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Abstract

WP3 is the work package devoted to the research and development of strategies, mechanisms, and
algorithms, for the efficient exploitation of available network and computational resources to enable
sophisticated XR applications. Several aspects are investigated; innovative management of advanced
computational resources, intelligent solutions for data storage and data access, innovative strategies
to adapt the Quality of Experience of the running application according to the available resources.
Regarding the advancement of XR technologies, we investigated techniques to obtain more complex
realistic VR simulation, technical solutions for rendering adaptation, novel algorithms for 3D point
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cloud compression and for the next-gen multi-user AR gaming experience, and for the editing and
streaming of immersive 360 video.
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Executive Summary

The research and development activities in the WP3 will drive the advancement of complex and highly
demanding, in terms of computation and/or bandwidth resources, XR applications. The systems and
the algorithms delivered by WP3 are under integration into the CHARITY platform and in some of the
Use Cases (UCs) of the CHARITY project according to the integration plan described in the Deliverable
4.2. These ad-hoc technological solutions regard different aspects of the deployment, the
development, and the lifecycle management of advanced XR applications.

Advanced computing mechanisms to enable the management of VMs, essential to manage the
complex software stack of XR applications, and GPUs, necessary for XR application has been developed
and tested.

A flexible monitoring framework which fills the needs of the different UCs of CHARITY has been defined
and realized. This monitoring framework is based on the open-source Prometheus technology.
According to the metrics identified, different types of exporters are under development to enable the
different UCs to monitor their metrics of interest. The monitoring framework interacts with the
orchestration system of the CHARITY platform.

A new intelligent data management system, for highly efficient data storage and data access has been
developed in the ambit of the CHARITY project. This system is called CHES, which stands for CHARITY
Edge Storage. The CHES takes into account the high degree of heterogeneity that characterises the
computational resources considered in the CHARITY project and it is lightweight so that it can also be
used on edge devices with limited capabilities, such as a Raspberry Pi. The CHES has reached its third
version. Experimental results demonstrate the validity of the system, also in terms of the KPIs achieved.
The CHES is released as an open-source software under GPL 3 license.

Often, XR applications are demanding in terms of computational and network resources, and the
environmental circumstances may become sub-optimal during their running, for example, due to a
reduction of bandwidth. In many of these cases, it is convenient to modify the behaviour of the running
application so that the application itself adapts to the available resources instead of deploying it again
in an environment with more resources. In CHARITY, a variant of the MAPE-K Loop [7] approach, based
on micro-services, is proposed to perform an adaptation of XR applications at runtime. This novel
solution has been carefully designed and some preliminary studies related to the flight simulator of
the Collins Aerospace (UC3-2 Manned-Unmanned Operations Trainer Application) have been
conducted.

Virtual Reality applications often require high realism in rendering and physical simulation. The UC2-
1 VR Medical Training Application of CHARITY is one of these types of virtual reality applications. This
VR UC is currently being optimized by exploiting multi-threading to make the rendering and the physics
part more efficient. Experiments conducted demonstrate that the physics simulation can benefit of
this type of optimization, while multi-threaded rendering has shown limits of applicability in Unity,
that is the framework where the UC2-1 runs.

The immersive applications, to reach high-quality levels of experience, require ultra-low latency and
large bandwidth resources. To improve the performance of immersive applications, we have
investigated how adaptive rendering solution may be integrated into some selected UCs to reduce the
motion-to-photon computational burden, and hence, the overall latency of the application.

Another important aspect of immersive applications is 360-degree video. The UC2-2 VR Tour Creator
Application of CHARITY regards the advancement of a platform for the creation of virtual tours based
on 360° video. To follow this goal new features and technological advancements have been
implemented in the Cyango Cloud Studio, that is the name of the UC2-2 platform. Additionally,
investigation and experiments about cross-video streaming has been done.

Specific data services to satisfy the needs of XR applications like the UC1-3 Holographic Assistant and
the UC3-1 Collaborative AR Gaming have been developed and tested. Respectively, a novel ad-hoc
point cloud encored/decoder, to allow the transmission from the cloud to the edge (the holographic
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display) of a large amount of 3D points, and a geometry processing algorithm to enable the creation
and the continuos updated real and the virtual gaming environment, called Mesh Merger service. At
the moment of writing the Mesh Merger prototype is ready and the first integration phase under
finalization; the PC encoder/decoder is under tests inside its target UC.

In this deliverable, the research and the technical work related of the activities mentioned above is
described and the corresponding results and software products are reported.
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1 Introduction

WP3 is devoted to the development of strategies, mechanisms, and algorithms that support both parts
of the CHARITY Framework (described in the Deliverable D1.3 and D4.1) and the Use Cases (UCs)
(described in D1.2 and D1.3). The UCs support is provided by developing specific technologies and
data services that are used by some of the XR applications selected as case studies in the CHARITY
project. Most of the technological solutions developed are generic and can be applied by any advanced
XR application. The XR data services have been developed to fulfil the specific requirements of specific
UCs, but they can be used/adopted by other XR applications with similar needs, beyond the ones
involved in the project itself. For example, the 3D point cloud encoder/decoder can be used by any XR
application which needs to transfer a huge amount of 3D data points.

The R&D work conducted is reported in the following way: first, a brief introduction of the different
activities is given, together with their mapping with the WP3 Tasks. The relationships between the
WP3 activities and the rest of the project (others WPs/tasks) are also described. After this introduction,
the R&D activities are described in details in the subsequent sections. The activities description is
organized by topic and does not follow the task subdivision.

1.1 Activities in a nutshell

The activities described in the next sections are:
®*  Monitoring framework
¢ Virtual Machine and GPU support in Kubernetes environments
e CHARITY Edge Storage (CHES)
e Resource-aware Adaptation Mechanisms
¢ Transformation of the flight simulator UC to a cloud-native XR application
e Multi-threading optimization of rendering and physics simulation for realistic VR applications
e Adaptive rendering for high QoE
e Point Cloud Encoding/Decoding
¢ Immersive Virtual Tours builder platform

e Evaluation of 360 video streaming based on different camera types, and in terms of different
metrics (e.g. Glass to Glass latency, Streaming Frame Rate, etc)

e Mesh Merger

The monitoring of the available network and computational resources plays a fundamental role for
their assignment within a system according to specific requests, i.e. for the orchestration, and for the
applications performance management, i.e. QoE or latency. Regarding performance, sometime, the
applications should adapt their behaviour during their execution to guarantee a target QoE or reduce
it in case of loss of resources. The monitoring is based on the open-source Prometheus framework.
Such technology is configured and integrated to satisfy the CHARITY requirements. This is one of the
main activity of the Task 3.1, the task committed to the efficient exploitation of computing resources.
The approach followed for monitoring and the architecture of the monitoring system is detailed in
Section 2.

Virtual Machine and GPU support in Kubernetes environments is another activity about the advanced
exploitation of computing resources (Task 3.1). XR applications can greatly benefits of such
mechanisms. VMs are essential to deal with intricate third-party libraries, but their usage creates
challenges to orchestrate them together with containers. On the other side, containers enable Cloud
Native architectures and micro-services, which facilitate the development and deployment of XR
applications. GPUs are fundamental for almost all the XR applications. Therefore, their support should
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also be considered to take into account a comprehensive XR orchestration process. For example, an
XR orchestration solution should be able to recognize the GPU requirements of specific components
to plan its deployment in an optimal way. This activity and the experiments conducted are described
in details at the begin of Section 5, as part of the XR enabling technologies.

The CHARITY Edge Storage (CHES) is a solution for the optimized edge storage services to the CHARITY
framework and its hosted applications. The goals of the CHES are ambitious; it should work on
hardware with limited resources (e.g. a Raspberry Pi), and, at the same time, should provide reliable,
robust, and fast access to the information. It is based on Lightweight Kubernetes (K3s), MinlO and
Prometheus technologies. The CHES is the main activity of the Task 3.2. The current status of the
development is detailed in Section 3.

The Resource-aware Adaptation Mechanisms are designed according to the MAPE K-Loop [7]
approach. It consists in adapting the running applications according to the available resources by
acting on applications’ variability points (changing the frame rate, changing the resolution, and so on).
Such adaptation can be achieved by dynamically modifying the configuration of the application. In
CHARITY, a variant of the standard MAPE K-Loop approach is proposed which leverages cloud-native
rolling update functionality to seamlessly reconfigure an application an runtime while maintaining
service continuity. This concept is explained in details Section 4. This is the main activity of Task 3.3.

In CHARITY, we are also modifying the architecture of some UCs such that these XR applications
become cloud-native. The case of UC3-1 Manned-unmanned Operations Training Application is
particularly complex and requires a lot of effort. Such technical effort has been described in Section
5.1.

Many VR applications require both high-quality rendering and accurate physical simulation to provide
a realistic virtual environment. One of the UC of CHARITY, UC2-1, regards VR simulation for medical
training. The idea is to improve the performance of this VR medical simulation platform by employing
multi-threading to speed up rendering and physics simulation (as detailed in Sections 5.3 and 5.4). The
multi-threading exploitation of rendering and physics for the realistic simulation of virtual
environments is also part of the activities for the efficient exploitation of computational resources
(Task 3.1).

VR immersive applications, to be comfortable, satisfying, and convincing, require low latency and high
bandwidth. In CHARITY, we aim to integrate in two UCs, the UC2-1 VR Medical Training Simulator and
the UC3-1 Manned-unmanned Operations Training Application, an adaptive rendering algorithm to
reduce the computational burden and, consequently, the motion-to-photon latency. This activity is
described in Section 5.5.

The Point Cloud Encoder/Decoder is the main component of the UC1-3 Holographic Assistant. The Holo
Assistant must efficiently transmit a huge amount of 3D data from the cloud to the edge (the
holographic display). This UC is described in detail in D1.2. The current status of the development of
this innovative PC encoder/decoder is given in Section 5.6. This activity is conducted in the ambit of
the Task 3.4, devoted to the development of an adaptive data compression/decompression for high
demanding rendering applications.

Another activity of the Task 3.4 is the development of a virtual tour platform (UC2-2 VR Tour Creator
Application) to create interactive immersive VR experiences. This platform, called Cyango?, supports
360 videos, panoramas, 3D models, standard images and videos and basic 3D meshes. The
technological advancements of the Cyango platform are described in Section 5.7. In this context, it is
also important to understand how streaming protocols operate under different scenarios and when
different cameras are used. In this regard, it is important to evaluate the performance of these
streaming protocols in terms of different metrics, such as glass to glass latency, streaming frame rate,
display refresh rate. Experiments about such aspects are reported and analyzed in depth in Section
5.8.

2 https://www.cyango.com
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The Mesh Merger is a data service built on a geometry processing algorithm which runs on the server
to enable the UC3-1 Collaborative Game. This algorithm integrates the different pieces of geometry of
the environment so that the game players can interact with a virtual environment. Initially, the Mesh
Merger is used to set up the virtual environment to resolve collisions, during the game to align the
changes of the real environment with the virtual one. For example, if a chair inside a room is moved
during the game, and one gamer acquires this change through her smartphone, the Mesh Merger
should integrate this environment change in the virtual environment. The Mesh Merger data service
is described in Section 5.9. This activity is also conducted in the context of Task 3.4.

1.2 Relationships between the CHARITY Framework and the WP3 Tasks

An overview of the mapping between the CHARITY architecture components and the Work Packages
/ Tasks is given in Figure 1. The architecture is subdivided into three planes: i) the Domain Specific XR
Service Monitoring and Reaction Plane, ii) the XR Service E2E Conducting Plane, and the iii) XR Service
Deployment Plane. Further details about the architecture are provided in the respective deliverable,
D1.3.
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Figure 1: CHARITY Architecture components and project WPs/Tasks mapping.

The XR Service Deployment Plane is the plane where XR services are executed. It thus hosts the
different Virtual Network Functions (VNFs) that compose the different XR services. The main
responsibility of this plane is to manage the computational, network, and storage resources of the
infrastructure. Two of the main components of the XR Service Deployment Plane are the XR Device
Controller and the XR Service Enabler Controller. The XR Device Controller is in charge to control the
XR devices. This allows to separate the data plane from the control plane. Similarly, the XR Service
Enabler Controller is in charge of control specific XR services instead of devices. The XR Device
Controller and the XR Service Enabler Controller are developed as part of the activities of the WP3, the
last one in particular.

The Domain-specific Monitoring and Reaction Plane is responsible for monitoring the service inside a
technological or administrative domain. It keeps track of the resource usage and of the XR services
running in the domain, and it makes decisions according to the monitored data. In particular, is
responsible for implementing XR-specific orchestration mechanisms following a closed-loop model to
support the lifecycle management of XR services at the domain level.

The XR Service E2E Conducting Plane is responsible for preparing and supporting the resource
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orchestration within the respective domains based on the XR Service Blueprint Templates Repository
(which stores the templates of the XR services), the XR Service Enabler Repository (which holds the
implementation details of the services referenced in the XR Service Blueprints), and the Running XR
Services Repository (which provides the ability to track the status of these services).

A detailed description of the different planes and components of the CHARITY architecture can be
found in Deliverables D1.3 and 4.2 (Section 3). The roles and details about the different components
of the XR E2E Conducting Plane can be found in Section 5 of Deliverable 4.2; more information about
the orchestration mechanisms can be found in Section 5, 5.1 and 5.2 of Deliverable 4.2.

