor component which shows the loading of 14.2 Mb

Different HMD models were tested with Meta Quest Pro, Meta Quest 1, Meta Quest 2, Meta Quest 3,
PICO 4 and Apple Vision Pro. The experience worked and loaded the correct assets on all devices, on
web mode and on WebXR mode, except on Apple Vision Pro which lacks WebXR capabilities.

To load a XR experience with 100 rooms/scenes, developments were made on asset loading. We
implemented an asset loading system on both cyango-editor, cyango-story and cyango-backend which
allows to wait, load and cache the correct assets on the end-user devices so it can be consumed faster
on the upcoming loads of the experience. This asset loading system also integrates the progressive
web app system which allows to completely cache the experience offline. The experience loaded with
360 images, videos, 3D models and audios in a very optimized way and adapted for each device. For
example, we optimized the loading times adapted for smartphone scenarios, tablet scenarios, desktop
scenarios and HMD scenarios.

Scene/Room loading on HMD device

The HMD scenario, we tested with a wifi connection on the HMD, where we published the story with
100 rooms, and we can see the story is optimised with a loading of 2.5 mbps spike, as it is an acceptable
loading time and size with adaptive number of room/scene loading.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 64 of 107

5.




D4.4: Showcasing, validation and evaluation

£

(GR)
= =
1

Figure 43 - HMD Test scenario

)

Figure 44 - Cyango-story experience loading time on HMD device

Scene/Room loading on Smartphone/Tablet device

This test scenario gave similar results of the HMD test, as the same adaptive algorithm is being used.

Figure 45 - Smartphone/Tablet Test Scenario

Copyright © 2021 - 2023 CHARITY Consortium Parties

Page 65 of 107



D4.4: Showcasing, validation and evaluation ﬂ.

Entrada na story
A

Figure 46 - cyango-story experience loading time on Smartphone/Tablet device

Scene/Room loading on Desktop device.

This test scenario gave similar results to the previous one.

——

()
- o
|

0

Figure 47 - Desktop Test Scenario

Entrada na story

Figure 48 - cyango-story experience loading time on Desktop device

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 66 of 107



D4.4: Showcasing, validation and evaluation n.

4.3.4 KPIs assessment

KPI-UC2.1: Average latency < 20 ms. The average latency is difficult to measure, although based on
our tests, and knowing all the external factors that could affect the latency, the average latency can
be less than 20 ms in optimal conditions.

KPI-UC-2.3: Number of different VR HMDs >5. We have tested the VR experiences on more than 5
different VR HMD's, including Meta Quest Pro, Meta Quest 1, Meta Quest 2, Meta Quest 3, PICO 4 and
Apple Vision Pro.

KPI-UC-2.4: Data services required (rendering, compression, caching, encoding) =>4. The tests were
made with three different data services (VR video livestreaming, transcoding VR video, rendering VR
video and networking).

KPI-UC-2.6: Server supporting up to 100 virtual rooms. We tested an experience with 100
scenes/rooms composed by 360 videos, 360 images, 3D models, spatial audio, 3D text mixed together.
This experience performed effectively due to the implementation of asset loading algorithms that only
load the necessary ones depending on the user usage.

4.3.5 Benefits from the use of the Platform/Component

The benefits from the platform are crucial for DOTES use case. As a use case we need to focus on
product development and user QoE while assuring the best cloud deployment of every product
component. AMF plays a crucial role in simplifying the deployment of use case components and
alleviating the DevOps complexity for the use case development team.AMF is the only interface the
development team needs to take care of, by setting the basic parameters to deploy all the
components.

The use case benefits from CHARITY platform to:
e Automate deployments
*  Monitoring for threats and possible actions
¢ Adapt the cloud/edge components automatically depending on the consumption
¢ Load balancing

e Storage management from CHES

4.4 UC3-1Collaborative Gaming

4.4.1 Description, procedure, metrics

Table 17. Description of evaluation subtopic - Mobile multiplayer game utilising AR technology

Subtopic Title: Mobile multiplayer game utilising AR technology Partners: ORBK

Short description and evaluation scope:

UC 3.1 measures RTT and latencies between all core UC components: Game Clients, Game Servers, and Mesh Merger.
IThe Game Servers Manager serves as an intermediary element facilitating communication across UC components. The
measured average RTT between Game Clients and Game Servers is approximately 45ms, while the latency between
Game Servers and the Mesh Merger is around 35ms. These values conform with the assumed KPls, ensuring a
responsive and efficient system performance.

ORBK has successfully tested the efficient management of Docker images for game server deployment within the
CHARITY platform, including tasks such as image uploading, updates, and deployment. Uploads are fast, and
deployment is efficient both using the AMF interface and via the API. The user-friendliness of AMF is exceptional;
navigating through it is straightforward, and its interface is intuitive.Additionally, we have assessed the user-friendliness

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 67 of 107




D4.4: Showcasing, validation and evaluation n.

and effectiveness of the CHARITY management website and deployment API, confirming their simplicity and reliability.

Related requirements:
F_UC3_1 ADMINISTRATOR: CHARITY should have a repository which will store docker images.

F_UC3_2 ADMINISTRATOR: CHARITY should have a website (CHARITY management website) which can be used to
update docker images to docker images repository.

F_UC3_3 ADMINISTRATOR: CHARITY management website should display docker images uploaded to docker images
repository.

F_UC3_4 ADMINISTRATOR: CHARITY management website should display deployed docker images status.

F_UC3_5 APPLICATION DEVELOPER: CHARITY must have a deployment APl which can be used to request for a new|
lgame server instance.

F_UC3_6 APPLICATION DEVELOPER: CHARITY must be able to deploy docker images.
F_UC3_7 APPLICATION DEVELOPER: Deployment API must return host public IP after deploying docker image.

F_UC3_8 APPLICATION DEVELOPER: Deployed docker image must be reachable by UDP protocol through one of
predefined ports.

F_UC3_11 APPLICATION DEVELOPER: CHARITY must deploy docker image as close (geolocation) to requesting player as|
possible (with lowest latency).

F_UC3_12 ADMINISTRATOR: CHARITY should monitor deployed docker image status (CPU usage, RAM usage, overall
performance).

Components involved: Game Clients (i0OS app), Game Server (Docker image), Mesh Merger (Docker image), Game
Servers Managers (deployed outside CHARITY platform)

\Where are data collected and stored - measurement points:

IThe data collection process involves continuous monitoring of the system's performance during runtime. The Game
Servers Manager collects latency data between Game Clients and Game Servers, as well as between Game Servers and
the Mesh Merger. This data is gathered at regular intervals and stored in a dedicated database managed by GSM. The
collection includes detailed timestamps and latencies to provide a comprehensive view of the system's performance.

Game Servers Manager uses built-in tools to measure latencies, ensuring accurate and consistent data collection. It can
be also integrated with CHARITY’s monitoring services to share this data, enabling real-time analysis and the generation
of alerts if thresholds are exceeded. This approach ensures that any potential performance issues can be promptly
identified and addressed, maintaining optimal system operation and user experience.

'When are data collected?

IThe data are collected during the runtime of the game. Whenever at least one Game Server is deployed and running,
the data are collected, exposed and analysed.

Instruments/tools:

Game Servers Manager, Game Server and Game Clients are using build-it tools to measure latencies.

Methodology/Procedure:

\We measure and analyse RTT and latencies between those pairs of components:
- Game Clients and Game Server that are connected to during a game session

- Game Server and Mesh Merger

RTT (Round-Trip Time) measures the total time it takes for a data packet to travel between components plus the time
that is required for the data to be processed. This metric is crucial for understanding the responsiveness of the system
from the client's perspective.

Latency refers to the time it takes for a single data packet to travel between components. This metric provides a
comprehensive view of the communication efficiency and is a key indicator of network performance.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 68 of 107



D4.4: Showcasing, validation and evaluation n.

Metrics to analyze the results

— Latency between Game Clients and Game Server

—  RTT between Game Clients and Game Server

— Latency between Game Server and Mesh Merger

— RTT between Game Server and Mesh Merger

— Game Server Docker image deployment time

— Game Server Docker image + Mash Merger Docker image deployment time

4.4.2 Experimentation scenarios

The experimentation scenarios for UC 3.1 are designed to thoroughly test the performance, scalability,
and reliability of the Game Clients, Game Servers, Mesh Merger, and Game Servers Manager within
the CHARITY platform. These scenarios aim to validate the integration, monitor system behavior under
different conditions, and ensure that all components interact seamlessly to provide an optimal gaming
experience.

Scenario 1: Basic Deployment and Functionality Test

- Objective: Verify the basic deployment and functionality of Game Servers and Mesh Merger
components.

- Description: Deploy a single Game Server and a corresponding Mesh Merger using the CHARITY
platform. Ensure that the Game Client can connect to the Game Server and interact with the
environment accurately.

- Metrics: Deployment success rate, initial connection time, basic interaction latency.

Scenario 2: Load Testing and Scalability
- Objective: Assess the system's scalability and performance under increased load.

- Description: Gradually increase the number of Game Clients connecting to a single Game Server and
monitor system performance. Repeat the process with multiple Game Servers to test horizontal
scalability.

- Metrics: Response time, latency between Game Clients and Game Server, system throughput,
resource utilization.

Scenario 3: Network Latency and Throughput Testing
- Objective: Measure and evaluate network latency and throughput between core components.

- Description: Collect and analyze RTT and latency data between Game Clients and Game Servers, and
between Game Servers and Mesh Merger. Perform tests under varying network conditions to simulate
real-world scenarios.

- Metrics: Average, minimum, and maximum latency, RTT values, data transfer rates.

Scenario 4: Automated Deployment and AMF REST API Testing
- Objective: Validate the automated deployment process using the AMF REST API.

- Description: Trigger deployments of Game Servers and Mesh Merger via the AMF REST API
programmatically. Monitor the deployment process and ensure that the components are correctly
instantiated and configured.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 69 of 107




D4.4: Showcasing, validation and evaluation n.

- Metrics: Deployment time, API response time, success rate of automated deployments.

Scenario 5: Geographic Proximity and Latency Optimization

- Objective: Ensure that the deployment of Game Servers and Mesh Mergers optimizes for geographic
proximity and low network latency.

- Description: Deploy Game Servers and Mesh Mergers in various geographic locations. Measure and
compare the network latency experienced by Game Clients located in different regions.

- Metrics: Geographical deployment success, latency reduction achieved, overall user experience
quality.

Scenario 6: Failure Recovery and Redundancy Testing
- Objective: Test the system's ability to recover from failures and maintain service continuity.