The WP3 tasks are connected to the CHARITY architecture as described in the following (see Figure 1,
Table 1 and Table 2):

¢ Task 3.1 Efficient exploitation of CPUs, GPUs and FPGAs on edge devices. This task is focused
on providing efficient solutions for exploiting computational resources to support the project
needs. The main activities are related to the monitoring and the resource indexing, as well as
technological and algorithmic solutions for enabling the exploitation of the different and
heterogeneous computational resources belonging to CHARITY. The monitoring framework is
strictly connected with Tasks 2.1, 2.2, and 3.3.

e Task 3.2 Efficient storage and caching for AR, VR and Holographic applications. In the ambit
of this task several components for the realization of a distributed edge storage framework
spread across heterogeneous edge and cloud nodes, with intelligent data management, high
quality performance (QoE), and high-security levels (in collaboration with Task 2.3) are under
development. These components, parts of the XR Service Deployment Plane, are: the CHarity
Edge Storage (CHES) which is a distributed hybrid storage component and the CHES Registry
component that realizes a localized Docker registry in order to support the faster application
deploying and limit the network flooding caused by large image downloads during
deployment.

e Task 3.3 Network and infrastructure awareness for efficient exploitation of resources: This
task explores the Dynamic Software Production Line (DSPL) paradigm to adapt XR services
dynamically and automatically to network and environment changes. Task 3.3 also designs
and develops specific Monitoring, Analytics, Decision and Actuation Engines for both domain
and cross-domain levels. This work is related to the realization of the XR Service Specific
Analytics Engine, the XR Service Specific Decision Engine, and the XR Service Specific Actuation
Engine components, which are parts of the Domain-specific Monitoring and Reaction Plane as
well as of the XR Service E2E Conducting Plane.

e Task 3.4 Adaptive rendering and contextualized data compression / decompression: The
R&D activities conducted in this task relate to the development of the algorithms that will be
integrated in data services for XR applications such as the Point Cloud Encoder/Decoder (PC
E/D), used by UC 1-3 Holographic Assistant, or the Mesh Merger, developed to support UC3-
1 Collaborative Gaming. This task is also devoted to R&D activity on immersive video
experiences.

To make this document self-containing and more readable, we report below two tables adapted from
D4.1. Table 1 contains the name of the component of the CHARITY Framework together with the name
of the tasks related to its development, Table 2 contains the names of the algorithms/mechanisms
that are at the base of some specific plane/components, and the tasks within which they were studied
and developed.

Table 1: CHARITY Component List

Component Name Architectural Layer
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Component Name Architectural Layer

Monitoring Agents

XR Service Specific Analytics Engine
XR Service Specific Decision Engine
XR Service Specific Actuation Engine
Running XR Services Repository
Plane Services Registry & Discovery
E2E Service Specific DE/AE/ACT

XR Service Enabler Repository

Running XR Services Repository

Resource Planning
Resource Indexing

XR Device Controller

XR Service Enabler Controller

Prometheus and
Monitoring agents

Adaptative Network
Traffic Mechanisms

XR Service Enabler
Repository

CHES (CHARITY Edge
Storage)

CHES Registry

Mesh Merger

Monitoring & Reaction Plane

XR Service E2E Conducting Plane
XR Service E2E Conducting Plane
XR Service Deployment Plane

Monitoring & Reaction Plane
Monitoring & Reaction Plane
Monitoring & Reaction Plane
Monitoring & Reaction Plane
Monitoring & Reaction Plane
XR Service E2E Conducting Plane
XR Service E2E Conducting Plane
XR Service E2E Conducting Plane

XR Service Deployment Plane

T3.1
T3.1
WP3
WP3

Table 2: CHARITY proposed mechanisms and algorithms

Component Name Component Description Architectural Layer

Resource monitoring tool
Agent to facilitate VNF monitoring.

Mechanisms to dynamically route
network traffic accordingly to
infrastructure conditions.

Repositories for container images,
VM images and metadata.

A distributed hybrid storage
component spread across
heterogeneous edge and cloud nodes
with intelligent decisions on data
placement, data caching and
considerations on performance (QoE)
and security.

A sub-component that realizes a
localized Docker registry in order to

support the faster application
deploying and limit the network
flooding caused by large image

downloads during deployment.

Data service which create a common
mesh of a virtual environment to
interact with it, merging collision
meshes coming from different user
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Monitoring Agents /
Monitoring & Reaction
Plane

DE/AE/ACT

Monitoring & Reaction
Plane / E2E Conducting
Plane

XR Service Enabler
Repository / XR Service
E2E Conducting Plane

XR Service Deployment
Plane

XR Service Deployment
Plane

XR Service Deployment
Plane

T3.1,T3.3
T2.1,T2.2,T3.3
T2.1,72.2,7T3.3
T2.1,72.2,7T3.3
T2.1, WP3, WP4
T2.1, WP3, WP4
T2.1,T2.2,T3.3
T2.4, WP3

T2.1, WP3, WP4

T2.2,
T3.1,
T3.3

T3.3

T2.4,
WP3

T3.2

T3.2

T3.4
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L

Component Name Component Description Architectural Layer

3D Point cloud
encoder/decoder

Decentralised
storage / network
performance

devices.

Data service component to
compress/decompress point cloud
for efficient transmission.

Measuring the performance of DHT-
based decentralised storage
platforms such as IPFS and pub-sub
based federation networks.

XR Service Deployment

Plane T3.4

XR Service Deployment

Plane 3.2

For the complete list of components and algorithms/mechanisms, the interested reader is referred to
Appendices A, B, and C of Deliverable D4.2. The corresponding tables of D4.2 provide also additional
information for each component/algorithm, like the names of the partners involved in the

development.
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2  Monitoring

The adaptive scheme devised by CHARITY implies the migration of components to offer maximum
performance in XR services. The monitoring is a key part between dynamically adaptive network-
aware services and efficient exploitation of resources. The continuous monitoring of components and
network allows to anticipate performance failures that will affect the QoE, so monitoring, prediction
and migration are the key cycle in the CHARITY project after the initial deployment of the applications.

The monitoring framework (Figure 2) designed for CHARITY expands the functionalities of Prometheus,
the leading open-source monitoring solution, turning it into a dynamic and reactive tool by adding a
custom module to manage communications and configurations. Previously called Monitoring Agent
(in D3.1), it has been renamed as Monitoring Manager for a more accurate meaning regarding its
functions.

The large community behind Prometheus has sponsored the development of a tool to expand the
server capacity, Thanos, a high availability storage module able to collect data from multiple
Prometheus servers. It adapts the single cluster environment to the needs of the multi-provider, multi-
domain and multi-cluster environment considered in the CHARITY project. Thanos concentrates all the
monitoring data in a single point, allowing to run multi-cluster requests for monitoring the combined
performance of the XR components.

o)

Main Cluster

%

Monitoring
Manager

Thanos

Cluster 1 Cluster 2

Sidecar

Sidecar pomethens Prometheus
Server Server

pull e pull

— v == e v T

Cluster XR Services  VNFs Cluster XR Services  VNFs

Figure 2: Monitoring Framework.

The monitoring architecture, presented in Deliverable D2.1, responds to the preliminary requirements
of XR applications to be deployed on a multi-cloud platform: reduce complexity focusing on prevention
and reactivity in ecosystems with heterogeneity of technologies. To translate these formal needs into
functional values, it is necessary to identify the components of the architecture of each UC, the links
between them, and the needs of each of the developing partners.

2.1.1 Monitoring Manager

CHARITY’s monitoring platform use a set of open source-based tools, Prometheus, Grafana and
Thanos, to achieve the goals of monitoring, alerting, data storage and visualization. However, the
working functionality of this tools is that they are particularly focused for a single-cluster platform with
basic adaptability, and we aim to achieve a multi-cluster platform with dynamic adaptation. To achieve
this, a new monitoring component is necessary, focused on prevention and reactivity, and capable of
following changes in the network over time and migrations. The Monitoring Manager oversees carrying
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out the necessary tasks, receiving instructions from the HLO, updating the configurations of the
Prometheus servers, and responding to the requests of the Data Analytics Engines. Table 3 provides
an overview of these communications.

Table 3: Monitoring Manager communications.

o Toeimbee

HLO
Monitoring Manager
Monitoring Manager
HLO
Monitoring Manager
Monitoring Manager

HLO

Monitoring agent

HLO

Monitoring Manager
Data Analytics Engine

Monitoring Manager

Monitoring Manager
Prometheus server
Thanos

Monitoring Manager
Prometheus server
Thanos

Monitoring Manager

Prometheus server

Monitoring Manager

Thanos
Monitoring Manager

Data Analytics Engine

Change configuration and alerting
Change configuration and alerting
Change configuration

Monitor new component

Monitor new component

Collect data from a new component

Stop monitoring a component but don't delete
Thanos stored data

Stop monitoring a component

Stop monitoring a component and delete Thanos
stored data

Stop monitoring a component
Request Data

Scrape forecasted data

Figure 3 shows the communications of the Monitoring Manager with the rest of the monitoring
framework and the interactions with other components of the CHARITY architecture. Flows for
changes in monitoring configuration start from the High Level Orchestrator. Two types of flows are
considered, the first is the deployment flow, when the services are configured for the first time in the
monitoring framework. The second one is on runtime, when the migration of a service requires to
update the configuration of two Prometheus servers, the one that monitors the cluster that the service
initially occupied and the Prometheus of the cluster to which the service has been migrated. The
migration triggers are detailed in the Monitoring Data section.
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Figure 3: Monitoring Architecture defined in D2.1.

The Monitoring Manager has three functionalities:
- Manage request through a REST API.
- Download Prometheus servers configuration and update YAML configuration files.

- Trigger the configuration reload to apply the changes.

2.1.2 Monitoring Data

Prometheus servers deployed with each new cluster are in charge of monitoring VNFs, XR services,
network performance between nodes and the available resources of the cluster itself. This observance
of the environment is in CHARITY platform the trigger of the reactive flows that turn deployed
application architectures into dynamic ones.

Three architecture components employ the monitoring data gathered:

- HLO: It uses cluster performance metrics to make decisions about deployments and
migrations. This is described in Resource Indexing section, section XX.

- Data Analytics Engine: The monitored data of each metric feeds the forecasting instances,
that predict future values.

- Prometheus: The monitoring servers allow to define alerting rules over the observed data,
triggering its own alerting system to notify that a certain value has been reached.

Migration triggers: Alarms vs Alerts

In CHARITY project, we differentiate two types of performance notifications, that differ in the origin of
the data, the components that provides that data, and what mitigates the migration they trigger, as
stated in table Table 4. While the alarms use real data collected by the monitoring system, the alerts
are based on predictions calculated by forecasting instances. It is necessary to differentiate the
notifications (Figure 4) because one is triggered by the current performance of the monitored
component, which means that the migration it triggers aims to correct a certain condition, exceeding
a limit value established by the UC owner. However, in the case of the alerts, the data used are
predictions, estimates of values that this metric will reach in a certain time. Therefore, the migration
does not seek to reverse an existing situation, but rather to prevent it from occurring.
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Table 4: Migration triggers

Data Type Data provider Migration
Alarms Monitored Prometheus Fix a performance failure
Alerts Predicted Data Analytics Engine Avoid a performance failure
X
— Monitored data
forecasted data
limit
Alarm " time

Figure 4: Alarm and alert notifications.

The use of two types of notifications allows CHARITY platform to use them as a verification factor to
validate one of the objectives of CHARITY project, anticipation of performance failures. This is key for
XR applications, that in today’s highly competitive market must guarantee to their users an high quality
graphics and smooth interactions. Therefore, the metric thresholds established in the AMF are the
values that the UC considers critical and that overcoming them means entering a range in which a
failure of services could occur, and therefore reduce the user’s QoE.

The correct functioning of the alarm system ensures that predictions allow us to anticipate anomalies
in the user experience migrating the services so that they always have the necessary resources for
their correct functioning in the cluster in which they are deployed. This situation will occur if in no case
the limits are reached, and therefore no alarm is activated.

2.1.3 UC metrics

The analysis of each UC and the KPIs collected in deliverable D1.3 allows to define the preliminary set
of values to be monitored according to the needs of each UC owner. These metrics and their formats
will be consulted and processed by CHARITY components, hence, it is necessary to establish common
values, as stated in Table 5.
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Table 5: Metrics definition

OUTPUT OUTPUT
METRICS DEFINITION NAME UNITS FORMAT | EXAMPLE

Time it takes for a request to reach
the destination and return,

Latency including the operation time of the
destination to respond to the milisecon three
request latency ds decimals 125.123

Round trip time. Time it takes for a
request to reach the destination

RTT and return. It doesn't include the
operation time of the destination milisecon three
to respond to the request rtt ds decimals  125.123
. Maximum capacity that can be three
Eancplats transmitted over a link bw Mbps decimals  1000.000
percenta  positive
CPU Percentage of used CPU - - R — 0-100
percenta  positive
GPU P t f d GPU .
ercentage oruse gpu ge integer 0-100
Memory Percentage of used memory T geercenta E’\Otsez:f 0-100
Resolution Number of pixels a screen is Megapix  three
capable of displaying resolution el decimals  4.096
Color bit Number of bits needed to bits per positive
depth represent the color of a pixel colorbitdepth  pixel integer 24
Frames
Frame-rate Frequen(‘:y at which a device per 5
displays images second -  positive
framerate fps integer 240
Petitions per .. Requests -
Number of requests per second petitionsperse per positive
second .
cond second integer 1000

A preliminary collection of the monitoring requirements of the use cases, from the performance of
each of the components to the performance of the links between them opened communications with
each UC to find out their preliminary needs. Ad-hoc surveys were created. These surveys contained a
table of metrics that affected the case and a series of questions with which to delve into the types of
data they need and the technologies of the elements they are developing (see an example in Figure
5).

The results of these surveys allowed to convert the requirements into a list of values to be monitored,
with already defined formats. This allows also to design the exporters that will expose the data
collected by the Prometheus server, the core of the monitoring system. The Prometheus server pulls

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 25 of 1



L

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive ...

metrics from elements monitored through the HTTP endpoint each one uses to communicate. To
expose these metrics, the elements use exporters, which collect the monitoring information, convert
it to the format used by Prometheus and expose it to the outside.

The extensive use of Prometheus benefits from the existence of a community that maintains numerous
exporters developed by third parties, which are already identified in the tables in the following sections
focused on each use case. However, XR applications involve the appearance of new elements that
require the development of new custom exporters, and for such task Prometheus offers detailed
documentation and compatibility with the most common programming languages. Therefore, the
collection of information, made through a questionnaire (as in Figure 5), needs to be made prior to
the development of the monitoring system is a key step for the following phases, since it allows efforts
to be focused on understanding the elements, their languages and the need or not to develop custom
exporters, that can be similar between different use cases.