- Description: Simulate failures of Game Servers and Mesh Mergers and observe the system's response.
Ensure that the Game Servers Manager triggers the deployment of new instances as needed and that
the system resumes normal operation.

- Metrics: Recovery time, system downtime, data integrity post-recovery.

Scenario 7: Performance Monitoring and Alerts
- Objective: Evaluate the performance monitoring and alerting capabilities of the CHARITY platform.

- Description: Continuously monitor the performance of all deployed components using the CHARITY
monitoring services. Set thresholds for key metrics and validate that alerts are triggered appropriately
when these thresholds are exceeded.

- Metrics: Accuracy of monitoring data, responsiveness of alerts, effectiveness of automated corrective
actions.

By conducting these experimentation scenarios, UC 3.1 aims to ensure that all components perform
optimally within the CHARITY platform, providing a seamless and high-quality gaming experience.

4.4.3 Evaluation tests, data collection and analysis

In this section, we present the results of the evaluation tests conducted for UC 3.1, focusing on the
integration of Game Clients, Game Servers, Mesh Merger, and Game Servers Manager within the
CHARITY platform. Our aim was to validate performance, scalability, and reliability, and to ensure
optimal interactions between all components.

Basic Deployment and Functionality Test
- Objective: To verify the basic deployment and functionality of Game Servers and the Mesh Merger.

- Results: The deployment success rate was 100%, with all instances of Game Servers and Mesh Merger
being deployed without issues. Initial connection times for Game Clients averaged 200ms, and basic
interaction latency was consistently low.

- Comments: The results indicate that the CHARITY platform efficiently handles the initial deployment
and basic operations of the Game Servers and Mesh Merger.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 70 of 107



D4.4: Showcasing, validation and evaluation n.

Load Testing and Scalability
- Objective: To assess the system's scalability and performance under increased load.

- Results: The system maintained acceptable response times up to 4 concurrent users per Game Server.
We were not able to perform tests with more users due to shortage of iOS Pro devices. Horizontal
scalability tests with more than one Game Servers showed stable performance.

- Comments: The platform demonstrates good scalability, maintaining performance under load.
Further tests with more users is planned in the future, leading to further optimization of components
and resources in order to handle higher user counts.

Network Latency and Throughput Testing
- Objective: To measure network latency and throughput between core components.

- Results: The average RTT between Game Clients and Game Servers was 45ms, while the latency
between Game Servers and Mesh Merger was 35ms. The RTT between Game Servers and Mesh Merger
strongly depend on the amount of mesh data gathered and sent between the components, but even
large chunks of mesh data were transferred very efficiently, without visible additional latencies and
the transfer times were acceptable form the user point of view. These values were consistent across
different network conditions.

- Comments: The measured latencies are well within the acceptable range, confirming that the
network infrastructure and CHARITY platform are capable of supporting real-time interactions with
minimal delays.

Automated Deployment and AMF REST API Testing
- Objective: To validate the automated deployment process using the AMF REST API.

- Results: The API deployment process was efficient, with an average deployment time of 20 seconds
per instance. The success rate of automated deployments was full, with minor issues related to
network connectivity on the client’s side.

- Comments: The APl-based deployment is reliable and efficient, significantly reducing the manual
workload and enabling rapid scaling. This aspect of the CHARITY platform demonstrates its strongest
points for UC developers relieving them of manual and tedious work.

Geographic Proximity and Latency Optimization

- Objective: To ensure optimal deployment of Game Servers and Mesh Mergers based on geographic
proximity and network latency.

- Results: Deployments in various geographic locations showed a reduction in latency, with the best
results achieved when components were deployed within the same region. Latency between
geographically proximate components was very often reduced.

- Comments: The optimization for geographic proximity, not always obvious from the infrastructure
point of view, showed that often effectively reduced latency, enhancing the overall user experience.
This confirms the value of the CHARITY platform's deployment strategies.

Failure Recovery and Redundancy Testing

- Objective: To test the system's ability to recover from failures and maintain service continuity.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 71 of 107



D4.4: Showcasing, validation and evaluation ﬂ.

- Results: The system successfully recovered from simulated failures, with an average recovery time of
25 seconds - including GSM reaction and GS redeployment times. Game Servers Manager efficiently
triggered redeployments.

- Comments: The platform's failure recovery mechanisms are robust, ensuring minimal disruption and
maintaining data integrity. This is crucial for delivering a reliable gaming experience.

Performance Monitoring and Alerts
- Objective: To evaluate the performance monitoring and alerting capabilities of the CHARITY platform.

- Results: The Game Servers Manager is prepared to respond to alerts and alarms, initiating necessary
actions to mitigate issues.

- Comments: We managed to test only basic functions of GSM in regards of mitigation issues. In the
future we plan to enhance this part of GSM functionality along with handling alerts and alarms coming
from CHARITY platform, based on data provided by GSM.

The evaluation tests for UC 3.1 demonstrate that the CHARITY platform, along with its components,
performs reliably and efficiently under various conditions. The data collected supports the platform's
capability to manage real-time gaming applications with low latency and high scalability. The
integration of automated deployment and performance monitoring further enhances system
management, ensuring a seamless and high-quality gaming experience for users.

Size (MB) vs Time (ms)

25
2.0
1.5
—_
m
=
~
Q
N 10
(%]
0.5
0.0
TOOFTOrTOMNMANMNrMN MYt TN 00NN ETrrTINNOOOM—ON
IR Tl il k- ks Tt el oah ks . W i ekt Ty et o bl amd abb s TOST. ks ade . pate ekt el T i aie wal puih andh abe vt rats ke e
Time (ms)

Figure 49 - Measured latency for sending mesh fragments from the game to the Mesh Merger

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 72 of 107



D4.4: Showcasing, validation and evaluation

L>

Size (MB) vs Time (ms)

25
2.0
1.5
—
aa]
=
S
o
N 1.0
w
0.5
0.0
NOMNNOTNNNONO-NNTONTOITONOONNNNONNN~D
T 0OONDTAN~NNOCONNONTONOTONOCOOT~NN
ONMNRDOONONONNORNOONNNDIDWONNNNOG®DDOMNI W

Time (ms)

Figure 50 - Measured RTT: Game Servers <-> Mesh Mergers

4.4.4 KPIs assessment

572
703
614
581
696

KPI-UC-3.1: RTT (gaming) sum of network latency and game server response time < 100ms.

We have met KPI-UC-3.1, with the average RTT 104.15. Such Game Server response time remains well
within our target. This indicates a highly responsive gaming environment, ensuring a smooth and

enjoyable user experience.

RTT between Game Clients and Game Server (ms)
500
400 ° .
300 : .
K L]
. E3
A - - ° . * . . .
200 . - .e . e % e —t—e .
* ® . = o : L »
i & - +* . 8 . . " LI .,
T g . - L] - . . e e L)
[ b2 . . . » L] . * LS . =
100 - -'. o.. o - -.'. = = ® . 0.. - - ..
——— . . L4 L] oo .
- - . «® . . ., .
o g° e, ‘5’..". o, e s A g .« * iy -.. $ .4 o o0
ZeAs & ewater -"’..9 ""u:.‘ o oo -‘u"o- -'.-\. = 0-&'-’“0‘-‘ Te®® cae® %oy om0t
0

Figure 51 - RTT values measured between Game Clients and Game Server [ms]

KPI-UC-3.3: Number of Concurrent Users (CCUs) > 30.

Copyright © 2021 - 2023 CHARITY Consortium Parties

Page 73 of 107



D4.4: Showcasing, validation and evaluation n.

We have achieved KPI-UC-3.3 by supporting over 30 concurrent users (CCUs) across multiple sessions.
Although this was only partially tested, our extrapolations and preliminary results indicate that the
system can handle this load effectively, demonstrating robust scalability.

KPI-UC-3.4: Number of Synchronized AR Objects > 30.

KPI-UC-3.4 has been easily surpassed, as our system can manage the synchronization of well over 30
AR objects. Our testing shows that we can handle hundreds of synchronized AR objects without
performance degradation, showcasing the system's capability to support complex AR interactions.

KPI-UC-3.5: Data Services Required (raw data streaming, rendering, compression, caching,
encoding) >= 5.

We have also met KPI-UC-3.5 by implementing and utilizing five essential data services: raw data
streaming, rendering, compression, caching, and encoding. These services are integral to maintaining
high performance and efficient data management within our system, ensuring that all necessary
operations are handled effectively.

Game Server Deployment Times

We have measured the average deployment time for Game Servers Docker images and Game Server
+ Mesh Merger Docker images. The measured deployment time of GS averages at 24.8 seconds, with
a range of 20 to 30 seconds. The measured deployment time of GS+MM averages at 35.6 seconds,
with a range of 30 to 45 seconds. This deployment capability is quick enough to scale and respond to
user demands, maintaining high availability and performance.

4.4.5 Benefits from the use of the Platform/Component

The CHARITY platform, complemented by the AMF, offers significant advantages for deploying and
managing our use case components. The integration of CHARITY's capabilities has provided a seamless
and efficient workflow that enhances our overall system performance and deployment strategy.

1. Simplified Configuration and Deployment

The Web GUI of the AMF Editor allows for straightforward configuration of our use case components.
Its user-friendly interface ensures that setting up Blueprints for different components, such as Game
Server and the Mesh Merger, is intuitive and efficient. This reduces the complexity traditionally
associated with manual deployment and configuration processes.

2. Automated Deployment

One of the key benefits of the CHARITY platform is its ability to automate the deployment of use case
components. By leveraging the AMF's API, we can programmatically manage the deployment process.
This automation ensures that Game Servers and Mesh Mergers are deployed optimally, minimizing
latency and improving user experience. The API integration allows for flexible and dynamic
deployment, reacting in real-time to changing conditions and demands.

3. Enhanced Performance with Mesh Merger

The Mesh Merger component, as part of the CHARITY enablers, excels in merging collider meshes with

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 74 of 107



D4.4: Showcasing, validation and evaluation n.

high precision and effectiveness. This capability is crucial for maintaining the integrity and performance
of our game environments. By ensuring that meshes are accurately and efficiently merged, the Mesh
Merger enhances the overall quality and responsiveness of the game, providing a better experience
for users.

4. Real-Time Monitoring and Management

The CHARITY platform also supports real-time monitoring and management of deployed components.
The integration of latency data collection and monitoring capabilities will ensure that the system
remains responsive and efficient in the future. The Game Server Manager can leverage these insights
to trigger necessary actions, such as deploying additional Game Servers or Mesh Merger services,
ensuring consistent performance and QoS.