CHARITY WP2.2 MONITORING METRICS QUESTIONNAIRE
Collins Arconpace Flight Simulator

EHARITY comfidontial

Resthoriu] Lasrs Sande Alomio, Yago Gonzales Raues, Tam Loves

Questionnaire

Flosse envaet the Fil kaning qumest o e iediog Uhe mon e ng =eirice

Arsmwr Use Cave

Qussten

Questonnarne

Tw e el A e of
s athar slements o Lk
ety 1o conmider 7 yes
Ehesse e Urine ol wents

Tha noope 96 Dew

whrrmnty e ! Are they gung 16

Please anower T 10iowing Qestians fegardng e MOnLcAng merics

Introduction

bw depoyed 41 Windows wran
o wther techaiag e

Ave twers sy atfet meir o you
require?

Toud pout eeter 3 0 Tarer

format of the metrcn?
o et o m +fy ¢ s and & datatene 1o vore wrtusl metanrk

nbormation For the e case, T A T oLt o oWy

coereet

Monitoring metrics Collins

Wys e & ditsbase. what
Batiene murager 30 y0u e’
WAL PantgrwiCl Crace
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imbormation

Thes tabim bekow haws thie ratrics 1O momtor, &1 the Prometheus farmat itialy wieied 10 esch
watare
[

Cournar

Cage s

Figure 5: Questionnaire for Collins Aerospace.

Prometheus allows the use of four metric formats, two of them for individual values and the other two
for storing a set of values during a certain period. Counter is an integer value that is incremented by
one or reset to zero, while gauge allows the numeric value to increment and decrement. Histogram
allows to collect values between certain margins over a period of time to later perform statistical
analysis. The use of summary is similar to that of histogram, with the difference that it does not require
a bucket definition, so it allows obtaining frequencies of more adjusted values than those of a
histogram. In the questionnaires made to the UCs, these four possibilities were offered for the values
to be monitored and they were asked to choose the formats according to the needs of each of their
elements. In the following tables they will be defined as Counter -C-, Gauge -G-, Histogram -H- and
Summary -S-.

The information discussed in this section serves as background for the following sections, which
include the tables with the monitoring needs of both use cases and CHARITY own architecture,
compiling metrics, formats and the existence of exporters already developed that expose the data.
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2.1.3.1 UC1-1- UC1-2: HOLO 3D - Holographic concert and holographic meeting

In the case of the holographic systems for concerts and meetings devised by Holo3D, we find key
metrics related to image quality, as well as the performance of communications to eliminate delays
and offer a real-time experience.

Table 6: UC1-1 and UC1-2 - elements and metrics

Petitions Third
USE CASE ELEMENT | Links Latency | RTT | Bandwidth | CPU | GPU | Memory | Resolution | bi per party
second exporter
HG HG HG H

Musician (PC with Charit
camera, v = = |= G G - CUSTOM -
. edge
microphone)
Client (person
watching the Charity HG HG  HG : } : H G G : CUSTOM -
hologram on a edge
holographic display)
Windows server X HG HG HG 8 |- |[® - - . : EXISTING  indows
server
Speaker (PC with .
camera and Caey HG HG HG S - o H G G = CUSTOM -
] edge
microphone)
Client (person
watching the Charity HG HG  HG : ; : H G G : CUSTOM -
hologram on a edge
holographic display)
Windows server X HG HG HG 8 |- |e - - . - ExisTING  Vindows

server

2.1.3.2 UC1-3: SRT - Holographic assistant

The elements of the SRT holographic assistant are developed on Windows servers, which already have
existing exporters to expose data in Prometheus format. The only custom exporter to be created is the
one that involves the end user of the application. The creation of this type of exporter is common to
all use cases, since Prometheus cannot monitor screens, virtual reality headsets or cockpits. Its
monitoring will be carried out on another element of the architecture of the use case that
communicates with these final elements.

Table 7: UC1-3 - elements and metrics

Frame- Petitions Third
USE CASE ELEMENT Links Latency | RTT | Bandwidth | CPU | GPU | Memory | Resolution rate per party
second exporter
PC with holographic
3D device and Charity edge HG HG HG - - - H G G - CUSTOM -
Eyetracker
Windows server X HG HG HG 8 |- | - - - - EXisTING  /indows
server
SRT_SW_CLIENT SRT_SW_CONTENT  HG HG HG 8 |- | H G G - EXISTING \S’Z'rr\::‘r’ws
SRT_SW_BEHAVIOUR, Windows
SRT_SW_CONTENT SRT_SW_PCGEN HG HG HG G G G EXISTING server
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SRT_SW_PCGEN CHARITY_SW_PCENC ~ HG HG HG G G G . . 2 = EXISTING ZZ:‘::’WS
Windows

CHARITY_SW_PCENC  SRT_SW_CLIENT HG HG HG G G G = = 5 = EXISTING "
Windows

SRT_SW_BEHAVIOUR Google API HG HG HG @ |- |@ . . . = EXISTING

server

2.1.3.3 UC2-1: ORAMA - Medical training

Surgical training through virtual/extended reality implies high synchronization between all the
participants in the session to accurately simulate the collaborative work that takes place in an
operating room between the end users of the application and the responses of the virtual elements to
collisions with users.

Table 8: UC2-1 - elements and metrics.

Third
USE CASE 9 . Color bit | Frame- Petitions
exporter
H G

VR Charity

N HG HG HG = = =
equipment edge

G

© CUSTOM -

LSpart_1  LSpart 2 HG HG HG G G G . . . = EXISTING VWh'/I"d"WS
LSpart_2  LSpart_1 HG HG  HG G G G - - - B EXISTING VWh;ndOWS

2.1.3.4 UC2-2: DOTES - Virtual tours

Virtual tour applications are widely popular; however, they are still far from providing a realistic
immersive user experience as they don't focus on the limitations that the network imposes on
application performance. To achieve the quality of the image and interaction with the scenarios that
DOTES, UC owner, plans with its application, it's essential that the communication speeds of the
network and the processing of the elements adjust to their maximum performance.

Table 9: UC2-2 - elements and metrics.

USE CASE Petitions Third
Latency | RTT | Bandwidth | CPU | GPU | Memory | Resolution per Exporter | party
ELEMENT
second exporter
HG HG HG G H

Cyango API .
GENEOSER® | ez - - G G - EXISTING N8I
front-end X server
service
Cyango Cloud Nginx
Studio - front-  Cyango API HG HG HG = G = H G G = EXISTING g
server
end
Charity media -\ ngoAPl  HG HG  HG s |@ |e - - - - CUSTOM -
converter
3D engine
Cyango Story
Cyango Cloud
Editor
File hosting Neinx
Cyango API Transcribe HG HG HG G = G = = = = EXISTING g
. server
service
Cyango
Database
3dEngine
Image engine
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File Hosting

3D engine

Image Engine
(Image
processor)

Video Engine
(replace by
charity media
converter)

Livestream
service

Cyango
Database

Transcribe
Service

Cyango API
Video Engine

Cyango front-
end
Cyango API

Cyango API

File hosting
Cyango API

Cyango Story
Cyango API

Cyango API

Cyango API

HG

HG

HG

HG

HG

HG

HG

HG

HG

HG

HG

HG

HG

HG

HG

HG

HG

HG

HG

HG

HG

o EXISTING AWS S3

Nginx
server

- EXISTING

Nginx
server

= EXISTING

Now:
AWS
Lambda
Future:
nginx
server

o EXISTING

Nginx
server

= EXISTING

Now:

mongoDB
= EXISTING Future:
nginx
server
Nginx
server

= EXISTING

2.1.3.5 UC3-1: ORBK - Mixed reality

The extended reality application devised by ORBK focuses on the user's interaction with the virtualized
scenario, the virtual objects introduced and that all this happens with the minimum delay between all
the users of that application session. The mesh collider that is being developed in the CHARITY project
is key to the performance between real image and virtualized elements, and to achieve the KPIs of the
next generation XR applications, a proactive adaptive architecture like CHARITY is needed.

Table 10: UC3-1 - elements and metrics.

Frame- Petitions Third part
Links Latency | RTT | Bandwidth | CPU | GPU | Memory | Resolution per Exporter party
rate exporter
second
Game client Game Server HG HG HG = = = H G G = CUSTOM -
Game client,
Mesh
Gameserver  OMider. HG HG HG & |- |e - 2 - - CUSTOM -
Game
Servers
Status DB
Game Servers Game Server HG HG HG G = G S - = o EXISTING CloudWatch
Status DB
Specialized XR
Service by
Charity (Mesh e sever HG  HG  HG a e |= - - - - CusTOM -
collider
generator
service)
Mesh Merging
Service - Game Server  HG HG HG = @ |- - . : - CUSTOM -
developed by
CNR

2.1.3.6 UC3-2: Collins Aerospace (CAl) - Flight simulator

To date, the simulation of high-speed scenarios has been limiting in terms of collaborative applications
due to the difficulties of synchronization between users and the performance of the different
microservices in charge of predicting the images to be displayed in the participants. In the case of
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Collins Aerospace, an edge architecture is proposed to reduce interaction times and control over the
requests received by each element to show the highest image quality to always maintain
synchronization between its users.

Table 11: UC3-2 - elements and metrics.

Petitions
USE . . . Frame- Third party
ELEMENT - . H i = e oo
second
Cockpit (flight Flight Oracle,
stick, thrustor, Scene HG HG HG - - - H G G - CUSTOM -
pedals) Management
Flight Oracle Terrain HG HG HG 8 |- |e - - - - CUSTOM -
Management
Scene Device HG HG  HG © |6 |e - - - - CUSTOM -
Management
Terrain scene HG  HG HG G G G - - - - CUSTOM -
Management Management
Terrain
Terrain DB MBI |y HG HG 8 |- |e - . - - EXISTING PostgreSQL
Image
Generator
Arena Scene HG HG HG © |- |e - - - - CUSTOM -
Management Management
Flisht Flight Oracle,
- ., Cockpit, View HG HG HG G G G - - - - CUSTOM -
Dynamics/Physics? N
Builder
Image Generator Fl|ght.0racle, HG HG HG G G G - - - - CUSTOM -
Terrain DB
View Builder,
Resolution
Frame Caché Upscaler, HG HG HG G G G = - = o EXISTING Redis
Image
Generator
Flight
Dynamics,
View Builder Frame caché, HG HG HG G G G - - - - CUSTOM -
WARP, web
RTC Client
WARP View Builder  HG HG HG G G G - - - - CUSTOM -
web RTC Client PC-HMD HG HG HG & |6 |@ - - - - CUSTOM -
PC, HMD webRTC HG HG HG G o G H = G = CUSTOM -
Resolution Frame Caché HG HG HG 8 |e |e : g : HG CUSTOM -
Upscaler

2.2 Resource Indexing

The Resource Indexing collects performance related cluster metrics and makes it available for the HLO,
which is responsible for choosing the most suitable cluster based on the resources required by each
new deployment or for migration to a new cluster.

The Resource Indexing is made up of instances per cluster, as shown in Figure 6, that collect data from
the cluster in which they are deployed. These instances communicate with the main Resource
Indexing, an architectural component with information on all clusters available in all domain and for
all providers.
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Main Cluster
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Cluster Storage Cluster Storage
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Bandwidth Bandwidth

Figure 6: Resource Indexing components.

Each Cluster Resource Indexing is made up of a database, where the last value of each of the metrics
is stored, and two update tools. The first one makes periodic HTTP requests to Prometheus with
queries in PromQL format, processable by the monitoring server, and stores it in the database. The
second one updates periodically the main Resource Indexing.

The cluster metrics the HLO needs to evaluate to take deployment decisions are: CPU, memory,
storage, bandwidth between clusters and latency between clusters. The first prototype of the Resource
Indexing collects the first three. The table 12 collects the Prometheus metrics used by the Resource
Indexing prototype. Network performance metrics will be incorporated in the coming months.

Table 12 - Resource Indexing prototype metrics.

m Prometheus Metric Prometheus Query

CPU total machine_cpu_cores sum(machine_cpu_cores)
used container_cpu_usage_seconds_total sum(rate(container_cpu_usage_seconds_total))
available machine_cpu_cores sum(machine_cpu_cores)-

el Ga e Seeenel el sum(rate(container_cpu_usage_seconds_total))

Memory total machine_memory_bytes sum(machine_memory_bytes)
used container_memory_working_set_bytes sum(container_memory_working_set_bytes)
available machine_memory_bytes sum(machine_memory_bytes)-

container_memory_working_set_bytes sum(container_memory_working_set_bytes)

Storage total container_fs_limit_bytes sum(container_fs_limit_bytes)
used container_fs_usage_bytes sum(container_fs_usage_bytes)
available container_fs_limit_bytes sum(container_fs_limit_bytes)-

. i f
it e e, s sum(container_fs_usage_bytes)

The communication between the HLO and the Resource Indexing is through a REST API, where two
types of queries are defined, according to the needs of the HLO. The first one returns the values of all

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 31 0f 1



D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive ... n.

clusters and all domains, while in the second the values returned are from the clusters belonging to
the domain specified in the input parameters.

Some basic experimentation has been done regarding the communication between a main cluster and
a couple of standalone clusters to check if all of the tools needed for the Resource Indexing work as
expected. To test it, we deployed each standalone cluster with a subset of a couple of servers, and
adapted the Prometheus tool to obtain the necessary information. Then, we tested the Cluster
Resource Indexing, first to check if the information was stored correctly in the database, and then to
see if this information was sent to the Main Cluster, in which we checked that the information was
correctly received. Finally, we simulated the HLO calls to the Resource Indexing through the Rest Api,
particularly the ones related to availability, to check if the obtained data was useful to the HLO.
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3  CHARITY Edge Storage (CHES)

3.1 Component descriptions

The CHARITY Edge Storage Component (CHES) is responsible for providing optimized edge storage
services to the CHARITY framework and its hosted applications. These services include data storage,
retrieval and migration tasks, security and privacy protection capabilities, QoS and QoE violation
prevention and mitigation, as well as other data-related services that serve the runtime requirements
of CHARITY. More specifically, the edge storage component has to provide a reliable, fast, stable and
secure shared storage engine, accessible by all devices and users in an edge-cloud. Furthermore, it
needs to be extremely lightweight since it is created for edge devices with extremely limited resources,
like Raspberry Pies or other micro-computer devices.