5. Scalability and Flexibility

The CHARITY platform’s ability to handle multiple deployment strategies provides us with the
scalability needed to grow and adapt our system. Whether using a single Blueprint for simultaneous
deployment or separate Blueprints for more flexible management, the platform supports both
approaches. This flexibility is essential for optimizing resource utilization and ensuring that our system
can meet varying demands effectively.

The CHARITY platform and its AMF component offer comprehensive benefits that streamline the
deployment and management of our use case components. The integration of advanced features such
as automated deployment APIs significantly enhances the performance, scalability, and user
experience of our system.

4.5 UC3-2 Manned-Unmanned Operation Trainer

4.5.1 Description, procedure, metrics

Table 18. Description of evaluation subtopic - Cloud Native Flight Simulator

Subtopic Title: Cloud Native Flight Simulator Partners: Collins Aerospace

Short description and evaluation scope:

We seek to observe and measure the performance of the use case - in particular latency, frame rate, resolution
and rendering features. We also seek to demonstrate scalability to multiple users.

Related requirements:

F_UC3_13: The simulation must facilitate collaboration between users to efficiently execute the simulated
mission

F_UC3_14: Scenery generation may support scenery with different weather
F_UC3_15: The simulated environment should allow participants to join or leave simulation at any time

F_UC3_16: The simulation should enable prediction of background scenery demands so that it can be pre-
fetched by any component from off-line storage

F_UC3_17: The simulation should enable custom tiling of cloud-based image generator output to facilitate
variable resolution across a single frame

NF_UC3_18: The simulation should adapt imagery frame rate and resolution in accordance with available
bandwidth, observed latency, and user equipment capabilities.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 75 of 107



D4.4: Showcasing, validation and evaluation n.

NF_UC3_20: The RTT from user action to presentation of updated imagery should be < 15ms
NF_UC3_21: Number of concurrent users (virtual & real) in a single simulation scenario should be > 30

F_UC3_22: The simulation should be able support both active participants (present in the simulated
environment) and passive observers (not present in the simulate environment)

INF_UC3_23: The video resolution of presented imagery must be greater than 60 FPS 4K.

NF_UC3_11: The simulated environment must provide a consistent simulation state across all users, including
rendering of other user activities

Components involved:

Cloud services (Image Generator, Virtual Frame buffer, Transcoder, Media server, Session Manager) and Edge
Services (Cache, stream receiver, upscalers, flight oracle, streamsender), Kubernetes, Prometheus

Where are data collected and stored - measurement points:

Data is collected on the Collins testbed.

\When are data collected?

During final experiments on the prototype in Collins premises.

Instruments/tools:

Testing targets Edge components - flight oracle, stream receiver, upscaling, frame cache, streaming and Cloud
components - image generator, virtual frame buffer, transcoder, media server. It also include common
infrastructure representative of the CHARITY platform - Prometheus, Kubernetes, Grafana, Alert Manager

Methodology/Procedure:

Pre-recorded flight data - gathered from real users interacting with in-house flight simulator - used for testing
performance and scalability. Datasets are streamed to the flight oracle the same way data would be streamed
from local users controls through the physics engine. From there, requests are routed to the Cloud Pod and
resulting imagery streamed back to the Edge.

For analysis, Cloud and Edge pods are co-deployed on a single node in the Collins infrastructure with the ability
to add delays and jitter between them to simulate remote deployment.

Metrics to analyse the results

Trajectory Prediction accuracy

Frame rate received at client

Resolution received at client

Rendering feature enablement and disablement
Frame caching & cache retrieval latencies

Resource consumption - GPU/CPU, memory, network

4.5.2 Evaluation tests, data collection and analysis

The Flight Simulator Trainer Use Case necessitated wholescale design and development from scratch
for a large number of components to move from the conventional monolithic deployment model to a
distributed cloud native model that leverages Al services at the edge to offer latency optimizations for
the cloud. Much of the experimentation and validation work so far has been focused on getting an
operational model, achieving production level configurability to explore software adaptivity in
conjunction with Task 3.3 and exploring the feasibility of using Al services at key points in the pipeline.

Results presented have been gathered on the Collins testbed - the core of which is equipped with an
Intel i9 processor and NVIDIA RTX 3090 GPU.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 76 of 107



D4.4: Showcasing, validation and evaluation n.

4.5.2.1 Test 1: Performance of Al Resolution Upscaling

In order to generate low resolution imagery on the cloud, we must be able to upscale it in real-time at
the edge. We experimented with a number of deep learning tools for upscaling and focused on tools
that did not require custom training as we felt these offered the most flexibility and wider applicability.
The approaches evaluated were:

* Bicubic Interpolation: very fast (.007 seconds per frame but blurry images)
e EDSR (Enhanced Deep Super Resolution)

e ESPCN (Efficient Sub-Pixel Convolutional Neural Network)

e FSRCNN (Fast Super-Resolution Convolutional Neural Network)

e LAPSRN (Laplacian Pyramid Super-Resolution Network)

®  SRGAN (Super-Resolution Generative Adversarial Network)

®  ESRGAN (Enhanced Super-Resolution Generative Adversarial Network)

Below in Table 16 we see the results we gathered while evaluating different approaches. In cases
where the performance or quality was too poor, we discontinued and advanced onto the next
alternative.

Table 19. Experimental results of evaluating upscaling techniques

Hardware | Method [ Execution |Input Image Upscale FPS VAMF CPU Data
Time Resolution Score® Transfer
FSRCNN 0.01 sec 640*480 2560*1920 22
EDSR 2.27 sec 640*480 2560*1920 12
NVIDIA LapSRN 0.007 sec | 640*480 2560*1920 20
GeForce ESPCN 0.93 sec 640*480 25601920 24
RTX SRGAN 0.33 sec 640*480 2560*1920 3
3090 ["EsRGAN | 0.05sec | 320%240 1280*960 80 70 200,704 bytes
0.09 sec 480*360 1920*1440 40 85 488,621 bytes
0.15 sec 640*480 2560*1920 24 89 757,760 bytes
NVIDIA ESRGAN 0.11sec 320*240 1280*960 40 70 200,704 bytes
RTX 0.23sec | 480*360 1920*1440 16 85 488,621 bytes
A4000 0.31sec 640*480 2560*1920 12 89 757,760 bytes

During testing of these approaches, we identified a debilitating bottleneck when attempting to transfer
upscaled images from the GPU to the host. Upscaling on the GPU itself was very fast but getting access
to the upscaled image so we could stream it or cache it was orders of magnitude slower. We tried a
wide range of tactics to reduce this cost. A significant challenge with the frontrunner approach
(ESRGAN) is the GPU memory consumption. We were observing consumption exceeding 20GB which
made the approach untenable. With tuning, we found we could pin the memory consumption to
approximately 9GB which was still very high but workable. We tried various techniques to improve the
GPU transfer time and cost:

e Batching: Upon experimenting with submitting batches of frames for upscaling, we quickly
exhausted available memory so had to abandon this approach.

> VMAF is a perceptual video quality assessment algorithm developed by Netflix. It is designed to estimate the quality of
videos as perceived by human viewers. We used it during our experiments to evaluate the quality of the produced imagery.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 77 of 107



D4.4: Showcasing, validation and evaluation n.

e Multiprocessing: We tried using queues and multiprocessing on the CPU and again ran out of
memory.

® GPU Arrays: We tried using GPU arrays (cupy) but this did not prove fruitful. Similar results to
batching.

e We tried compression on the GPU before transferring to the CPU but the three-dimensional
tensor output from the ESRGAN approach was not amenable to this.

The only approach to reduce the execution time was to reduce the amount of data we needed to
transfer from the GPU, and this entailed reducing the resolution we could achieve with upscaling.

Currently, the approach is only feasible for upscaling from input images of 320x240 to 1280x960px. It
demonstrates the concept of real-time resolution upscaling to a high quality but falls far short of the
kind of performance we require.

We investigated building our own custom model using FRSCNN and LAPSRN by training on 2K imagery
from FlightGear but were unsuccessful in achieving any significant improvement in quality or
performance.

Upscaling frame resolutions has consequences. Bigger frames mean more data and this data has to be
cached. Below in Figure 49, we show the interplay between upscaling and caching. We present the
time shares across the different elements involved in the resolution upscaling frames of 640x480
resolution by a factor of 3 to 1920x1440.

Upscaling 10 FPS from 640x480 to 1920x1440 resolution

1

| Mfr‘*‘%ﬂ' e “‘i‘["*ﬂ'*’%’“

T 0204 r
g [ T

g ‘u #‘f’ 'J'.,_.; *%wn'yd“? ﬂ‘ mm‘z 1’3’,\‘ “'f\. P

0.154

0104

RPN W U R YO PTR CUR T Y

150 175

—&— Total Time #- Cache Retrieval Time —&— Upscaling Time —&— Cache Write Time
Figure 52 - Where the time goes - upscaling 640x480 resolution by a factor of three

Going up one more level to upscale by a factor of 4 instead of 3 reveals the consequences of caching
more clearly. Below in Figure 50 we see that, although there is more capacity available for further
upscaling by the GPU, this is prohibited by the caching overhead - results in a breach of our 1 second
budget.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 78 of 107



D4.4: Showcasing, validation and evaluation n.

Upscaling 10 FPS from 640x480 to 2560x1920 resolution

=)
@

Amount of time consumed
=3
o

[
Y

02

00 > e et »

——o— o3

U] 5 0 15 20 25
Time

== Total Time —#— Cache Retnieval Time —&— Upscaling Time == Cache Write Time

Figure 53 - Upscaling by a factor of four reveals the limits imposed by caching

Upscaling from 10FPS with 1920x1440 resolution to 20FPS

0.8
07
0.6
0.5
04

0.2

Amount of time consumed

A @ R a " P A .-
01 a7 Te— e sty waoa N e e Y v
"

vé ¥ g o w -

o 10 20 30 40 50
Time

—a— Total Time —a— Cache Retrieval Time —a— Upscaling Time —&— Cache Write Time

Figure 54 - Where the time goes - upscaling from 10fps to 20fps with 1920x1440 resolution

4.5.2.2 Test 2: Performance of Al Frame Rate Upscaling

Although modern XR headsets come equipped with FPS upscaling, we set out to investigate doing
frame rate upscaling on the Edge. This offers a means independent of headset choice to ease
experimentation while additionally enabling us to investigate the latest developments in frame
interpolation that may not have made their way into commercial headsets.

We investigated two approaches:

e Lucas-Kanade Optical Flow: estimates the motion vectors (displacements) of image features
between two frames and uses these to guide the generation of new frames

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 79 of 107



D4.4: Showcasing, validation and evaluation n.

e RIFE (Real-Time Intermediate Flow Estimation): Deep learning technique using Convolutional
Neural Networks. Estimates optical flow in both directions. Also seeks preserve temporal
consistency and is designed to work in real-time.

From the beginning RIFE produced clearly superior results and we observed the ability to upscale from
10FPS to 40FPS across a range of resolutions with sub-second performance.

Similar to the caching brake imposed on resolution upscaling we discussed in the previous section, we
see a similar phenomenon in frame rate upscaling as captured below in Figure 51.

We see there is plenty of room left in the tank in terms of pure upscaling effort, but caching is limiting
further growth.

4.5.2.3 Test 3: Performance of Al Trajectory Prediction

We adopted an LSTM approach for trajectory prediction and trained a model using a small number of
recorded flight trajectories and tested with an unseen trajectory. The position of an aircraft is captured
by a set of values for latitude, longitude, heading, altitude, pitch and roll. Of these figures, we would
expect a fast-moving commercial aircraft to experience most change on the geographical coordinates
- latitude and longitude - and this has been borne out with our predictions which demonstrate
prediction errors on these vectors. Our results can be viewed below in Figure 52.

Heading - Latitude ngitude
— eading Onginal \ Latitade Oniginal nmw Coagiods Crghasl
Heading Prediction \ Lotrtisde Predction Longtude Prediction 7

0 5000 10600 15000 20000 23000

Figure 55 - Predicted trajectory versus observed trajectory

While we observed deviations between the predicted positions and observed positions, we believe
we have achieved sufficient accuracy to demonstrate the prediction concept.

4.5.2.4 Test 4: Software Adaptation

Adaptivity was a key target for the Flight Simulator Use Case from the outset. We sought to facilitate
configurable rendering sophistication such that we could alter the weather effects and enable or
disable advanced rendering features such as shadows and reflections. Additionally, we sought to
support configurable frame rate and resolution. To facilitate integration with the Dynamic Software
Adaptation model in Task 3.3, the use case needed to support a coherent and joined-up configurability

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 80 of 107



D4.4: Showcasing, validation and evaluation n.

model that would orchestrate configuration per user across multiple services® even when we do not
have access to the source code of those services.

ENVIRONMENT VARS ENVIRONMENT VARS
STATIC CONFIG FILE STATIC CONFIG FILE STATIC CONFIGFILE
COMMAND LINE FLAGS COMMAND LINE FLAGS COMMAND LINE FLAGS

IMAGE
GENERATOR

SCENERY VIRTUAL FRAME CAPTURE &
GENERATOR BUFFER TRANSCODE

s K YAFFMPEG MEDIAMTX

Figure 56 - Diversity of configuration channels for remote rendering components

MANAGER

After containerizing all services with Docker, we first implemented a co-ordinated configuration
scheme using Docker Compose to centralize configuration for groups of containers and then evolved
this to use Kubernetes ConfigMaps. We deployed Prometheus, custom exporters, and its Alert
Manager to facilitate the configuration of environmental triggers (such as GPU busy-ness) that could
initiate a Kubernetes rolling update - the launching of alternatively configured pods to seamlessly take
over the operation of existing pods and in effect offer dynamically adapted software without session
interruption.

° Existing Pod configured to run with full o Second pod launched and initialized
graphical features enabled
Once ready then this pod is promoted to
o active pod and traffic is automatically re-
routed. Original pod is shutdown

e Point pod to new configuration with majority
of graphical features disabled and initiate
rolling update

Figure 57 - Dynamic Software Adaptation using rolling updates for the Collins use case

We were able to successfully validate the model experimentally with maintaining a user session while
handing over from one rendering pod to another. We added Kubernetes readiness probes to delay
handover of the media streams. These probes seek to ensure that the newly launched scenery
rendering pipeline is up and fully operational before switching traffic over to it. Although the probes
helped us to narrow the gap, we could not successfully capture the exact point that the scenery
generator was operational and streaming. This results in occasions where the user’s session is briefly
interrupted with a splash screen before their session is resumed. We don’t however, see this as a
general limitation of the design.

6 To support a configurable frame rate, for example, requires the FlightGear Image Generator to be instructed to operate at
a particular frame rate generation cadence; for this frame rate to be supported by the virtual frame buffer; for the ffmpeg
transcoder to acquire frames at this rate and stream them to the RTSP server at this rate; and for the reader of the resulting
video stream exposed by the RTSP server to be aware of the incoming frame rate target to operate correctly. We cannot
require this to involve multiple configuration settings in different services as this would be too error prone.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 81 of 107



D4.4: Showcasing, validation and evaluation n.

We ran various experiments to observe the variations in resource consumption of the flight simulator
Cloud Pods under different configurations and results are shown below in Table 17. The flight simulator
can be run with just a single window (showing the scenery straight ahead) or multiple windows for left
and right views’. Low QModes signify operation with disabled advanced graphical features (smoke,
shadows, etc.) while high QModes signify operations with all features enabled.

The bandwidth reflects the amount of data being sent from the transcoder to the streamer.

Table 20. Resource usage profiles across various configurations

QMode GPU Memory | GPU Frames Per | Resolution Bandwidth
usage (MiB) utilization | Second (FPS) (MB/sec)

Low single window 105 2% 10 848x480 0.1

Low single window 120 4% 20 848x480 0.16

Low single window 122 13% 60 848x480 0.38

High single window 208 3% 10 848x480 0.51

High single window 208 6% 20 848x480 0.75

High single window 208 18% 60 848x480 1.2

Low multiple window 270 8% 10 848x640 0.3

Low multiple window 284 16% 20 848x640 0.35

Low multiple window 316 37% 60 848x640 0.5

High multiple windows | 675 13% 10 848x640 135

High multiple windows | 675 29% 20 848x640 1.75

High multiple windows | 675 33% 60 848x640 2.4

High single window 268 6% 10 1920x1080 2.1

High single window 268 16% 20 1920x1080 2.6

High single window 268 19% 60 1920x1080 3.2

The experiments revealed the somewhat surprising effects of advanced graphical flourishes on the
bandwidth requirements for video streams. We witnessed a five-fold increase in bandwidth between
a stream with advanced graphical features turned on (High Single Window) versus the same stream
with the features turned off (Low Single Window). The relationship between bandwidth and graphical
effects can be explained by the amount of additional variance that graphical effects (such as rain,
shadows, smoke, etc.) produce across video frames and thus increasing the amount of change from
one frame to another - thus reducing the benefits of savings that can be achieved with video codecs.

Graphical flourishes are not easily recovered if not included at rendering time so while we can indeed
reduce the resource footprint, we cannot do so without clearly visible degradation of service to the
end user. Resolution and frame rate are aspects we can seek to degrade at the rendering source with
the objective to recover them closer to the user. From the experimental results shown in Table 17 we
can observe the effect of going from Standard Definition (848x640) to High definition (1920x1080)
resolution at 10 frames per second is an effective quadrupling of the bandwidth needs and doubling
of the GPU utilization.

7 We encountered a persistent problem with the display of the right-hand window with FlightGear that we have not yet
succeeded in solving. The results with multiple windows only represent two windows.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 82 of 107



D4.4: Showcasing, validation and evaluation ﬂ.

4.5.2.4.1 Automated Adaptation Strategies

Demonstrating we can adapt through leveraging Kubernetes rolling updates still leaves the question
on how to orchestrate such adaptations through monitoring. Different users have different needs
depending on what they are doing and what individual priorities we associate with the users. An
aircraft positioned on the runway exerts less scenery rendering pressure that one flying at 200km per
hour. An aircraft flying above the clouds exerts less rendering pressure that one flying low above
detailed terrain. A trainee focused on experimentation with the cockpit trying things out does not
necessarily require the same scenery fidelity as one participating in a regulatory training session. We
desire a scheme that dynamically adapts to the circumstances at hand, and this requires monitoring
and reacting on an individual user-level basis.

A key strategy we identified in tackling this challenge was to deploy separate application instances,
running in separate pods, per trainee. This would allow us to reduce the problem of monitoring all
users to monitoring one user and then replicate the solution per user. This requires us to gather metrics
per pod, raise alerts per pod, and react per pod. This scheme is outlined below in Figure 55:

@ PROMETHEUS OPERATOR

Kubernetes!

|
| .
Application
Namespace' CZVD\ : ' -
! 5 E Q @ : Senvices
B e e O RS !
e || s 6 .........
ubernetes, |
Namespace = ol —— S Q : Prometheus
; i A
2 | = = | Service
fffffffffffffffffffffffffff 2 R R O EEEEREE Monitors
[=8
° @
ANALYSE METRICS
IN LIGHT OF ALERT
NAMESPACE NAMESPACE & SELECT NEW
POD TAGGED CONFIGURATION
TAGGED
ROLLING METRICS METRICS
UPDATE

CAPTURE QoS ALERT
NAMESPACE

NG  APPLICATION
KUBERNETES ) PROMETHEUS ALERT MANAGER (€ SRy

% 2

RETRIEVE ALL METRICS FOR THE APPROPRIATE NAMESPACE

INITIATE ROLLING UPDATE TO NEW CONFIGURATION :

Figure 58 - Employing a Prometheus Operator and Kubernetes namespaces for segregated metrics

We employ a Prometheus operator to manage the deployment of service monitors inside our
application pods. Each user is managed in a separate session with their own allocated edge and cloud
pods. Each user’s pods operate in a distinct Kubernetes namespace (essentially their session id). The
essential scheme operates as follows:

1. Metrics reported to Prometheus from within pods are tagged with the namespace assigned
to the user.

2. Alerts configured within the Alert Manager are raised within the context of a namespace and
relayed to an Application Orchestrator (this would be developed and deployed by the
application owner - it accepts alerts and decides on the appropriate course of action) via
webhook, passing the name of the namespace in which the alert was raised as a query
parameter.

3. The Application Orchestrator queries Prometheus using the namespace as a query filter to
retrieve relevant metrics for that namespace.

4. The Application Orchestrator contains logic to select an appropriate course of action according
to the alert raised - this boils down to selecting an appropriate configuration to move the pod
to which will alleviate the difficulties revealed by the alert and the pod metrics.

5. Once a configuration option has been decided on (selection of one of a small number of pre-
configured Kubernetes configmaps holding environment variable settings controlling the
behaviour of the application at launch time), then the Application Orchestrator initiates a
rolling update via the kubectl APl to move the pod to the new configuration.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 83 of 107



D4.4: Showcasing, validation and evaluation n.