Edge nodes generally have limited computation, storage, network, or power resources. The
distributed, dynamic and heterogeneous environment in the edge and the diverse application’s
requirements pose several challenges. The edge storage component needs to overcome some inherent
edge challenges like:

Coordination of unreliable devices and network

Hardware and software incompatibilities that arise due to the plethora of different devices
Integration of different data storage formats and data types

Limited resources of the edge devices

Security and privacy concerns

® QoEinsurance

CHES component is based on the Kubernetes (K8s)3, MinlO* and Prometheus® technologies, combining
and optimizing them in order to better serve the needs of CHARITY. Kubernetes is an open-source
system for automating deployment, scaling, and management of containerized applications. As a
storage solution, an open-source framework created by IBM is utilized, called MinlO. MinlO is an
inherently decentralized and highly scalable Peer-to-Peer solution, allowing us to deploy it freely on
usable nodes. It is designed to be cloud native and can run as lightweight containers managed by
external orchestration services such as Kubernetes. It supports a hierarchical structure to form
federations of clusters and it has been proven as a valid candidate for an edge data storage system [1].
MinlO writes data and metadata together as objects, eliminating the need for a metadata database.
In addition, MinlO performs all functions (erasure code, bitrot check, encryption) as inline, strictly
consistent operations. The result is that MinlO is exceptionally resilient. Moreover, it uses object
storage over block storage so it is in fact a combination of the two systems, preserving the lightweight
distributed nature of block storage while providing the plethora of metadata and easy usage of the
object storage. Unlike other object storage solutions that are built for archival use cases only, the
MinlO platform is designed to deliver the high-performance object storage that is required by modern
big data applications. In addition, MinlO provides both a web-based GUI and an AWS S3 compatible
API library. The Kubernetes Dataset Lifecycle Framework provided by IBM’s Datashim® is employed on
top of MinlO, allowing the edge storage component to be used as a file system folder, which is useful
for applications that we cannot or do not want to integrate with the Restful APl of MinlO. A detailed
description of the Kubernetes Dataset Lifecycle Framework is provided in Section 3.1.1. Finally,
Prometheus is responsible for collecting monitoring data about the real-time performance of the
nodes and the component as a whole to analyze the behaviour of different applications and optimize
the cluster architecture, the options, and the data distribution.

3 https://kubernetes.io/
4 https://min.io/

5 https://prometheus.io/
6 https://datashim.io/
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Additionally, a sub-component, called CHES-Registry, was implemented using CHES as its file storage
backend, to move application images closer to the edge and limit network traffic and delays during
the operations of deployment, migration or scaling. CHES Registry hosts the Docker images and
employs Kubernetes containerization to provide its services, creating a new pod in the CHES
namespace that is able to connect to the MinlO storage backend. In addition, CHES Registry allows the
secure communication between the registry and its clients using the HTTPS protocol and a basic
authentication scheme.

3.1.1 Kubernetes Dataset Lifecycle Framework

Hybrid edge/cloud environment is rapidly becoming the new trend for organizations seeking the
perfect mix of scalability, performance and security. As a result, it is now common for an organization
to rely on a mix of on-premises data centers (private cloud), and cloud/edge solutions from different
providers to store and manage their data. Nevertheless, many obstacles arise when applications have
to access the data. On the one hand, developers need to know the exact location of the data and, on
the other hand, manage the correct credentials to access the specified data-sources holding their data.
In addition, access to cloud/edge storage is often completely transparent from the cloud management
standpoint and it is difficult for infrastructure administrators to monitor which containers have access
to which cloud storage solution. Even if containerized components and micro-services are widely
promoted as the appropriate solution for efficiently deploying and managing storage over a hybrid
edge/cloud infrastructure, containerization makes it more difficult for the workloads to access the
shared file systems. Currently, there are no established resource types to represent the concept of
data-source on Kubernetes. As more and more applications are running on Kubernetes for batch
processing, end users are burdened with configuring and optimizing the data access [2].

To tackle the aforementioned issues, the Dataset Lifecycle Framework (DLF) is employed, which is an
open-source project that enables transparent and automated access for containerized applications to
data-sources. DLF enables users to access remote data-sources via a mount-point within their
containerized workloads and it is aimed to improve usability, security, and performance, providing a
higher level of abstraction for dynamic provisioning of storage for the users’ applications. By
integrating DLF on Kubernetes pipelines, it is possible to mount object stores as Persistent Volume
Claims (PVCs), which are pieces of storage in the cluster, and present them to pipelines as a POSIX-like
file system. In addition, DLF makes use of Kubernetes access control and secret so that pipelines do
not need to be run with escalated privilege or to handle secret keys, thus making the platform more
secure.

In more technical details, DLF orchestrates the provisioning of PVCs required for each data-source,
which users can refer to their pods (the smallest deployable unit in Kubernetes), allowing them to
focus on the actual workload development rather than configuring/mounting/tuning the data access.
DLF is designed to be cloud-agnostic and due to Container Storage Interface (CSI)’, it is highly extensible
to support various data-sources. CSl is a standard for exposing arbitrary block and file storage systems
to containerized workloads on Container Orchestration Systems (COS) like Kubernetes. With the
adoption of COS, the Kubernetes volume layer becomes truly extensible. Using CSI, third-party storage
providers are able to write and deploy plugins exposing new storage systems in Kubernetes without
interacting or changing the core Kubernetes code. This provides Kubernetes users more options for
storage and makes the system more secure and reliable. On the infrastructure side, DLF also enables
cluster administrators to easily monitor, control, and audit data access.

DLF introduces the Dataset as a Custom Resource Definition (CRD)?, which is a pointer to existing S3
or NFS data-sources. A Dataset object is a reference to a storage provided by a cloud-based storage
solution, potentially populated with pre-existing data. In other words, each Dataset is a pointer to an

7 https://kubernetes-csi.github.io/docs/

8 https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions
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existing remote data source and is materialized as a PVC. The Dataset is a declarative construct that
abstracts access information and provides a single reference for data in Kubernetes. Users only need
to include this reference in their deployments to make the data available in pods, either through the
file system or through environment variables [3].

Figure 7 illustrates an example configuration of a Dataset CRD for data stored in COS. The mandatory
fields are the bucket, endpoint, accessKeyID, and secretAccessKey. The bucket entry creates a one-to-
one mapping relationship between a Dataset object and a bucket in the COS. The accessKeyID and
secretAccessKey fields refer to the credentials used to access this specific bucket.

DLF is completely agnostic to where/how a specific Dataset is stored, as long as the endpoint is
accessible by the nodes within the Kubernetes cluster, in which the framework is deployed.

apiVersion: com.ie.ibm.hpsys/vialphal
kind: Dataset
metadata:
name: example-dataset
spec:
local:
type: "COS"
accessKeyID: "{ACCESS_KEY_ID}"
secretAccessKey: "{SECRET_ACCESS_KEY}"
endpoint: "{S3_SERVICE_URL}"
bucket: "{BUCKET_NAME}"

readonly: "false"

Figure 7: Dataset CRD.

Creating a CRD is just the first step to add custom logic in the Kubernetes cluster. The next step is to
create a component that has embedded the domain-specific application logic for the CRD. Essentially,
a service provider needs to develop and install a component which reacts to the various events which
are part of the lifecycle of a CRD and implements the desired functionality.

DLF utilizes the Operator-SDK, an open-source component of the Operator Framework®?, which
provides the necessary tooling and automation in the development of these components in an
effective, automated, and scalable way. Operator-SDK is utilized to create the Dataset Operator in
DLF. Its main functionality is to react to the creation (or the deletion) of a new Dataset and materialize
the specific object. Specifically, when a Dataset gets created, the software stack invokes the necessary
Kubernetes CSI plugin and creates a PVC that provides a file system view of the bucket in the COS.

Figure 8 demonstrates in an abstract view, the Dataset Lifecycle Framework with the various
components employed in an example of a two-node K8s cluster.

? https://operatorframework.io/
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Figure 8: Conceptual overview of the Dataset Lifecycle Framework (DLF).

3.2 Package information

3.2.1 CHES Storage

CHES is a package including Kubernetes deployment files in YAML format, installation scripts in bash
script format, and a configuration file in JSON format that contains all options needed to configure the
component.

All files of the package are available on the official CHARITY GitLab page!® and can be obtained with
the following command:

$ git clone https://gitlab.charity-project.eu/hua/edgestoragecomponent.git

In detail, we have one YAML file called chesDeployment.yaml which is the Kubernetes deployment file
for the storage server (master). This file will install all necessary services, authentication keys, roles
and images on the Kubernetes cluster, reading information from the configuration file (.conf). It will
use the Kubernetes architecture, deploying most services on the Kubernetes master. Of course, the
actual MinlO instances that store the data will be deployed on the nodes having the label “ches-
worker” set to “true”. The second yaml file is called chesClientDeployment.yaml and it will allow nodes
to use CHES as a file system folder by mounting the PVC that is connected to the CHES storage service.

The bash scripts are again two, chesInstalldeploy.sh that configures and deploys the
chesDeployment.yaml on the Kubernetes master, and chesClientDeploy.sh that configures and
deploys the chesClientDeployment.yaml on the client nodes. These scripts are just applying the options
selected in the configuration file to the YAML files and then run the necessary commands to deploy

10 https://gitlab.charity-project.eu/hua/edgestoragecomponent
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the YAML files on the Kubernetes cluster. There is a third bash script called InstallScript.sh which is
configuring and deploying the chesDeployment.yaml file in a single K8s cluster node installation,
without requiring any additional configuration steps.

Finally, a YAML file called dIf_kube.yaml is used for the deployment of the Dataset Lifecycle Framework
and a bash script named Undeployches.sh which undeploys the CHES containers and jobs. A complete
list of the files included is presented in Table 15.

Table 15: List of package files for Edge storage component.

I N

chesDeployment.yaml Kubernetes deployment file for CHES master

chesClientDeployment.yaml  yhernetes deployment file for CHES client(s)

chesInstalldeploy.sh Bash script for deploying the CHES servers
chesClientDeploy.sh Bash script for deploying the CHES client(s)

Bash script for deploying the CHES servers on single

InstallScript.sh
node clusters

JSON file containing the configuration options for
CHES

Kubernetes deployment file for the Dataset Lifecycle
Framework

configuration file.conf

dlf kube.yaml

Bash script for undeploying the CHES containers and

Undeployches.sh )
jobs

3.2.1.1 Kubernetes Dashboard

Along with the CHES component, the Kubernetes dashboard is provided, which is a web-based
Kubernetes user interface. In general, Kubernetes dashboard is used to deploy containerized
applications to a Kubernetes cluster, troubleshoot the containerized applications, and manage the
cluster resources. In addition, the dashboard can get an overview of applications running on a cluster,
as well as for creating or modifying individual Kubernetes resources (such as Deployments, Jobs,
DaemonSets, etc). Dashboard also provides information on the state of Kubernetes resources in the
cluster and on any errors that may have occurred. The associated files are located in the same
repository with CHES.

In detail, the installation of Kubernetes dashboard includes four files, two deployment YAML files and
two bash scripts. A bash script named InstallDashboard.sh is used for deploying the Kubernetes
dashboard in a K3s cluster. A complete list of the files included, is presented Table 14.

Table 16: List of files included in the Kubernetes Dashboard.

I

Bash script for deploying the Kubernetes
Dashboard

Kubernetes deployment file for Kubernetes
dashboard

Kubernetes deployment file for creating a minimal
RBAC configuration, i.e. a Service Account and a
ClusterRoleBinding

Bash script for undeploying the Kubernetes
Dashboard

InstallDashboard.sh
recommended.yaml

dashboard account roles.y
aml

UndeployDash.sh
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3.2.2 CHES Registry

CHES Registry is a sub-component that realizes a localized Docker image registry, taking Docker and
VM images near the edge devices/nodes to support the faster application deploying and limit the
network flooding caused by large application image downloads during deployment. This functionality
acts as a proactive caching mechanism by optimizing the download delays and the network traffic. The
port of the CHES Registry as well as its credentials are pre-configured using the generalized
configuration file that is packed with the edge storage solution.

CHES Registry is based on the Docker registry technology in order to store and distribute container
images. It combines the official Docker registry image!! with Kubernetes orchestration, a MinlO object
storage backend, and a set of automated deployment and configuration scripts. This enables CHES
Registry to automatically deploy and scale the Docker registry as needed while centrally controlling
the configuration options such as communication protocols, SSL certificates, credentials, connection
ports and other. This configuration also enables us to fine-tune the back-end storage, placing the
images at the optimal physical locations according to the needs of each use case. As a result, CHES
Registry streamlines the storage and distribution of container images, offering enhanced control,
scalability, and optimized edge deployment capabilities. The application images are handled as objects,
stored in a MinlO bucket and accessed either using the S3 API it provides, its web interface or the DLF
functionality the LDR has added on top of MinlO, making the buckets available as mountable virtual
disks.

Figure 9 illustrates the CHES Registry sub-component. The associated files are separated into a
different folder, in order to separate them by functionality, make documentation and maintenance
easier and decouple their installation process.

docker push
docker pull

=E f
—TCP/ 500 Docker Registry # 3 Secret Service Account
el docker |

—_—
jefm) : - Create ——
‘ %% charity.ches.registry %Secret = cert-manager

Lookup

‘ DNS:charity.ches.reg ‘

A

Private key

Figure 9: CHES Registry.
CHES Registry can be downloaded by running the command:
$ git clone https://gitlab.charity-project.eu/hua/edgestoragecomponent.git

In detail, the installation of CHES Registry includes six files, four deployment YAML files and two bash
scripts. The YAML files are deploying all the necessary containers and jobs that need to be executed to
setup and configure the registry, in order to be functional and accessible by other containers hosted
in the same K8s cluster. A complete list of the files included is presented in Table 15 .

Table 17: List of files included in the CHES Registry repository.