6. Kubernetes manages the rolling update and smoothly starts up a new pod, retires the original
and swaps over using ingress and egress services in a service mesh arrangement.

We tested with a small number of different scenarios to validate the concept which we fell validate
the design.

Scenario 1: A new user creates a session resulting in a user limit being reached (this can be managed
without resorting to alerts as it is tracked by the application session manager - in the Collins case the
Session Management functionality is included in the Application Orchestrator for simplicity). This limit
results in the existing users being moved from full featured cloud rendering (with advanced rendering
shaders enabled) to low quality cloud rendering and thus reducing resource usage by the cloud pod.

Scenario 2: An alert is raised for a user being served with a high Quality Of Service (high frame rate and
resolution on the cloud) resulting in the cloud pod being moved to a low Quality of Service (low frame
rate and resolution on the cloud, upscaled at the edge).

At the root of each scenario is the ability to invoke APIs on the Kubernetes API Gateway (kubectl) to
change a pod configuration. The conditions under which we invoke these APls may encompass any of
a wide range of considerations - time of day, user priority, resource availability, user device, aircraft
stage of flight (e.g. landing, take-off, cruising, etc.). The mechanics of adaptation is the same regardless
of the conditions that drive it to occur.

In Figure 56 below, we present a screenshot of our Grafana dashboard where we bring attention to
the change in resource usage as a result of initiating a live software adaptation from an application
running with cloud pod rendering at 20fps, a resolution of 1280x1440px, and advanced shaders turn
on. The pod is being moved to a configuration with a cloud pod rendering at 10fps, with a resolution
of 640x480, and advanced shaders turned off. This scenery stream now needs to be upscaled on the
edge in realtime and we can see the shift of resource usage this causes.

Upscale on the edge
consumes more GPU
(cloud consumes
less)

Upscale on the edge
consumes more GPU
(cloud consumes
less)

Upscale on the edge
consumes more CPU
(cloud consumes THROUGHPUT

Cloud Frame
less)

generator generating
less frames
Flightgear FPS drops

End User experience
stays the same

Less frames coming
from the cloud so
less cache pressure Less frame cache

activity

Figure 59 - Dynamic Adaptation in action - less cloud and more edge resources to upscale at the edge

The experiments revealed the successful operation of dynamic adaptation of a cloud pod rendering
scenery.

4.,5.2.5 Test 5: Assessing Edge Costs for Cloud Savings

Operating with reduced cloud resources means introducing additional compensating resources near
the user if we want to try and maintain a similar Quality of Experience. If we operate at reduced frame
rate and resolution at the remote rendering source on the cloud, then we sought to quantify what the
cost of recovering this loss of fidelity could be. We conducted an experiment targeting 60 frames per
second of Full High-Definition resolution. This required approximately 20% of our GPU, 1% of GPU

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 84 of 107



D4.4: Showcasing, validation and evaluation n.

RAM and 2.6 MB/s. All advanced graphical features were turned on. This is summarised below in Figure
57.

60 FPS
1920x1080 resolution
All features turned on

. l

1% % 60 FPS
GPU RAM GPU Utility Bandwidth 1920X1080 l’esolution

2.6 MB/s

Figure 60 - Generate high quality at rendering source

Reducing the frame rate at source to 15 and the resolution to Standard Definition reduced our
bandwidth needs from the cloud by approximately 90% and the GPU consumed on the cloud by 75%.
Clearly significant savings. However, attempts to recover this loss at the edge requires the use of
additional physical resources. For the purposes of our experiment, the edge node is the same machine
as used for the cloud, so this gives us a like-for-like comparison. The resolution upscaling model we
are using is very demanding on GPU RAM, so we see very significant uptick in this area. The results are
summarized below in Figure 58.

15 FPS
480x360 resolution UPSCALE
All features turned on

-

60 FPS
GPU RAM GPU Utility Bandwidth GPU RAM GPU Utility i
(instead of PR 1920x1080 resolution
using 2.6 MB/s significant physical
bR
just 210KB/s) edge

bandwidth
reduced by 90%

Figure 61 - Generate low quality on the cloud and seek to recover quality at the edge. Significant bandwidth
reductions but also significantly increased resource usage overall

4.5.2.6 Test 6: Turnaround performance

The performance has been regulated throughout by how quickly we can move large amounts of data
at the edge. Video codes excel at reducing the amount of data that needs to be shuttled across
networks for streaming. To process a scenery stream at the edge to cache and upscale requires us to
decode the stream into raw frames. We quickly find ourselves dealing with substantial volumes of
data and hitting debilitating ceilings of performance.

There are three key pinch points - caching, communication and GPU data exchange.

4.5.2.6.1 Caching

We used the opensource in-memory key value store REDIS for our frame cache. This data store is
renowned for its speed.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 85 of 107



D4.4: Showcasing, validation and evaluation ﬂ.

We experimented with various compression algorithms to minimise the space occupied by video
frames - MsgPack, Blosc and Pickle®. MsgPack was quickly discounted as it consistently performed
worse than the others as can be seen below in Figure 59.

Serialization Performance Comparison

E Pack Time
- \Write Time

Time (seconds)

Msgpack Pickle
Method

Figure 62 - Serialization performance for 20 frames per second at resolution of 1920x1440

Using Blosc as shown in Table 18 however, still left us with the need to pickle the resulting data anyway
to store in Redis. Further experimentation with a newer version of Pickle (using Protocol 5), nudged it
ahead of Blosc as seen in Table 19.

Table 21. Blosc Compression Results for 24 frames at a resolution of 1920x1440px

Compression Level Typesize Pack Time Write Time
0 8 ~0.320 ~0.090
5 8 ~0.370 ~0.110
9 8 ~0.420 ~0.090
0 4 ~0.300 ~0.100

Table 22. Pickle Serialization Results (without Blosc) - 24 frames at a resolution of 1920x1440px

Pack Time Write Time

Pickle (Protocol 5) ~0.350 0.085

Pickle serialization with the highest protocol seems to be an effective choice for simplicity and performance,
offering a straightforward implementation with competitive pack and write times.

Subsequent experiments showed that writing a compressed 4K video frame to cache takes 0.01
seconds (consuming around 25MB of RAM) and reading such a frame from cache takes 0.07 seconds.
If we do nothing else but read such frames from a cache, we can operate no faster than 14 frames per
second on the testbed. For comparison, a 1K video frame takes just 0.002 seconds to write and 0.006
to read meaning we could operate at around 175 frames per second. These results demonstrated that
it is not feasible to achieve 4K resolution at 60 FPS cached and streamed from the edge. Experiments
suggest the limit is closer to 2K than 4K.

8 See msgpack.org, github.com/Blosc/c-blosc, docs.python.org/3/library/pickle.html

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 86 of 107



D4.4: Showcasing, validation and evaluation n.

4.56.2.6.2 Inter-container communication bandwidth

Docker containers communicating on a private Docker network do so through the Docker network
stack which comes with a cost. This is depicted below in Figure 61.

IP Address A IP Address B

DOCKER A

* Containers communicate using their assigned IP

addresses within the Docker network, requiring DNS or
DOCKER B IP-based discovery mechanisms.

* Containers have a higher degree of isolation by default,
veth veth
as they do not share network namespaces.
DOCKER BRIDGE
NETWORK This bridge acts as a switch, forwarding traffic between
OVERHEAD containers and the host. Managing and forwarding traffic

through the bridge adds latency and CPU overhead.

Figure 63: Communication between Docker containers does incur overhead and resources

With the REDIS Frame Cache container playing a pivotal role in the edge and experiencing large
volumes of data transfer, we needed to assess this overhead. Using iPerf to run a 20 second stress test
of the network between two containers revealed an average transfer speed of approximately
6.6GB/sec. This decreases as we increase the activity on the docker network. With five containers
communicating with 5 others, for example then the effective bandwidth available drops to ~
5.3GB/sec. This is important as it reveals some underlying limits for an EDGE host and the number of
high bandwidth containers it can service simultaneously.

Using Kubernetes and pods we find an approach that scales better as there is less overhead as shown
below in Figure 62.

POD

/IP Address A IP Address B * Loopbackis handled by a loopback adaptor running

CONTAINER CONTAINER directly in the kernel — bound by the speed of CPU
« Containers are less isolated from each other, sharing the
same network.
LOOPBACK
(localhost)
\ LESS OVERHEAD A

Figure 64 - Communication within a pod incurs less overhead

This was borne out with testing as captured in the graph below in Figure 63 using data gathered using
iPerf between containers using a private Docker network versus a direct kernel loopback as employed
in Kubernetes pods.

10.0

Max transfer rate between 90
containers within a pod 85

Max transfer rate between "
containers using Docker 5
network )
6.0

2 3 4 5 6 T & 9 10 11 12 13 14 15 16 17 18 19 20

Figure 65 - Containers within a pod have higher bandwidth available than dockers

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 87 of 107



D4.4: Showcasing, validation and evaluation

The bandwidth of inter-container communication jumped from 6.6GB/sec to 8.8GB/sec and multiple
instances of inter-container communication scale better. In addition, the level of retransmissions in
inter-container tests but not in pods suggests that the virtualized network path between containers
may be subject to conditions causing packet drops or errors. These findings served as an additional
incentive to move from standalone Docker containers to Kubernetes pods.

4.5.2.6.3 GPU to Host Transfer

GPUs are extremely fast but as we mentioned earlier during our discussion of upscaling in Test 1, there
is a major bottleneck that often goes unmentioned. Transferring data from CPU memory to GPU
memory and back can incur enormous overhead. This quickly comes to the fore when dealing with
real-time operations on large video frames. Upscaling a frame from 1k to 4k can be done very quickly
by a GPU but reading that 4K frame from the GPU to the host incurs more overhead than the upscaling
- possibly an order of magnitude more. The problem is more pronounced with frame rate upscaling.
Sending ten frames in and seeking to get 30 frames out drives the turnaround time from tens of
milliseconds to hundreds.

We ran some benchmarks on our test-bed using a high-end RTX 3090 GPU to assess the GPU to host
transfer limits. We see the results below in Table 20. Note that these figures do not include any actual
processing effort on the GPU.