I

1 https://hub.docker.com/_/registry
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Kubernetes deployment for a daemon job that

add certs.yaml adds the appropriate SSL certificates to new
containers
Kubernetes deployment for a daemon job that
add to hosts.yaml adds the appropriate configurations to the

hosts files of new containers
Kubernetes deployment for the Docker registry
container
Bash script for deploying the CHES LDR
containers and jobs
Bash script for undeploying the CHES LDR
containers and jobs
Kubernetes deployment for a test container
test deploy.yaml that loads a docker image from the deployed
CHES LDR

deployment.yaml
registry setup.sh

registry uninstall.sh

3.2.3 Prometheus

Prometheus, as previously said, is a popular open-source monitoring and alerting tool that enables
users to monitor the performance and health status of their systems and applications. It is specifically
designed for highly dynamic environments, such as cloud-native applications and microservices
architectures. Prometheus collects time-series data from various sources, including its own client
libraries, exporters, and third-party integrations, and stores them in an efficient and scalable manner.
The associated files for the Prometheus setup are located in the same repository with CHES.

The deployment of Prometheus includes one YAML file (prometheus.yaml) that configures the scraping
job and the target. A scraping job refers to the process of periodically collecting metrics from a target
using HTTP, allowing Prometheus to monitor and analyze the performance and health of that target
over time. The target refers to the specific endpoint from which metrics are collected through scraping.
This is achieved through a URL that exposes metrics in a format Prometheus understands.

3.2.4 Semi-automated Deployment and off-loading

In the context of the presented solution, a set of bash and YAML scripts have been developed that
handle all the configuration, installation and deployment processes that need to be contacted before
and after the MinlO workers are deployed. These configurations include firewall rules, DNS settings,
package installations and security checks that take into account the setup environment, the
architecture and resources of the physical machines and the software involved. These tasks enable
the semi-automatic deployment of the edge storage solution, forming complex pipelines that in most
other cases are performed manually by a system administrator. This ensures that scaling can be
performed seamlessly on each cluster, regardless of the underlying physical machines that act as
nodes. In addition, off-loading of data can be achieved by "ordering" more instances of the MinlO
worker to be deployed on more nodes and adding them in the same MinlO cluster in real-time.

3.3 User Manual

3.3.1 CHES Storage

We have three ways to utilize CHES, the first way is through the MinlO Web GUI which is described in
details on the official MinlO documentation!?. A sample MinlO storage deployment can be seen in
Figure 10.

12 https://docs.min.io/docs/minio-quickstart-guide.html
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99w 220

Buckets

Created: 2022-12-18T13:55:15Z Access: RIW -
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Figure 10: The MinlO web-based interface.

The second way is through the MinlO client which is a command line tool that is also documented in
detail on the official MinlO website®. A connection to a remote host can be seen as an example in
Figure 11.

:~%$ mc alias set CHES Storage "http://31.171.240.140:9011" "chesAccesskeyMinio" "chesSecretkey"

:$ mc 1s CHES Storage

Figure 11: Connection to MinlO using the client command tool.

Additionally, using the integrated Datashim’s DLF, CHES can be accessed through the K8s deployment
manifest files by mounting the PVC it creates as a system volume. Detailed reference of the usage of
PVCs can be found in the Kubernetes APl documentation*. An example of the deployment manifest
file is illustrated in Figure 12.

13 https://docs.min.io/docs/minio-client-complete-guide.html

4 https://kubernetes.io/docs/concepts/storage/persistent-volumes/
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apiVersion: vl
kind: Pod
metadata:
name: ches-client-sample
spec:
volumes:
- name: ches-storage
persistentVolumeClaim:
claimName: ches-dataset
containers:
- name: ches-test
image: nginx
volumeMounts:
- mountPath: "/data/ches"
name: ches-storage
affinity:
nodeAffinity:
preferredDuringSchedulingIgnoredDuringExecution:
- weight: 1
preference:
matchExpressions:

- key: ches-worker
operator: In
values:

- "true”

Figure 12: An example of mounting a PVC created by the Datashim integration if the PVC is called "ches-
dataset".

The Kubernetes dashboard which is a web-based Kubernetes user interface is illustrated in Figure 13.

O kubernetes ches . Q  search + & O
= Workloads
e Workload Status A
Cron Jobs
Daemon Sets
o Succeeded:1
Jobs
Pods

Replica Sets
Replication Controllers

Stateful Sets Running: 3 Running: 1 Succeeded: 1

Service ¥ Daemon Sets Deployments Jobs Pods
Ingresses.
Services
Config and Storage
Config Maps i
Persistent Volume Claims &
Secrets
Straga Cisssas Running 1 Running 1
i Replica Sets Stateful Sets
Cluster Role Bindings.
Cluster Roles
Daemon Sets = -
Events N
Namespaces Name Images Labels Pods Created 1
e @ registryhosts busybox kBs-app: registry-hosts 171 20 days ago

Figure 13: Kubernetes Dashboard.

To utilize Prometheus, it is necessary to configure the YAML file with the appropriate endpoint and
target settings, as depicted in Figure 14.
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scrape_configs:

- job_name: "minio-job"

metrics_path: /minio/vZ2/metrics/cluster

static_configs:
- targets: ['charityconsole.ches.charity-project.eu:9011"

Figure 14: Prometheus configuration YAML file.

Subsequently, the user can access the Prometheus console and utilise query commands to retrieve a
multitude of metrics. As an example, Figure 15 exemplifies the outcomes generated by the
minio_bucket_objects_size_distribution query.

Use local time Enable query history @ Enable autocomplete @ Enable highlighting € Enable linter

Il
(-]

Q  minio_bucket objects size distribution

Table  Graph

'

minio_bucket_objects,_size_ instance= h project eu:9011", job="prometheus", range="BETWEEN_1024_B_AND_1_MB", server="127.0.0.1:9000'} 220
minio_bucket_objects,_size_ instance= ! project eu:9011", job="prometheus", range="BETWEEN_10_MB_AND_64_MB", server="127.0.0.1:9000°} o
minio_bucket_objects_size_ " instance=" b project eu:9011", job="prometheus", range="BETWEEN_128_MB_AND_512_MB", server="127.0.0.1:9000°} 0
minio_bucket_objects_size_ Instance= he: project eu:9011", job="prometheus”, range="BETWEEN_1_MB_AND_10_MB", server="127.0.0.1:9000'} 0
minio_bucket_objects,_size_ instance= ! project eu:9011", job="prometheus", range="BETWEEN_64_MB_AND_128_MB", server="127.0.0.1:9000'} o
minio_bucket_objects,_size_ instance= ! project eu:9011", job="prometheus", range="GREATER_THAN_512_MB", server="127.0.0.1:9000°} o
minio_bucket_objects._size_ instance= ches. project eu:9011", job="prometheus", range="LESS_THAN_1024_B". Server="127.0.0.1:9000") o
minio_bucket_objects_size_distribution {bucket="registry-ches". Instance="charityconsole.ches.charity-project eu:9011", job="prometheus", range="BETWEEN_1024_B_AND_1_MB", server="127.0.0.1:9000} 2
minio_bucket_objects_size_distribution {bucket="registry-ches". Instance="charityconsole.ches.charity-project eu:9011", job="prometheus”, range="BETWEEN_10_MB_AND_64_MB", server="127.0.0.1:9000'} 0
minio_bucket_objects_size_distribution {bucket="registry-ches", Instance="charityconsole.ches.charity-project eu9011", job="prometheus", range="BETWEEN_128 MB_AND_512_ME", server="127.0.0.1:9000'} o
minio_bucket_objects_size_distribution {bucket="registry-ches". nstance="charityconsole.ches.charity-project eu:9011", job="prometheus", range="BETWEEN_1_MB_AND_10_ME", server="127.0.0.1:9000'} o
minio_bucket_objects_size_distribution {bucket="registry-ches". Instance="charityconsole.ches.charity-project eu:9011", job="prometheus", range="BETWEEN_64_MB_AND_128_MB", server="127.0.0.1:9000"} o
minio_bucket_objects_size_distribution {bucket="registry-ches". Instance="charityconsole.ches.charity-project eu:9011", job="prometheus", range="GREATER_THAN_512_MB", server="127.0.0.1:9000"} o
minio_bucket_objects_size_distribution (bucket="registry-ches", instance="charityconsole.ches. charity-project eu:9011", job="prometheus", range="LESS_THAN_1024_B". server="127.0.0.1:9000") 6

Figure 15: Prometheus console example metric.

Moreover, the integration between Prometheus and the MinlO console offers valuable information,
as demonstrated in Figure 16.

OBJECT STORE

EEI% License
Usage Traffic Resources Info
Server Information
Buckets L Objects @ Reported Usage

2 228 P va

[Fes ]
Servers e Drives a
Online @ Offline Online @ Offline
=]
Servers (1)
127.0.0.1:9000 1»'/1 : 1/1 z = mlr?utes Version: 2022-11-17T23:20:09Z Y

/data

300GiB

470GiB  30.0GiB 17.0GiB

Figure 16: Prometheus-MinlO Console integration.
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3.3.2 CHES Registry

CHES Registry can be accessed through the Docker Registry APls. These APIs are described in the
official Docker documentation®>. Catalog API is the simplest of the APIs provided, displaying a list of
the available images pushed in a registry. An example of the catalog API is illustrated in Figure 17. In
this case it hosts an example hello-world image.

{"repositories”:["hello-world"1}
Figure 17 Catalog APl example.

Finally, a list of available images can be obtained from a terminal (using the curl utility), as illustrated
in Figure 18.
$ curl https://charity.ches.registry:5045/v2/ catalog

$ [
Figure 18: Example of the catalog API for CHES Registry hosted in a K8s cluster.

{"repositories":["hello-world"]}

3.4 Licensing

This component, including all originally created source files, scripts and other resources are released
as free software under the terms of the GNU General Public License version 3 or later, as published by
the Free Software Foundation.

MinlO is provided under GNU Affero General Public License version 3 which enables us to use it as an
open-source component providing that we also use a GNU public License.

Prometheus, Datashim and K8s are protected under Apache License which gives us full usability of
their open-source components.

3.5 Results obtained in relation to the objectives (KPIs)

The work conducted in Task 3.2 aims in achieving the objectives along with the requirements and
targeted KPIs. More specifically, the KPIs that will be met from Objective 2 (Provide holistic support for
the orchestration of advanced media solutions) are:

¢ KPI-2.2 Storage formats: at least one (block, file, object)
o As already mentioned, as a storage solution, an open-source framework created by
IBM is utilized, called MinlO. This framework uses object storage over block storage
so it is in fact a combination of the two systems, preserving the lightweight distributed
nature of block storage while providing the plethora of metadata and easy usage of
the object storage.
= Extensive research has been conducted in the field of storage solutions in
edge computing infrastructures. A scientific journal entitled “A Lightweight
Storage Framework for Edge Computing Infrastructures/EdgePersist” [49] has
been published in Software Impacts (Elsevier) presenting the proposed edge
storage solution (CHES).
¢ KPI-2.3 Edge storage hit rate: higher than 70%
o The native “disk cache” feature of MinlO has been investigated. Disk caching feature
refers to the use of caching disks to store content closer to the tenants allowing users
to have the following: i) object to be delivered with the best possible performance

15 https://docs.docker.com/registry/spec/api/
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and ii) dramatic improvements for time to first byte for any object. Experimental
results reveal a hit rate exceeding 84%.

o An online proactive caching scheme based on deep recurrent neural network models
is investigated for research purposed, to predict time-series content requests and
update edge caching accordingly.

e KPI-2.4 Blockchain for edge storage transaction rate: more than 4 transactions per second

o A blockchain database, namely BigchainDB is being explored. More specifically,
BigchainDB supports both blockchain (decentralization, immutability, and owner-
controlled assets) and database properties (high transaction rate, low latency,
indexing, and structured data querying). One design goal of BigchainDB is the ability
to process a large number of transactions each second. Each BigchainDB instance is a
virtual concept consisting of three parts: i) a MongoDB database, ii) a BigchainDB
server and iii) a Tendermint communication node which uses a Byzantine Fault
Tolerant middleware for networking and consensus. Experimental results
demonstrated that MinlO is able to achieve a higher transaction rate (4.3) compared
to BigchainDB (3.2) for a specific class of experiments. The performance evaluation
was executed through Locust?’, an open-source load testing framework that enables
the definition of user behaviour and supports running load tests distributed over
multiple machines and simulates millions of simultaneous user requests. Overall, the
experimental results demonstrated that MinlO presents the best performance in both
read and write operations. To further evaluate the storage systems, we also measured
the RAM usage, the CPU usage, the disk latency and the disk 10 time for a single user's
request and for all users' request. Again, MinlO achieved the best performance. A
scientific journal in the context of performance of storage systems in edge computing
infrastructures entitled “Performance Analysis of Storage Systems in Edge Computing
Infrastructures” has been published in Applied Sciences (MDPI) to the Special Issue
Cloud, Fog and Edge Computing in the 10T and Industry Systems.

o In addition, we conducted extensive experiments within a distributed computing
environment, utilizing a configuration consisting of four nodes, and once again, we
observed consistent outcomes. Specifically, MinlO demonstrated a superior
transaction rate in comparison to BigchainDB and also achieved a better performance
in both read and write operations. This reaffirms the robustness and efficiency of
MinlO across varied deployment scenarios, further underscoring its potential as a
high-performance data storage solution. A scientific conference paper entitled “A
Study on the Performance of Distributed Storage Systems in Edge Computing
Environments” has been submitted to the 9th ACM/IEEE Conference on Internet of
Things Design and Implementation (loTDI 2024), showcasing the aforementioned
results.

3.6 Relation to research questions

There are a number of research questions regarding the edge storage, which are actively being
researched at the moment. These questions include the intelligent data placement in computing
networks, the pro-active and intelligent caching of data, the minimization of resource waste and the
maximization of resource efficiency and the harmonization of lIoT network diversity. The present
research work and the designed component provides solutions to most of these open research
guestions by providing a complete edge storage solution that takes into account the present issues in
loT edge networks and the vast number of data transactions that continuously happen between them.