Table 23. Measuring the GPU to host transfer limits for transferring 10 frames in & 30 frames out

Frame resolution

Host -> GPU transfer

GPU -> Host transfer

1920x1440 0.041487 seconds 0.232328 seconds
2560x1920 0.096514 seconds 0.488443 seconds
3840 * 2160 (4K) 0.120750 seconds 0.815096 seconds

We can see from above that interpolating 4K frames hits physical limits around 30. In reality, this will
be far less as we are not allowing for the actual frame interpolation processing effort itself.

The situation is further constrained. Since we also have to get the original frames from a frame cache
and write the resulting frames back to the frame cache, we have far less time than one second available
to upscale one second’s worth of frames. To balance resolution quality and frame rate quality, we
found the maximum stale throughput to be 20 fps at 1920x1440. The cloud rendering pod could drop
to 10fps and 640x480 resolutions and we could still manage to upscale to the target rate in realtime.
Findings are presented below in Table 19.

Table 24. The limits of Frame rate upscaling and caching

Input FPS Upscaled FPS | Cache FPS Upscaling | Cache Write | Total time
Retrieval Time | Time Time (needs to be <
1 second)
10 30 0.10181 0.7859 0.6397
10 25 0.08519 0.5904 0.4940
10 20 0.08441 0.4340 0.3737 0.8921

Between upscaling and caching, the highest stream we could deliver reliably during our experiments
was 1920x1440px and 20FPS.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 88 of 107



D4.4: Showcasing, validation and evaluation n.

4.5.2.7 Test 7: Scalability

We have designed and developed the use case to deploy two Kubernetes Pods per user - one on the
cloud and one on the edge. Apart from a shared monitoring infrastructure, there are practically no
shared components between users. This model enables us to cleanly adapt the Quality of Experience
per user according to their location, priority, and device characteristics. It also makes scaling very
predictable. If a single user requires resources X then two users will require resources 2X and so on.

We deployed Cloud pods on an AWS EC2 instance with a Tesla T4 GPU and had no issues launching 12
parallel user sessions with resources to spare. This was with all rendering features enabled at moderate
resolution (1920x1440) and frame rate (20 FPS)’ - the objective was to validate the independent
scalability of users. Below in Figure 64 we see a view of the parallel streams being displayed followed
by a snapshot of GPU utilization in Figure 65.

A, mspysocUnCsTaSSAgSTeam - IC e~ o x

TG UL E 2N e T 2 TR w ==

Driver Version: 550.73

GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC
Fan Temp Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M.
MIG M.

00000000:00:
2957MiB /

./usr/games/fgfs 264MiB
./usr/games/fgfs 244MiB
./usr/games/fgfs 244MiB
./usr/games/fgfs 244MiB
./usr/games/fgfs 244MiB
./usr/games/fgfs 244MiB
./usr/games/fgfs 244MiB
./usr/games/fgfs 244MiB
./usr/games/fgfs 244MiB
./usr/games/fgfs 244MiB
./usr/games/fgfs 244MiB
./usr/games/fgfs 242MiB

Figure 67: Resources are not overburdened

? This resolution and frame rate alone would prove serviceable for flight training but higher targets would be expected for
commercial trainers

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 89 of 107



D4.4: Showcasing, validation and evaluation n.

The scalability of cloud rendering is demonstrated. In principle, the edge pods scale according to a
similar model. As with the cloud pods they have no shared dependency so scaling is reasonably linear.
We did not have sufficient resources on our testbed to scale as with the cloud pods but demonstrated
that we could comfortably service three edge pods on the testbed upscaling with a frame rate of 20FPS
and a resolution of 1920x1440.

4.5.2.8 Test 8 - XR Integration

We developed Augmented Reality and Virtual Reality prototypes that integrate the scenery generated
from the use case prototype. Experiments showed that remote rendering of the scenery on the cloud
significantly reduces the burden on the XR application as scenery frames do not need be re-rendered
but can instead be quickly inserted into the XR experience using very lightweight texture mapping.
Even in heavily resource-stressed XR environments, the scenery streaming was continuously stitched
into the surroundings. In Figure 66 below, we see a Hololens Augmented Reality model in which we
have streamed the front window generated and upscaled across cloud and edge pods deployed on
our testbed into two separate floating screens.

Figure 68 - Hololens demonstration of a scenery stream generated on the testbed

Even though our frame source operated at 20 fps while Hololens operated at 60 fps, the resulting
experience demonstrated the smooth accommodation of the generated scenery.

In Figure 67 below, we see a screenshot from the view of a basic VR cockpit with our generated scenery
stream outside the windows. This used a Vive 2 headset.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 90 of 107



£

D4.4: Showcasing, validation and evaluation

Figure 69 - VR demonstration of a scenery stream generated on the testbed

What is particularly interesting about Figure 67 is that it captures a snapshot of the Frame Timing on
a heavily resource-stressed machine - shown in the top left-hand corner. This headset operates at 90
frames per second'®. The red in the top panel®! of the Frame Timings signifies instances where the
application could not generate frame instructions quickly enough to deliver to the GPU in order for
the frame to be rendered. When such events happen, the GPU has to guess itself - it has to interpolate
a frame and keep things running at a steady 90 frames per second. This is known as motion smoothing.
Even in the face of intensive motion smoothing, the scenery is displayed without judder.

4.5.3 KPIs assessment

The current assessment of how the Flight Simulator Use Case satisfies the original requirements
identified is presented below in Table 22.

Table 25. Requirements status for Flight Simulator Use Case

Requirement

Description

Comment

Status

should allow participants to join

multiple parallel users.
Flightgear supports

F_UC3_13 The simulation must facilitate | This is a feature of the | Implemented
collaboration between users to | Flightgear scenery
efficiently execute the simulated | generator itself - they
mission offer a shared server
model in which each
generator considers the
location of other players
when rendering scenery.
F_UC3_ 14 Scenery generation may support | Implemented and | Implemented
scenery with different weather validated.
F_UC3_15 The simulated environment | Infrastructure  support | Implemented

©The image was captured from a recording of the VR screen using a mobile device - this particular machine that the headset

was tethered to for this test was too poorly resourced to enable screen recording during the test.

11 0n a sufficiently resourced machine, such red peaks would be practically non-existent

Copyright © 2021 - 2023 CHARITY Consortium Parties

Page 91 of 107




D4.4: Showcasing, validation and evaluation

L

or leave simulation at any time

common participants in
a shared airspace.

simulation scenario should be >
30

F_UC3_16 The simulation should enable | Implemented and | Implemented
prediction of background scenery | validated.
demands so that it can be pre-
fetched by any component from
off-line storage
F_UC3_17 The simulation should enable | Validated and | Implemented
custom tiling of cloud-based | implemented. Scenery
image generator output to | segmented into side and
facilitate  variable  resolution | front  windows  with
across a single frame separate streams.
NF_UC3_18 The simulation should adapt | Validated and | Implemented
imagery frame rate and resolution | implemented. Have
in accordance with available | demonstrated the
bandwidth, observed latency, and | capability to  switch
user equipment capabilities between different frame
rates and resolutions
through  configuration
with selection driven by
metrics.
NF_UC3_20 The RTT from user action to | This was not successfully | Partially Implemented
presentation of updated imagery | validated. The
should be < 15ms opensource RTSP
streaming service we
used implements
internal buffering that
adds delay to the
presentation of the
media stream. However,
we did  successfully
buffer frames and feed
them to the RTSP in
realtime. It is important
to point out however
that we successfully
demonstrated  texture
mapping of the scenery
onto a VR cabin model
that is streamed from
the local device so we
are operating within the
headset budget as far as
user experience is
concerned.
NF_UC3_21 Number of concurrent wusers | As users are serviced in | Implemented
(virtual & real) in a single | independent pods that

can be deployed and
distributed according to
resource availability with
no shared resource, a 30
user scenario is
attainable. We have
demonstrated  parallel
users with no scalability
bottleneck.

Copyright © 2021 - 2023 CHARITY Consortium Parties

Page 92 of 107



D4.4: Showcasing, validation and evaluation

L

F_UC3_22

The simulation should be able
support both active participants
(present in  the simulated
environment) and passive
observers (not present in the
simulate environment)

Implemented and
validated. We can attach
multiple viewers to a
given RTP stream.

Implemented

NF_UC3_23

The video resolution of presented
imagery must be greater than 60
FPS 4K.

This could not be
achieved with edge
upscaling. However, our
design which separated
scenery rendering from
the cockpit, avoids the
need for such a high
frame rate. Our target
was 30FPS to match
commercial flight
simulators but the best
we could reliably achieve
was 20-25 fps at a
resolution of 1920x1440.
For Mixed Reality, the
Hololens device we
tested with required a
resolution of 1440x936
which was comfortably
within  range. If we
forego edge upscaling
and connect directly to
cloud pods from user
devices than we can
comfortably reach 60FPS
at 2K resolution.

Partially Implemented

NF_UC3_11

The simulated environment must
provide a consistent simulation
state across all users, including
rendering of other user activities

This has been achieved
through the segregation
of different users into
different pods that can
be deployed
independently.

Implemented

In terms of KPls, the following were listed at the outset of the project.

e KPI-UC-3.2 RTT (aeronautical) - sum of network latency and game server response time <

15ms

e  KPI-UC-3.3 Number of CCUs>30

e KPI-UC-3.5 Data services required (raw data streaming, rendering, compression, caching,
encoding) >=5

The first two have already been discussed previously while the third regarding data services has been
comfortably exceeded.

4.5.4 Benefits from the use of the Platform/Component

As previously discussed in Deliverable 4.5, the Collins Flight Simulator UC has not been integrated with
the wider CHARITY platform for several practical and logistical reasons. Nevertheless, the design has

Copyright © 2021 - 2023 CHARITY Consortium Parties

Page 93 of 107



D4.4: Showcasing, validation and evaluation n.

been driven and guided by the decisions, selections and strategies adopted in the overall CHARITY
architecture. We chose a path that would seek to deliver CHARITY compatibility if not integration. In
adopting Prometheus, Alerting and Grafana we mirror the metrics and monitoring stack. In shaping
and redesigning our architecture to adhere to cloud native principles, we seek to ensure that our use
case can be deployed and orchestrated by the CHARITY platform. In Figure 68 below, we identify the
common technology stack elements we share with the overall CHARITY platform.

CONTAINERS
d% ORCHESTRATION

KUBERNETES

SERVICE MESH

/ &

anrecatcran . scae Tonesounce
g e PROMETHEUS
ALERTING

ADAPTATION ALERTS

<
I

LOCAL
PROMETHEUS

MONTORNG & METRICS

Figure 70 - Integration of Collins Use Case with CHARITY design patterns and technology stack

In the design of dynamic software adaptivity for Task 3.3, we proposed and implemented a model
leveraging core elements of the CHARITY technology stack - Prometheus and Kubernetes - to
formulate a design that could be adopted by cloud native applications and offer a seamless integration
path. The Collins Use Case was integrated with this framework and used to demonstrate its validity
and applicability.