Pro-active and intelligent caching of data are two questions that also trouble the academic community

16 https://www.bigchaindb.com/
7 https://locust.io/
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and the industry for a very long time. It concerns the replication or migration of data before they are
needed to have them ready for usage when they are finally needed. This minimizes the wait time of
operations since the I/0 and network operations, which usually take much more time to be completed
than processing does, are performed before they are needed. In order to achieve that, an edge storage
system needs to be able to predict the need for a specific data packet early enough to be able to
complete the data operations before the need arises. Modern approaches are using machine learning
in order to profile the applications and the users of a system, extracting patterns of behaviour that
hint at the future data operations. The presented solution is using Kubernetes as an orchestrator,
which enables us to define certain node affinity and node selection rules that aid the selection of
storage workers and the placement of the data inside an edge cluster. The affinity rules are relaxed
rules that are instructing Kubernetes to prefer nodes that are meeting most of the affinity rules
specified. On the other hand, selection rules are strict and instruct Kubernetes to deploy the storage
workers on nodes that fulfil all of the selection rules. These rules can be dynamically set either by a
network administrator or by an automated mechanism such as an intelligent agent or a machine
learning model that can estimate the most efficient placement of storage workers.

Harmonization of loT network diversity concerns the definition of a uniform way of handling the
various loT devices that can be a part of an edge cluster. An loT edge network is like a living organism.
The parts that comprise it can change at any given time either because they do not wish to be part of
the network anymore, due to hardware or software malfunction, scaling out and in operations or for
any other reason that removes or adds new devices over the device-edge-cloud continuum. The
presented solution is using K3s as an orchestrator which is compatible with most devices that run
windows or Unix based operating systems. This enables the administrators to create generalized
deployment scripts that handle the deployment, configuration, un-deployment and re-deployment of
the storage workers. These generalized scripts are highly configurable and can be edited in real time
by higher level scripts and automated mechanisms adding more layers of intelligence and automation
to these deployment and configuration processes. Additionally, DLF provides a uniform way of
accessing the data, using the local file system of each device, eliminating the need of customized
solutions for each new device that becomes a member of the device-edge-cloud continuum.

3.7 Evaluation of CHES

3.7.1 Evaluating CHES through Resource Utilization and Quality of Service Metric Analysis

The CHARITY Edge Storage Component aims at improving the Quality of Experience (QoE) of the end-
users by migrating data “close” to them, thus reducing data transfers delays and network utilization.
To evaluate the effectiveness of the storage component, a number of resource utilization and Quality
of Service (QoS) metrics are collected using the Prometheus system. The data are collected on the
edge, by Prometheus agents running on edge nodes that handle the data storage. These data are
stored in the Prometheus database of each edge cluster. The data are collected at regular intervals of
5 minutes throughout the functional period of the component, i.e. for the whole duration that the
edge storage component is active and waiting for serving data requests.

The evaluation metrics employed are divided into two categories:

e Resource consumption: CPU available (total, used), RAM available (total, used), HDD available
(total, used), Network available (total, used)
e Performance: Throughput, Data request response time, and Network time

The resource consumption metrics of the first category are all being passively collected by the
Prometheus agents placed on storage nodes. The performance metrics of the second category on the
other hand, require a client-side approach so they are actively collected only during benchmarks and
tests.

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 45 of 1



D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive ... n.

The evaluation is conducted using two CHES deployments, one in a local and one in a remote edge
cluster. The behaviour of CHES is evaluated using a collection of small to medium binary files ranging
from 15KB to 10MB. All these files are forming the evaluation dataset that is stored in various MinlO
buckets, created and managed by CHES in the local and remote edge cluster. These buckets are then
mounted onto new pods, using the DLF, and these new pods are taking the role of clients, sending data
requests to the CHES and recording performance metrics for these requests.

Figure 19illustrates the percentage change of various resource utilization metrics -CPU Usage, Memory
Usage, Available Memory, Disk Write Latency, Disk 10 time- during intense data transactions and
during normal functionality of the node.
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Figure 19: Percentage change of various resource utilization metric.

As the results suggest, CHES is not overusing the RAM of the node, although it is slightly increasing the
usage of the CPU and the disk operations, as expected. This proves that CHES is lightweight enough to
be deployed on most edge devices. More specifically, the RAM related metrics are near to zero,
meaning almost no change, the CPU metric is slightly increased while the disk metrics are increased
by a larger degree, proving intense I/0 activity.

Client-side metrics collected to assess the impact of CHES on QoE, are presenting a clearer picture of
how CHES improves the response times of various data requests. Figure 20 and Figure 21 show the
comparison between read, write and delete operations for the local and the remote CHES respectively.

we local_delete == |ocal_write local_read

Figure 20: Read, Write and Delete operation response times in milliseconds for the local CHES deployment.
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Figure 21: Read, Write and Delete operation response times in milliseconds for the remote CHES deployment.

Due to the object store nature of MinlO, it can be observed that write operations are more time
consuming compared to read and delete operations. On the other hand, read and write operations do
not differ much compared to each other, the only difference is the network delay for the final file
transfer, which is pretty small taking into account that present evaluation tests were conducted using
file transfers of multiple small to medium files.

The comparison between the different operations are similar but at a different scale; for the local
CHES, response times vary between 3 to 17 ms while for the remote CHES, response times vary
between 84 to 450 ms. This is becoming more obvious when putting the response times into direct
comparison, as illustrated in Figure 22. The request response time for the local CHES is under 20 ms
for all file operations which is significantly lower than the remote CHES. In summary, all data operations
were significantly enhanced during runtime when the data storage was placed near the edge devices.
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Figure 22: Comparison of response times for various operations for the remote and local CHES deployments.

In conclusion, the above experiments prove two things: a) the lightweight nature of the edge storage
component, making it a perfect fit for edge device deployments and b) the great reduction in data
request response times, which on some edge use cases is a necessity for their basic functionality.
Detailed results can be found at the scientific conference paper entitled “Towards a Distributed
Storage Framework for Edge Computing Infrastructures” [29] which was presented at the 2nd
Workshop on Flexible Resource and Application Management on the Edge (FRAME 2022).
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3.7.2 Assessing CHES's Performance Perspectives

One of the main challenges in the development of applications at the edge is the efficient data sharing
between the edge nodes, and it can be accomplished within individual application frameworks or
through an external storage service. Despite significant improvements in offering an efficient edge
storage solution, there are still some issues to be addressed related to the functional and non-
functional requirements of cloud/edge-based applications, including low data retrieval latency, high
availability and integrity, dealing with a potential shortage of storage resources at an edge node,
supporting rapid application component deployment or automatic restart/replacement of
unresponsive components, and dealing with the high heterogeneity presented in edge environments.
These requirements can be achieved by optimizing resource usage, allocation, and data management
plans on edge devices.

The plethora of available storage systems and underlying technologies have left researchers and
practitioners alike puzzled as to what is the best option to employ in order to manage and process, in
the most efficient way, the massive amount of data generated by loT/edge devices. Therefore, we
focused on highlighting the advantages and disadvantages of various edge-enabled storage systems.
Thus, we present a performance analysis between CHES (MinlO storage), IPFS*® and BigchainDB. The
evaluation metrics employed are divided into two categories: resource consumption and performance.
More specifically, three aspects were taken into consideration: i) transaction rate, ii) response time,
and iii) resource utilization. To enhance the validity of our findings, each experiment was conducted
over five iterations, thereby enhancing the reliability of our results and mitigating potential biases.

Figure 23 illustrates the transaction rate achieved by each storage solution. The results indicate that
CHES achieves the highest transaction rate followed by BigchainDB, while the IPFS exhibits the worst
results. For instance, the transaction rate obtained by CHES is 3.3 and 1.3 times larger compared to
the IPFS and BigchainDB, respectively.
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Figure 23: Transaction rate achieved by each storage solution.

Figure 24 demonstrates the average response time in milliseconds of each storage solution. Figure 24a
and Figure 24b visualize the average response time of a single request of read and write operations,
respectively. On the other hand, Figure 24c and Figure 24d illustrate the average response time for all
users' requests. The standard deviation of the response time is also illustrated in each figure in a
stacked bar plot manner on top of each average response time. Overall, as indicated in the above
figures, CHES (MinlO) presents the best performance in both the read and write operations.

18 https://ipfs.tech/
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Figure 24: Performance of read/write operations of each storage solution.

To further evaluate the storage systems, we also measured the RAM usage, the disk latency, and the
disk 10 time for a single user's request and for all users' requests, similar to the previous figures. The
CPU was also recorded but not plotted because its usage was negligible. This proves that the storage
is lightweight enough to be deployed on most edge devices. Figure 25 and Figure 26 illustrate the
statistics for the read and write operations, respectively. Figure 25a and Figure 26a indicate the
percentage of the RAM usage where, as depicted, CHES consumes the least amount of RAM in each
case. In addition, BigchainDB follows CHES, only in the case of a single request, with the IPFS is ahead
of BigchainDB in all users' requests. In the rest of the figures where the disk latency and and the disk
IO time are presented, CHES achieves the best performance followed by BigchainDB, while the IPFS
yields the worst performance results. The disk metrics are increased by a larger degree, proving intense
I/0 activity.

Detailed results can be found at the scientific journal entitled “Performance Analysis of Storage
Systems in Edge Computing Infrastructures” [28] which has been published in Applied Sciences (MDPI)
to the Special Issue Cloud, Fog and Edge Computing in the loT and Industry Systems.
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Figure 25: Statistics for the read operation of each storage solution.
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Figure 26: Statistics for the write operation of each storage solution.
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3.7.3 Evaluating CHES Registry sub-component

The seamless delivery of XR applications on resource-constrained edge devices, poses unique
challenges due to limited network bandwidth, latency constraints, and intermittent connectivity.
Additionally, the size of XR application images is often significant, and downloading these images from
remote repositories can put a burden on the limited network bandwidth and introduce significant
latency. CHES Registry sub-component serves as a crucial component, addressing the need to bring
application images closer to the edge while minimizing network traffic and image download durations.

The feasibility and efficiency of the CHES Registry are evaluated through the examination of two
specific use case scenarios: UC2-1 VR Medical Training and UC3-1 Collaborative Gaming. During the
pilot evaluations of the VR medical training application, retrieving the 10GB-sized LSPart1 VM image
from a remote repository led to considerable network congestion, causing delays in image download
and concurrent network operations. This issue was addressed by pre-positioning the VM image within
the CHES Registry on the same edge node before initiating a new VR session request. This change,
which involved deploying the new VM from a local repository rather than a remote one, significantly
reduced deployment times. In initial tests without CHES Registry pre-loading, the application took over
10 minutes to deploy, and in some cases, even up to 20 minutes. With CHES Registry pre-loading,
deployment times dropped to 1-2 minutes. These results indicate that CHES Registry achieved
deployment times up to 10 times faster than raw Kubernetes deployment. As the compressed LSPart1
VM image size is further reduced to 2.82GB, it will provide even more optimal deployment times. In
the case of the Collaborative Gaming Use Case, the CHES Registry solution proved instrumental in
minimizing network load and reducing deployment time for new game servers. This was achieved by
strategically placing and hosting game server Docker images near the edge nodes in anticipation of
their usage.

Overall, the evaluation reveals a significant reduction in application deployment time, indicating the
positive impact of the proposed solution. Detailed results can be found at the scientific conference
paper entitled “Streamlining XR Application Deployment with a Localized Docker Registry at the Edge”
[48] which was presented in the European Conference on Service-Oriented and Cloud Computing
(ESOCC 2023).
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4  Resource-aware Adaptation Mechanisms

While the cloud offers extreme scaling opportunities through the dynamic allocation of physical
resources to meet demand, it comes at a cost. Apart from the design challenges of engineering an
elastically scalable architecture, the financial costs of cloud resources require careful monitoring.
Although an application may be able to physically scale to meet demand, it may not be able to do so
economically - unconstrained growth leads to unconstrained costs and if the returns do not exceed
the investment, then cost can serve as a scalability brake. Edge computing resources such as those
increasingly offered through metropolitan points of presence by hyperscalers and the forthcoming
rollout of hyper-local edge infrastructure throughout 5G radio networks, offer new architectural
options for domains such as real-time media streaming which require the flexibility of the cloud with
the low latency typically associated with locally dedicated hardware. In comparison to traditional
cloud deployment, edge resources are far scarcer requiring a more measured approach to scalability
as there may simply be insufficient physical resources available in proximity to the user for optimal
operation.

Across the cloud and edge, software engineers will increasingly find themselves challenged with
designing software that needs to scale and dynamically adapt its tactics to suit the computational and
network resources currently available within the environment in which it operates. With a Service
Based Architecture approach increasingly favoured in modern architectures, there is a growing
challenge with respect to how we equip services with sufficient adaptability to adjust their operation
in line with the ebb and flow of physical resources available, and affordable, in their local environment.

4.1 Dynamic Software Adaptation

Software should be designed for change so that maintenance and reuse efforts can be minimised.
Designing for variability has the significant advantage of enabling architects and engineers to delay
key decisions until late in the development cycle or even until run time through site configuration. The
longer we can accommodate a delayed decision, the more information we may have to hand when
having to make the decision as requirements are adjusted in line with customer needs and
environmental realities. These delayed design decisions are known as variability points [6] and the
successful integration and curation of variability points has been the subject of intensive research for
decades [7]. Variability points serve a key role in the design and construction of software product lines
in which organizations seek to reassemble collections of reusable components into distinct members
of a product family through leveraging a wide array of architectural, engineering and run-time
variability point strategies ranging from abstract, interchangeable design stereotypes to run-time
command line parameters [8].

While there is much active research into Software Product Line Engineering (SPLE) to attain
development and deployment reuse efficiencies at industrial scale [9], the approach necessitates a
highly planned, rigorous, and disciplined approach to variability management throughout the software
design and implementation phases. It facilitates the reuse of software across multiple products in the
same family by carefully designing variability points that can be leveraged during the software build
and deployment process. An extension of this approach, known as the Dynamic Software Product Line
(DSPL) paradigm, merges SPLE with techniques to adapt software at runtime to produce a collection
of variability points that may be manipulated through configuration or runtime binding to alter the
behaviour of deployed software [7].

Configurability lies at the heart of modern software development, and it is rare for software to be
developed to such a narrow purpose and exact set of parameter values that no deployment
configuration is required. Indeed, configurability is desirable as it can improve the versatility of
software and often enable functional behaviour or adaptation to environmental setups that were not
envisioned at the time of initial software deployment. While some software is equipped with runtime
dynamic configurability and zero downtime, most of the software at least supports static
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configurability. This could be facilitated through environment variables, command-line parameters or
configuration held in a file or repository of some form. Such configurability essentially exposes a
collection of variability points which can be manipulated to affect the behaviour of the software and
the principle is the same irrespective of whether the software was developed in-house, open-source
or closed-source acquired from a third party.

The number and nature of variability points exposed will vary from one application to the next and can
range from debugging trace activation to port numbers and timeout values, from sampling rates to
thread numbers. In fact, the very configurability of software often results in a software configuration
space explosion [10] that causes challenges for the testability of software (Linux has well over 10,000
configurable features [11]). In the hands of a knowledgeable user however, configuration is a powerful
tool to adapt and tune software to its environment and user needs.

4.2 A structure for adaptation

In [12], the authors put forth a vision of autonomic computing in which software systems could self-
manage according to specific goals. Each component would be designed as an autonomic element
which would manage its own internal behaviour and relationships with other autonomic elements
through integration of an autonomic manager in each element. This manager would take responsibility
for monitoring the operation of the element and its interactions and adjust the operation of the
element as required (e.g., enable/disable features).

The autonomic manager comprises of what has come to be known as a MAPE-K loop - Monitor,
Analyze, Plan and Execute according to available Knowledge. In DSPL, the autonomic manager
becomes the adaptation manager as shown in Figure 27.
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Figure 27: MAPE-K Loop [7].

The Monitoring step is concerned with capturing data regarding the properties which will drive the
adaptation choices. The Analysis step examines the monitored data and performs any necessary pre-
processing before making it available to the Planning step which decides, if adaptation is required,
which variant of the system is more suited to the current conditions. Once the variant has been
identified then the Execution step performs the adaptation.
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4.2.1 Context Monitoring & Analysis

Applications and their environment need to be monitored to observe when the operation of software
needs to be adapted. To record the properties being monitored, the adaptation manager can maintain
flat context variables [13] or a more sophisticated hierarchical ontology [14] maintained as a
dynamically updated property set that can be undergo analysis using pre-defined rules or queries to
check for conditions that would warrant an adaptation.

4.2.2 Planning

“Our claim is that a major reason for the lack of context-aware, adaptive mobile applications is the
inherent complexity of building them. Not only need the developers understand the main functionality
of the application and how this can be provided on a mobile device, but they also have to conceive
different application variants, specify how applications are linked to the execution context variables,
and consider which variant should be activated under which context conditions. This complexity may
easily appear like an insurmountable barrier to the developer” [13].

As mentioned previously, the potential system variant explosion arising from variability points in a
software application can overwhelm the testing efforts. If left to an adaptation manager to explore
unbridled, automated manipulation of variability points at runtime can lead to operational profiles
that were not tested or foreseen by the developers. In the field of DSPL, the approach of static goal
evolution involves an approach in which a software system has a fixed adaptation policy and system
variants [7]. In the event the system needs to adapt to a new goal (operate at a reduced media
streaming resolution for example), then the system is stopped, modified and restarted. Verification of
such systems is greatly simplified as the state space is highly constrained. This suggests a model in
which the Planning step of the MAPE-K loop can collapse to the selection of a particular variant in
response to a given goal.

4.2.3 Execution

To initiate adaptation, it is required to reconfigure the software using some form of runtime
reconfiguration mechanism. How this may be accomplished naturally depends on the design and
capabilities of the software. Approaches based on capabilities of the software architecture range from
dynamic aspect weaving essentially rewiring the software assembly on the fly [15] to service re-routing
in a service-oriented architecture. In [11], the authors examined self-adaptation within a micro-service
architecture for a media streaming platform in which they proposed leveraging the rollout
functionality available in the Kubernetes platform which can perform rolling upgrades of a given micro-
service without service interruption.

4.3 Challenges

In CHARITY we seek to enable the self-adaption of software systems to significant fluctuations in the
resource availability within the execution environment. Based on an analysis of the state of the art
and considering the needs of CHARITY, we identify several challenges.

¢ Avoid design time intrusions.
We seek to avoid prescriptive, opinionated approaches which step into the architecture and
design of such systems requiring scaffolding and algorithms to be integrated. We adopt this
position for several reasons. Firstly, most software is legacy software and seeking developers
to modify this software retrospectively creates a significant barrier to adoption. Secondly,
updates to the adaptation design and capabilities places an onus on developers to integrate
these changes into their software resulting, over time, in version mismatches and requiring
constant vigilance to maintain backwards compatibility. Thirdly, not all the components and
services employed in a given software system are modifiable. They may be commercial or
otherwise unavailable for modification and, even when the source is available, it may have
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been written by a third party (e.g., open source) and difficult to modify without subsequent
upgrade and maintenance concerns.

¢ Prevent platform instability.
CHARITY seeks to support a micro-service architecture which can involve chains of services
working together. When performing an adaptation, we need to be careful that the integrity of
the chain is maintained.

e Accommodate user-level adaptation.
CHARITY also aims to support media streaming software services that operate at scale. At any
given point in time, there will be a mix of users using a particular service that may necessitate
different priorities. For example, in a flight training simulation system, users co-operating in a
key team operational training exercise may take priority over individual users experimenting
with the controls of the flight simulator. Alternatively, we may want to maintain a high Quality
of Experience (QoE) for existing users but lower the QoE for new users entering a resource-
stressed environment. Supporting this model of operation will require that CHARITY supports
a multi-tenant architecture where applications can simultaneously operate in different modes
and priorities.

¢ Transparency & Tractability
It is imperative that system adaptations are predictable and visible to avoid instability or loss
of confidence.

e (Cattle Not Pets
The cloud-native metaphor of pets versus cattle [47] promotes that a running software service
should not be treated as a pet - unique, carefully managed and whose loss causes upheaval.
Instead, it should be treated as cattle - easily and seamlessly replaceable with another fulfilling
the same role and managed in bulk.
An infrastructure that supports the dynamic adaptation of software applications could request
that candidate applications be themselves adaptable at runtime and expose APIs that can be
used to have the application manage its runtime resource usage itself. This would be a more
straightforward proposition than seeking to adapt applications that have no inherent
capability to do so themselves dynamically. However, changing the state of services within an
application in this fashion breaks one of the bedrock tenets of cloud native software design -
services should be transparently disposable and replaceable. If we have altered the inner
workings of one or more services within an application through adaptation APIs that it exposes,
then what happens if that service terminates unexpectedly (and needs to be restarted) or
needs to be migrated to another server? Cloud native demands this versatility yet how does
the replacement get to the state that the service it is replacing was in? This would require
state tracking and synchronisation which incurs significant overhead and almost certainly
would require intrusive customization of the application to support this - not to mention
customization of the adaptation infrastructure itself that would be required to invoke
application-specific APIs using whatever communication protocol the application supports.
This led us to shy away from using application-specific APIs for dynamic application adaptivity
and instead strive for a solution that would be reusable across third party applications and
adhere to the tenets of cloud native computing. To support cattle not pets.

4.4 Adaptation Infrastructure

As discussed previously, variability points are used in Software Product Line (SPL) engineering to delay
decisions until such point as we are better informed as to how software needs to adapt to its use and
environment. Run-time adaptation through manipulation of variability points at run-time is used in
Dynamic SPL (DSPL). In CHARITY we propose to implement a DSPL model which utilizes existing
variability points in a software application to facilitate provisioning of different service editions where
a service edition is an application instance with a distinct runtime configuration. This runtime
configuration would be selected in accordance with the observed environmental conditions.
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In this model, the function of any given service edition does not change during its lifetime (i.e., the
software itself is not expected to self-adapt) but rather different configurations of it are selected
according to the environmental circumstances. This model is depicted below in Figure 28 in which we
show three services - each with multiple editions - that exchange information to operate an overall

software application.
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Figure 28: Service Editions used to satisfy different environment conditions.

In effect, we propose to use static goal evolution [7] in which we constrain the variability state space
to explicitly configured variants and thus prevent the application from entering into unforeseen (and

untested) states. There are a range of challenges involved here:

1. How do we enable multiple editions of a single service to operate alongside each other.
2. How do we decide which editions to use under given circumstances and wire these together

into a safe and coherent service chain.

3. How do we route traffic between services without them needing to be made aware of multiple

editions.
4. How do we monitor the environment.

As we will discuss in the following sections, we propose an evolution of the MAPE-K loop introduced
previously for runtime adaptation in DSPL. In CHARITY we propose to position Monitoring and
Container Management platforms between the Adaptation Management and Application Layers as

shown below in Figure 29.
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Figure 29: MAPE-K look modified to enable extraction of sensors and executors from the application layer.

Note that in Figure 29, the sensors shown in the Application Layer are facilitated but not obligatory.

The following sections outline how we plan to meet these in CHARITY according to the previously
identified research and technical challenges.

4.4.1 Configuration Containment

One of the fundamentally transformative benefits of Docker containers for software development has
been the ability to create separate self-contained environments for experimentation and production.
On asingle host, we can deploy multiple containers hosting applications that, if run collectively outside
the container confines on a single node, would come into conflict with each other - for example,
conflicting version requirements of common software packages; conflicting requests to use the same
ports, environment variables or journal files. Containers allow us to run multiple copies of the same
application side by side without coming into conflict. This ability to contain the application’s
environment to just that application allow us to painlessly run multiple copies of the same application
side-by-side with different configurations. Configurability through feature flags and configuration
options at application launch is a widely used technique in software development to offer a variety of
deployment variations to suit the needs of the given environment (whether business or operational)
[4]. Docker containers enable us to leverage the power of this configurability in a production
environment.

ENVIRONMENT ENVIRONMENT ENVIRONMENT
CONDITIONS1 CONDITIONS 2 CONDITIONS N

— Contueton Confgurion
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Figure 30: Run differently configured copies of a single application simultaneously.

Given a particular set of environmental conditions (e.g., GPU availability, network latency, user request
profile) then we may find that a change to the configuration of a given component to alter its mode of
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operation (e.g., disable feature, reduce sampling rate) may produce a more stable application that
operates more in tune with the environment in which it finds itself.

While some software is equipped with runtime dynamic configurability and zero downtime, most will
support static configurability through environment variables, command-line parameters or
configuration held in a file or repository of some form. Such configurability essentially exposes a
collection of variability points which can be manipulated to affect the behaviour of the software -
irrespective of whether the software was developed in-house, open-source or closed-source acquired
from a third party. By leveraging the environment isolation properties of containers, we can launch
multiple instances of a service in different configurations. As we shall see, coupled with the ability of
Kubernetes to orchestrate the launch of groups of services, containers bestow a powerful ability to
seamlessly replace whole subsets of a service-based application to deliver a coherent application
variant - involving multiple individual service variants working in concert - in a safe and predictable
manner.

4.4.2 Service Dependencies

In a distributed service-based architecture, some service relationships will have stricter constraints
than others. Some relationships will be predicated on extremely low latency communications, use of
shared host resources like network space (localhost), storage volumes and shared memory. Some
services need to start together, scale together and stop together. We require service groupings to
accommodate these circumstances and such a concept can be manifested with Kubernetes Pods.

Pods enable us to group containers together into a single meta-container that is deployed on a single
host. The Pod lifecycle controls all the containers within. Below in Figure 31 we depict the high-level
Pod concept.

NODE

All containers within a Pod
aredeployed together and
retired together

A Pod is deployed on a single

Co-habiting the same Pod

means containers within can
communicate efficiently and
share a common namespace

just as if they were the only Node .
containers running on a May have multiple Pods per
Node

standalone host :
Pod Of Containers

Figure 31: Co-dependent Containers are deployed as a unit in a single pod.

With Pods, we have a means of collecting tightly related services into containers within a single
deployment unit. This gives us a powerful and elegant mechanism to deploy, redeploy, reconfigure,
and retire such service groupings as a unit.

4.4.3 Service Routing

With more focused and cohesive segmentation of responsibilities into separate services, service-based
architectures rely extensively on inter-service communication to collectively perform their work. In
Microservice-based architectures, the mechanics of enabling services to communicate with each other
robustly requires careful and detailed design and planning. Apart from peer discovery, there are
significant challenges involved in establishing and monitoring communication links. Transferring
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control from one process to another - irrespective of the distance between them - requires
coordination in the event of link failure. We must facilitate failover between multiple copies of services
and indeed decide on the efficient distribution of traffic when multiple peers are available to accept
it. When deploying a new service edition (same service software with different configuration) we need
a means to allow both editions to co-exist for some short duration of time and to seamlessly handover
traffic from the old service edition to the new one.

Our initial investigations and research focused on the use of a Service Mesh [5] to offer an overlay that
could be used to manage routing, and route changes, of communication between services so that we
could switch between service editions. While this initially looked promising it did become clear that it
was not without its shortcomings. It would increase the complexity of the design through the
introduction of an additional infrastructure layer that would require deployment, configuration, and
maintenance. Additionally, it would require a custom synchronisation layer to co-ordinate proxies in
the service mesh such that switches between service editions occur together when multiple
containers/pods are involved.

As we progressed our thinking and our familiarity with Kubernetes, an alternative approach suggested
itself in the form of Kubernetes Services. A Service can be used to expose a single IP address and
seamlessly route traffic to multiple Pods - ideal for load balancing traffic between identical pods or
transparently handling a restarted pod that has been assigned a new IP address. Below in Figure 32
we see a high-level depiction of a Kubernetes Service.

Directs incoming traffic from
anincoming client to

multiple Pods /
Ensures continuity of \‘
connectivity from dientto

Pod even when Pods are
restarted or moved

USER OFPOD

Adesses Consistent
endpoint

Figure 32: A Kubernbetes Service conceals pod churn from the clients.