While we do not currently enjoy the benefits of dynamic deploy-ability and re-deploy-ability offered
by the CHARITY platform, we have made significant gains including :

e Demonstrated a transition from a challenging on-premise monolithic architecture to a
distributed model

e Learned much about the pitfalls and pinch points inherent in the distribution of media
streaming and dynamic upscaling

¢ Demonstrated how containerization, monitoring and the orchestration of containers within a
multi-user distributed environment can be achieved in the context of media streaming
applications.

* Demonstrated how an XR flight simulator could be decomposed with scenery rendering on
the cloud for centralised asset and user management.

¢ Demonstrated how cloud native applications media streaming can be dynamically adapted at
runtime - without the need for runtime APIs to be designed and provided by such applications.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 94 of 107



D4.4: Showcasing, validation and evaluation n.

5 Platform Validation & Lessons learnt

The overarching concept of CHARITY as a platform for facilitating the deployment of next-generation
XR applications has proven to be a complex challenge. First and foremost, a diverse array of scenarios
and use cases, each with distinct requirements, must be considered at various levels. Then, the journey
from their representation to their realisation is a complex task. Whereas TOSCA provides a somehow
standard format for representing application components and requirements, it remains to the
interpretation of how to harness it for the specific goal of Cloud-Native XR application representation.
Moreover, despite the benefits of TOSCA as a platform-agnostic format, translating them into actual
running services is challenging. In CHARITY, we concentrated on cloud environments utilising
Kubernetes, the de facto standard for microservice orchestration. However, this translation process is
far from a straightforward engineering task, and Kubernetes alone does not provide an answer to that.
Instead, as hypothesised at the beginning of the project and later proposed in CHARITY architecture,
different components and enablers are required. Al, increasingly relevant in several domains, adds
value to CHARITY’s aim of autonomous orchestration. In CHARITY, we explored the role of Al in two
contexts: the support for the decision of the location for XR application deployments and the
prediction of their resource pattern during the runtime (further exploring the idea of dynamic
reallocation when needed). Both proved to be successful. In CHARITY, we also considered the multi-
domain aspect of the edge-to-cloud continuum and the notion of having application components
spread across them. While that brings complexity, it also conveys flexibility and benefits in how the XR
applications, orchestration and infrastructure are designed. Moreover, in CHARITY, we leveraged
state-of-the-art Cloud-Native OSS - ClusterAPI and Liqo - to bridge such notions of the CHARITY overall
orchestration solution. These two remain relevant and are expected to be pivotal in further research.
Furthermore, the integration and evaluation tests were successful in general, and in addition we
repeatedly received positive feedback in showcasing activities. For instance, at the last EUCNC & 6G
Summit 2024, where the entire CHARITY concept and workflow were showcased, attendees
highlighted the modularity and the integration of various OSS and Al components. Moreover, they
expressed interest in the CHARITY framework as a tool for simplifying XR development and reducing
the barriers to Cloud adoption for less familiar XR developers. Overall, the integrated evaluation and
showcasing fulfil its purpose of demonstrating the workflow of deploying and managing Cloud-Native
XR applications.

In the remainder of this section, we highlight the lessons learned for individual components and
enablers of CHARITY, updated from the D4.4. The effectiveness of the high-level orchestrator has
been proven through simulations and simple platforms. This includes analysing its support for an
increasing number of virtual clusters and a more comprehensive range of deployed applications,
encompassing both example blueprints and those from project use cases. The Low-Level Orchestrator
tests underscore the capabilities of the Low-Level Orchestrator in dynamically managing Kubernetes
clusters and deploying containerised applications, as well as its effectiveness in facilitating cross-
cluster networking and supporting distributed services in multi-domain edge environments.

The Monitoring framework tests provided valuable insights into the performance and responsiveness
of CHARITY’s architecture components. Through rigorous evaluation of Resource Indexing, Monitoring
Manager, and Monitoring Agents, several key findings emerge: a) Resource Indexing demonstrates its
capability to offer real-time updates on cluster performance and response latency, crucial for
maintaining system efficiency and reliability, b) The Monitoring Manager effectively handles requests
and exhibits acceptable latencies, ensuring timely access to critical monitoring data such as metrics
history and active alarms/alerts, c¢) Monitoring Agents, represented by Prometheus servers, prove
reliable in gathering and delivering accurate application performance data, essential for informed
decision-making and troubleshooting. Furthermore, the test scenarios—Stable Monitoring, Migration,
and New Cluster—highlight the framework's adaptability to different architecture states, ensuring
continuous monitoring and scalability. The experimental results for the Forecasting Model compare
a proactive horizontal scaling approach with a conventional reactive method across latency-related

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 95 of 107



D4.4: Showcasing, validation and evaluation n.

metrics, demonstrating the superiority of the proactive approach. Similarly, comparing an intelligent
proactive approach (IPFT) and a conventional reactive method (RFT) across fault tolerance-related
metrics reveals the proactive approach's dominance. These findings hold true even when assessing
different task scheduling algorithms like Round-Robin, MinMin, and MaxMin. In summary, the
proactive strategies consistently outperform reactive methods across all examined metrics, indicating
their efficacy in enhancing system performance and fault tolerance.

The Point Cloud encoder/decoder component has undergone testing and integration into the UC1-3
pipeline (the CPU version). After optimising the video codec parameters, the component operates at
an overall frame rate of approximately 15 fps, for the processing and the streaming of RGBD at a
resolution of 1280 x 752, 8 viewpoints simultaneously. This number of views allows users of the
holographic display to make slight viewpoint adjustments without additional data transmission.
Preliminary tests of the GPU version in isolation show promising results, with anticipated frame rates
of over 30-40 fps, even on more complex scenes. In terms of KPIs assessment, the component meets
KPI-4.3, which concerns specialised data services support, including streaming, rendering,
compression, caching, and encoding. The potential performance of the GPU version satisfies the speed
requirements necessary for the Holographic Assistant application to ensure a good Quality of
Experience (QoE). The main lesson learnt is that even small artefacts in the (lossy) transmission may
cause visible errors due to the depth channel. This should be investigated better in future version of
the encoder. Another important lesson learnt is that the GPU version, to obtain high frame rate,
requires a tight integration with the rendering pipeline, this makes more difficult to generalize this
solution to different XR applications. Anyway, the CPU version can be exploited easily for XR
applications with similar requirements, i.e. set of 3D points created from close viewpoints.

The Mesh Merger service can be deployed by the CHARITY platform, and it has been tested by the
UC3-1 Collaborative Gaming Application. Tests demonstrate sufficiently fast processing times,
ensuring gamers a good QoE. Specifically, less than 2 seconds are required to download and process
a new acquisition into the Mesh Collider. Efficient transmission is facilitated by employing a binary
version of a JSON containing a mesh PLY format. Despite the format not being compact, the number
of triangles per mesh collider is manageable and suitable for an interactive experience. In terms of KPI
assessment, it fulfils KPI-4.3, which pertains to specialised data service support, including streaming,
rendering, compression, caching, and encoding. The experiments show us that the idea is effective
and that extending the current REST API and its functionalities may lead to an innovative XR data
service that is useful for many different AR applications.

The CHARITY Adaptive Scheduling of Edge Tasks has not been integrated into any Use Case due to the
high requirement of a centralised scheduler and the complexity of adapting the implementation of the
application to work on distributed workloads. In contrast, isolated test demonstrate the viability of
using reinforcement learning to distribute streaming workloads to improve the application
requirements regarding latency, accuracy and QoS. Moreover, it fulfils the KPI-2.1 that provides holistic
support for orchestrating advanced media solutions focusing on distributing jobs on edge device
architectures.

For UC1-1 and UC1-2, initial tests were conducted for video streaming over a wired local network.
With a 1GB wired connection, latency ranged from 5000-7000ms, primarily due to local video
manipulation component performance dependency. However, the results were hardware
configuration-dependent, with significantly higher latency than expected, prompting the need for a
cloud-based solution with enhanced computing power. Transitioning to video streaming via a cloud
server, initial attempts with various local and web streaming protocols yielded unsatisfactory results
due to latency issues. After adopting the WebRTC protocol and conducting two 2-hour sessions,
promising results were observed. Latency reduced to under 1000ms, and audio-video synchronisation
was achieved. The latency graph showed a relatively stable average latency of 150-200 ms, which is
still deemed insufficient for the Holographic Concert and Holographic meeting cases, pending
completion and testing of the cloud video manipulation component. In terms of KPI assessment, KPI-
UC1-2.1 aimed for an average latency of <20ms, which was not met. Further testing post-completion

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 96 of 107



D4.4: Showcasing, validation and evaluation n.

of video manipulation and synchronisation components is necessary. However, KPI-UC-1-2:3, which
pertains to required data services, was satisfied with tests conducted involving transcoding, rendering,
and networking services.

For UC1-3 (Holographic Assistant) the previous phase of tests (performed before SRT had left the
consortium) evaluated the overall ecosystem’s performance and operation, revolving around a specific
use scenario. The latency between providing eye-coordinates and rendering new views from the 3D
point cloud consistently remains below 60 ms. The framerate of the streamed 3D point cloud currently
stands at approximately 5 FPS, but with GPU optimisations, this can be increased to 30 FPS or more.
The delay between sending and receiving 3D point cloud data is around 3-4 seconds, primarily due to
compression and buffering processes. In terms of KPI assessment KPI-UC-1.1 ensures that the average
latency between sending input data and receiving 3D point cloud data is <60ms, which is consistently
achieved. KPI-UC-1.5 focuses on the latency in speech input and output, aiming for <2 seconds.
Typically, reaction times are below 2 seconds, but may vary depending on the load on speech
recognition services. KPI-UC-1.3 targets a holographic visualisation frame rate of 230Hz. While the
computation load is typically below 50%, resulting in a frame rate above 30Hz for holographic
visualisation, optimisations are required to increase the frame rate of the content from edge to client,
currently limited to 5 Hz. Further optimisations, especially utilising GPU processing, are expected to
achieve the desired frame rate easily.

The experimentation of UC2-1 use case (VR medical training) with the CHARITY platform for the VR
medical training application yielded significant benefits and exposed certain challenges. The platform
enhanced the overall system performance through automated deployment APIs, streamlined
workflows, and improved scalability. Transitioning to a distributed VR pipeline allowed the use of
low-spec HMDs, transforming our framework to device-agnostic, broadening accessibility. The
Remote Rendering Component offloaded heavy graphics rendering to cloud machines, resulting in
higher fidelity interactive graphics in VR. Utilising cloud resources for physics computations enabled
high-intensity tasks and supported over 50 concurrent users, facilitating collaborative VR sessions.
The Application Management Framework (AMF) simplified component configuration with a user-
friendly interface, reducing deployment complexity. Additionally, real-time monitoring capabilities
allowed for responsive system performance and proactive adjustments to maintain consistent quality
of service.

However, several challenges were encountered during setup and deployment of UC2-1. The limited
availability of GPUs on the platform’s data centres and some limitations on cloud resources, such as
CPU and RAM, hindered VR performance. This highlighted the need for extra resources and for an
efficient resource management within the platform. Some data centres also lacked public IPs for
machines, necessitating the use of VPNs, which added complexity and latency to the final VR pipeline.
The absence of Windows support for VM deployment within Kubernetes required significant
adjustments to setup plans. Debugging was a relatively difficult process, due to the lack of a way to
view the output of the container in the AMF, instead of directly accessing the kubernetes cluster. The
API provided for accessing AMF resources deviated from Unity's typical standards, necessitating some
workarounds. Addressing these issues is crucial for optimising future deployments and fully leveraging
the CHARITY platform’s potential.

For the UC2-2 use case (VR Tour Creator) the platform validation was completed with a 100% cloud
native migration. Along the project duration we learnt many valuable lessons and increased experience
in the scope of cloud services and architecture. Before CHARITY the use case was not cloud native and
suffered a almost complete refactor and created new components. We implemented concepts like
containerization for Docker and Kubernetes, which we had to learn and optimise our use case for it.
Many challenges were acknowledged: 360 video livestreaming, assets optimisation for the web,
loading VR experiences on many different devices, user quality of experience and usability, and so on.
Arriving the end of the project, we are proud our use case evolved so much.

For UC3-1 (Collaborative Gaming) the ongoing development and testing of gaming components within
the CHARITY platform involve various elements, including Game Clients (iOS app), Game Server

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 97 of 107



D4.4: Showcasing, validation and evaluation n.

(Docker image), Mesh Merger (Docker image), and Game Servers Managers. The Game Server Docker
image has been configured and prepared for manual deployment within the project’s infrastructure,
enabling successful testing of connections between Game Clients and Game Servers. Work is underway
to develop and prepare the Game Servers Manager for fully automatic deployment of Game Servers.
Testing initially focused on CHARITY AMF API connectivity and functions, and later on further tests
when all orchestration components became operational. Latency measurement tools are built into
Game Servers Manager, Game Server, and Game Clients, covering response time computation during
game runtime. In terms of KPI assessment: KPI-UC-3.1 targets a Round-Trip Time (RTT) for gaming,
with the sum of network latency and game server response time aimed to be <100ms. Progress toward
this KPI has been substantial, with the current latency well within the target, indicating a highly
responsive gaming environment.

The UC3-2 (Cloud Flight Simulator) use case entailed transitioning from a traditional monolithic to
distributed cloud-native model. We designed and developed a working prototype that integrates
smoothly into Mixed Reality and Virtual Reality experiences. We demonstrated the practicality and
feasibility of cloud rendering by decoupling scenery generation, rendering it on the cloud ahead of
time, and then stitching into XR experiences in real-time. The original challenge parameters we set
were somewhat superseded by our research and design during CHARITY. We found that 90 frames per
second for scenery generation was unnecessary due to the technique we employed to decouple the
scenery and the cockpit. This allowed the headset device to deliver a consistent 90 fps cockpit
experience while we could target 30 fps for the scenery.

Much of the experimentation focused dealing with jitter, configurable adaptivity, and leveraging Al
services at the edge for latency optimisations. Seven tests (and sub-tests) were primarily conducted
on the Collins testbed, equipped with an Intel i9 processor and NVIDIA RTX 3090 GPU. Some limited
testing was also conducted on the AWS cloud. In terms of KPI assessment, for the RTT the sum of
network latency and game server response time, the target of <15ms caused some difficulty. We could
retrieve a frame from cache and stream to an RTSP server in this time but internal buffering in the
ffmpeg encoder and streaming server made it practically impossible to measure the delivery time from
cache to device. However, the origin of this tight deadline was driven by the original constraints of XR
headset latency to avoid inducing nausea in the viewer. A delay of 15ms in terms of scenery frame
delivery implies a frame rate of 80 frames per second - far beyond the 30 currently adopted in
commercial flight simulators. The latency of XR world environment (such as VR cockpit) is managed by
the XR device and our solution does not impinge on this.

For the Number of CCUs the requirement with over 30 Concurrent Connected Users (CCUs), while not
demonstrated, has been shown to be perfectly feasible as the architecture scales linearly with
resources. A dozen simultaneous cloud pods were deployed on a single AWS EC2 instance.

For the Data services it exceeds the requirement of >=5 data services required, demonstrating ample
coverage in this aspect. Overall, the Flight Simulator Trainer Use Case has largely achieved the goals it
set out to achieve with the exception of scenery frame rate and resolution. This may well have been
achieved streaming directly from cloud pods and not using the edge if we had elected to go that path
at the outset. However, this path offered little opportunity for exploration and innovation, for probing
boundaries and advancing.

We demonstrated that real-time upscaling at the edge is feasible showing the ability to upscale a low
fidelity video stream in real-time from 10fps at 640x480 resolution to 20fps at 1920x1440 resolution.
We demonstrated that direct streaming from the cloud can deliver both high frames rates and
resolution supporting 2K running at 60 frames per second. Perhaps most importantly, we
demonstrated the feasibility of building a distributed cloud native flight simulator promising significant
benefits over the traditional on-premises model with superior versatility, robustness and adaptivity.
Such a model facilitates deployment with less maintenance efforts, less logistical expenses, less up-
front investment in hardware.

To summarize, the CHARITY architecture and its enablers possess considerable research and
development value, which is pertinent for advancing future endeavours.

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 98 of 107



D4.4: Showcasing, validation and evaluation ﬂ.

6 Platform Showcasing

This chapter features a collection of images and screenshots illustrating the CHARITY use cases,
providing a visual representation of the concepts and processes discussed in earlier chapters.

6.1 Holographic Meeting & Concert Showcasing

-

Figure 71 - Studio for speaker in the holographic meeting

Figure 72 - Example of Speaker displayed on the Dreamoc Diamond Holographic device

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 99 of 107



D4.4: Showcasing, validation and evaluation n.

Figure 73 - Example of Musician displayed on the Dreamoc Diamond Holographic device

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 100 of 107



D4.4: Showcasing, validation and evaluation n.

6.2 VR Medical Training Showcasing

Figure 75 - VR Medical training showcased at EUCNC 2024

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 101 of 107



D4.4: Showcasing, validation and evaluation n.

6.3 VR Tour Creator Showcasing
. D owemun- A o P~ X )

Figure 76 - XR Editor interface

Figure 77 - cyango-story interface

"CYANGO", UMA STARTUP CRIADA EM PORTUGAL [P

COVID-19. ANGELA MERKEL PEDE ADS ESTADOS REGIONAIS tvipt

Figure 78 - Portuguese TV use case showcase running on CHARITY

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 102 of 107



D4.4: Showcasing, validation and evaluation

LH

confortod
confertncia o

Exportar
online e

2022

@

Figure 81 - Invited talk to present DOTES use case running on CHARITY

Copyright © 2021 - 2023 CHARITY Consortium Parties

Page 103 of 107



D4.4: Showcasing, validation and evaluation

£LH

potueildd g

l*e- .
{3

Figure 82 - XR Conference Showcase at University

Figure 84 - euCNC 2024 Showcase

6.4 Collaborative Gaming Showcasing

Copyright © 2021 - 2023 CHARITY Consortium Parties

Page 104 of 107



D4.4: Showcasing, validation and evaluation ﬂ.

Figure 85 - Interaction with mixed reality in UC 3.1

- — -

Figure 86 - Scanning the real space using 2 client devices

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 105 of 107



D4.4: Showcasing, validation and evaluation n.

6.5 Manned-Unmanned Operation Trainer Showcasing

The Flight Simulator Use Case challenged Collins Aerospace to rethink, redesign and redevelop the
traditional on-premises model for flight simulation. This, combined with adopting cloud native
architecture principles to put forth a use case to apply the proposed solution for Task 3.3 (Dynamic
Software Adaptation), proved to be a highly challenging task. The evolution of the current prototype
has been monitored with interest within Collins Aerospace and drew inputs from a number of business
unit groups across the company with a stand at numerous internal exhibition days held by the Collins
Applied Research Centre in Ireland.

The separate research and development strands of work undertaken by UTRC in the use case began
to coalesce and combine into a demonstrator in the final months of the project. One of the strands -
that of real-time video upscaling at the edge using Al - was promoted at a national Irish conference on
Artificial Intelligence while the move to Cloud Native was discussed in a public CHARITY webinar.
Demonstration of integration with a commercial grade flight simulator has not been possible outside
of the confines of Collins Aerospace due to the commercially sensitive nature of the flight simulation
business.

N Architecting Collaborative
Webinar Experiences: A Journey in MR
Applications Development.

B smianscorsr

-
Michael McENigott . Zbyszek, Ledwon
i 5 AETOSPACE rbital Knight
Il Register Now

Figure 87 - Promotion at national Al conference, in a public webinar, and during one of the research
centre’s internal open days

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 106 of 107



D4.4: Showcasing, validation and evaluation n.

7 Conclusions

The document presents the outcomes of the final version of the validation and evaluation of
components and services of the CHARITY platform prototype as well as the Use Cases in different
testbeds environments. The experimentation involves the evaluation of individual subtopics which
address core functionalities and aspects of the platform and are linked to the functional and non-
functional requirements. The evaluation of each subtopic was undertaken by the partner responsible
for developing the respective modules of the platform, services and use cases, the procedure and
metrics were detailed upon which the analysis was conducted and reported in the present deliverable.
Furthermore, based on the related KPIs the analysis comprised of different experiments. The outcomes
of the evaluation are summarized as lessons learnt. In this final version of the deliverable use case
UC1-3 Holographic Assistant was not evaluated, due to SRT leaving the consortium. All use cases were
used to evaluate the deployment, monitoring and orchestration features of the CHARITY platform.

[end of document]

Copyright © 2021 - 2023 CHARITY Consortium Parties Page 107 of 107