4.4.4 Application Quality Modes

Consider an application comprised of three microservices as shown below. The services deliver a
response or perform a particular action in accordance with a request. We refer to the sequence of
services involved in delivering on this response as a Service Chain.

APPLICATION
REQUEST

’ - -
- T - -

RESPONSE

Figure 33: Simplified Application with Microservice Architecture.

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 59 of 1



D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive ... n.

For an interactive XR streaming application, the QoE is typically measured according to the response
or action performed in response to the triggering request on several dimensions.

&
A

command

Application

Quality Of ExpenenH
Round Trip Tumed/? Resolution /& Features
Frame rate JIT Correction

[LL] Ve

Figure 34: XR Application Quality of Experience is often multi-faceted.

The Round-Trip Time (motion-to-photon, glass-to-glass) captures how long it takes for the application
to deliver updated imagery in response to the triggering user interaction. The Frame Rate captures
how many frames per second the application is delivering to the user device. Resolution captures how
many pixels per frame are being rendered. Just in Time (JIT) Correction is the term we will assign to
processing carried out on the generated media stream to try and compensate for insufficient frame
rates, delays, or insufficient resolution. Such processing generally involves algorithmic guess work to
repair incomplete media streams on the fly through pixel or frame rate upscaling. Features typically
involve visual flourishes such as sophisticated weather effects, reflections and shadows but could also
include some Al-driven augmentation such as object recognition and framing to assist the end user.

In an ideal world, we may want a sub-20ms RTT, 90 FPS, 4K resolution, no need for JIT correction and
full feature set enabled. In an ideal world we have unlimited resources. The application provider knows
that resources are not unlimited and that networks get congested. We propose to offer the application
provider the facility to specify configurations of their application that would offer acceptable, but less
than ideal, Quality of Experience specifications. The objective is to allow the application to remain
operational in resource contested environments. To explore this concept, we present the application
provider with the facility to specify three modes of target QoE - High, Medium, Low - representing
the different levels of QoE we want to be able to deliver. We will term these QModes. While the
objective of QModes is to capture different levels of physical resource consumption by the application
running in a virtualized environment, what constitutes a given QMode only makes sense within the
context of a particular application. QModes may be differentiated for example, by the set of rendered
features (e.g., accurate weather effects, reflections, shadows), by the number of simultaneously active
users, the resolution and/or frame rate delivered to the HMD, or even the placement and operation
of service components across the device-edge-cloud. For a given application deployed on our platform,
it's QMode values map to distinct deployment configurations of the application.

In the figure below we see three different configurations of an application and the introduction of a
logical switch that can choose which deployment configuration to route traffic to. In reality, not all
services are affected by a given configuration change (changing the resolution of a user interface may
have no effect on the operation of a backend database for example). Just because we change the
application configuration, then it does not imply that all the constituent service operational profiles
change.
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Figure 35: Logical QMode Switch and how it could be employed to divert traffic between different service

configurations.

In the above model, we can see that a single service may behave identically in multiple chains.

A multi-user application will likely be operating in multiple QModes simultaneously. We view QMode
as being tied to a particular traffic characteristic. Different users may be assigned different QModes
according to their circumstances (e.g., SLA, device capabilities, local network congestion levels, etc.).

Conceptually, a QMode enables network routing in a similar fashion to a VLAN in that it allows us to
segment and route traffic according to a tag. The choice of QMode to perform at can depend on a
variety of factors. Application providers may elect to differentiate based on class of device (is it capable
of high resolution, does it support frame interpolation??, etc.), speed of network, availability of edge
resources, user contract, number of local active users, etc.?°. To be able to make this choice, however,

requires that we gather and monitor this information in a centralized monitoring framework.

O

Define rules detailing how particular
values of particular metrics should raise
the alert of entering a particular QMode

WHEN conditions
RAISE alert of QMode = q

MONITORING FRAMEWORK

APPLICATION

PHYSICAL RESOURCES

Figure 36: Monitor for conditions that warrant changes to QMode.

¥ For example, SteamVR Motion Smoothing or Oculus Asynchronous Space and Time warping.

20 1t is quite possible that three QModes would not be sufficient to capture the complexity of conditions and granularity of
configuration options available to a given application provider. We have restricted ourselves to three modes to simplify

concept evaluation and development.
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4.4.5 Monitoring & Analysis

Adaptation requires context. The drivers for adaptation can vary according to the business and
resource environment but in general, applications must adapt to resource availability. An XR
application distributed across device, edge and cloud resources can depend on a delicate,
geographically dispersed, web of resources. Monitoring every leveraged resource individually, seeking
to detect bottlenecks and deficiencies, can overwhelm our decision making. Without intimate
knowledge of an application’s resourcing windows and inbuilt compensation mechanisms?!, we may
elevate disparate resource stresses (such as link delays, GPU overload, database response times) to
high priority problems that require countermeasures while, in fact, the application is still able to
operate as a whole and deliver an acceptable quality of experience to the end user. A more sensible
approach would appear to be initiating action in response to a small number of high-level red flags
that holistically capture underlying problems rather than monitoring a multitude of low-level warning
indicators.

The ultimate purpose of any application is to perform its work and deliver acceptable performance
and experience to the end user. If the application is delivering an acceptable Quality of Experience
(QoE), then we could deem the application to be performing adequately and not in need of adaptation.

Media Destination Media Source

Simulator
Control

Media
Generation

-
DEVICE EDGE CLOUD
g e IF THESE ARE ACCEPTABLE THEN THE LATENCIES
nairi m
el BEING EXPERIENCED BY ELEMENTS WITHIN THE
/¢ Resolution SERVICE APPLICATION DON'T MATTER AS IT IS
&) Al Compensation DELIVERING OVERALL

Figure 37: Monitoring High level indicators reduces decision complexity.

In Figure 37, we see representative XR metrics we can monitor for conditions that capture the overall
fitness for purpose of the application:

1. Round Trip Time: as stated before, the length of time between a user action and its reflection
on the visual experience

2. Frame Rate: How many frames per second we are delivering to the user device

Resolution: the pixel depth of the frames we are delivering

4. Al Compensation: Rate of interpolation/extrapolation we need to do locally to ‘fix’ sub-
standard resolution or frame rate being delivered from the visual renderer. This may arise if a
remote visual renderer generates lower quality media streams to reduce bandwidth needs
from the cloud while it is upscaled at the edge or on the device.

w

21 |t may transpire, for example, that a well-resourced database equipped with advanced SSD disks can
compensate for an underperforming cache relying on overly stressed RAM. Such trade-offs and compensations
are generally particular to each distinct application. In addition, application providers generally dimension some
latitude into their resource requirement specifications to accommodate leg room and usage peaks that may not
always be used. An over-eager adaptation mechanism may seek to fix a problem that does not need fixing.
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By monitoring these metrics, we can assess the application’s fitness. Requesting the application
provider to specify meaningful thresholds and operating windows for these metrics is reasonable -
unlike requesting them to specify a combination of hardware resource availability deviations that
could expose a problem.
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Figure 38: Monitoring the manifested user experience is more tractable and efficient.

While unacceptable levels of application fitness may highlight a problem, high-level indicators cannot
inform us what the cause of it is. They inform us when to investigate a manifest problem rather than
necessitating constant low-level monitoring and analysis to ascertain if we can deduce a problem.
Root-cause investigation requires examination of far more detailed and lower-level metrics (such as
individual service performance, particular link latencies or bandwidth shortcomings, and queueing
backlogs) as gathered by the CHARITY monitoring platform. The driver for this level of analysis is that
applications may be adapted differently depending on the root cause of the problem. For example, a
deficiency in the response time from a cloud-based service to an edge node may require different
adaptation than experiencing resource stresses on the edge node itself. We seek to enable application
providers to fully leverage the adaptation avenues they have available to them within their application
design.

This requires us to be able to retrieve metrics relevant to the application under investigation - an
application that may be operating across multiple nodes over the device-edge-cloud continuum.

In Figure 39, we see the role of monitoring in application adaptation.
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Figure 39: Monitoring, Analysing & Planning based on observed sensor data.
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We employ Prometheus and its Alert Manager to trigger examinations of lower-level metrics when
SLA-breaking conditions are observed with higher-level Fitness Measurements. The actual mechanics
of how QMode updates are relayed to the Application is a topic we will return to when discussing
Investigative Work later in this section.

4.4.6 Planning & Execution

When analysis of ongoing monitoring reveals the occurrence of conditions warranting a QMode
change then an alert is raised and relayed to the Prometheus Alert Manager. The Alert Manager in
turn publishes the alert.

The logical QMode Switch we referred to earlier routes to a particular application configuration based
on the current value for the QMode associated with the application. Applied at the global system level,
this would have a sledgehammer effect. We need to be lighter handed and enable QMode changes to
apply to a subset of user sessions. How this is accomplished depends on the architecture of the
application. In the case of the Collins Use Case (UC3-2 Manned-unmanned Operation Trainer), the
application operates dedicated services for each user and there is very little shared state. In this
scenario, enabling QMode changes for a single user entails a replacement of the Pods serving that
user. We could envisage other applications with different architectures in which multiple users are
served by a single group of services. In this scenario, enabling QMode changes for a single user cannot
be easily accomplished with replacing the existing services with alternatively configured instances as
this would affect all users sharing those services. Instead, we must operate a group of services per
QMode and have users who are currently assigned a common QMode to share a common group of
services??,

4.4.6.1 User-Level routing

To support user/session level granularity then the switch needs awareness about the user associated
with a given request.

HIGH
It is straightforward to route

REQUEST _ all traffic to a given variant
o - o e MEDIUM according to system Qmode.

How do we route according

to user Qmode?
M LOW

Figure 40: QMode Routing.

The proposed solution lies in associating a QMode tag with each user session and having a particular
application configuration to be employed for a given QMode tag. Adapting an application
fundamentally entails instantiating a variant of the application, having it run side by side with the
original while it prepares itself to accept traffic, and then switching live traffic to the variant so that we
can retire the original. Below we depict a snapshot in time when it has been decided to swap the user
to a lower-resource-consuming variation of the application and we are ready to switch the traffic over.

22 We have focused on integration with the Collins Flight Simulator Use Case and as such look to adapt applications that
follow the model of dedicated resources per user. In many respects this is the more challenging scenario as change
necessitates increased upheaval within the platform. We cannot simply re-route to already deployed Pods - instead we must
always initiate a rolling update.
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Figure 41: Application about to switch over to application variation that consumes less resources.

Note in the scenario depicted above that not all services in the application are reconfigured. We can
see that M2 is unchanged.

4.4.6.2 QMode Switching

Switching essentially requires reconfiguring the services dealing with a user and re-routing the user’s
traffic through these newly configured services. In Figure 42 below we see the high-level sequence of

actions required.

Collection of services

REQUEST deployed in a Pod and
referencing configuration
settings C1 which are used
RESPONSE

to deliver Qmode A

Maonitoring, Analysis and Planning reveals we need to
move from Qmode Ato Qmode B

To target Qmode 2, then we
need to update
configuration used and start
up a new Pod based on this
configuration

REQUEST

A
I
I
I
|
|
|
I
I
I
I
I

RESPONSE

CONFIGURATION C2

Figure 42 - QMode Transitioning.

1. We begin with client traffic being directed to existing services which reference configuration
C1.

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 65 of 1



D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive ... n.

2. We observe that resource deficiencies (or improvements) in the environment warrant a
reconfiguration of the service to change the resourcing footprint required. We identify a
configuration option C2.

3. Anew collection of services referencing configuration C2 is started and brought to readiness.
4. We redirect traffic from the original set of services (using C1) to the new set (using C2)

5. We shut down the original services and release their resources back to the environment.

4.5 Investigation& Experimentation

4.5.1 Service Mesh Routing

Previously reported investigations documented our initial experiments with the Istio Service Mesh.
We had envisaged this service mesh taking responsibility for re-routing traffic between individual
services by leveraging Kubernetes Pod labelling. We would inform the service mesh of changes we
would like made to the current QMode so that the mesh would reroute traffic to services offering the
target QMode. The Service Mesh approach is predicated on multiple variations of the same software
being ready and available to accept traffic. Each variation is configured (at startup) to support a
different QMode. When we need to change the QMode associated with a given user then we re-route
their traffic to the appropriate variation using the service mesh.

To this end, we investigated several strategies:

1. Istio header-based routing
Envoy header-to-metadata filter
Custom Envoy filters

External Routing Logic

WASM Plugins

bk on

Details on our experiments and findings can be found in the previous release of this document. We
avoid repeating them here for the sake of brevity and clarity. We abandoned the service mesh
approach in favour of a pure Kubernetes approach termed Rolling Updates. The key reasons for our
reassessment are as follows:

e Scalability: The scheme could suit an architecture in which single application service instances
handle multiple users simultaneously. This means we do not have to deploy multiple instances
for each individual user but only for the entire user base. However, in cases where each user
of the system has dedicated service instances (e.g., rendering engine per user) then we are
faced with a very large number of redundant services running as the number of active users
grows.

e Lifecycle Management: With the previous approach, we need to take ownership of starting
up, managing, and retiring service variations as users come and go.

e Orchestrator Integration: to startup, move and shutdown services requires interaction with
the two-level CHARITY Orchestrator. While this is feasible, it did not appear straightforward.
We would require a federated service mesh operating across cloud providers.

*  Protocol support: when seeking to support a distributed application that uses heterogeneous
protocols and payloads to communicate between services then the mesh approach could
entail a significant degree of customization.

¢ Troubleshooting: more tooling requires more integration and increased instrumentation to
troubleshoot.

e Performance: additional proxies require additional maintenance and monitoring along with
adding additional delays to the transit of traffic.
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® Recovery: if we re-route traffic and encounter problems, then we need to quickly rollback to
avoid painful service outage. Observing and managing this would entail additional oversight
and remediation further increasing the complexity of the approach.

For the above reasons, along with the observation that a more straightforward approach presented
itself, we shelved the service mesh approach in favour of a pure Kubernetes solution.

4.5.2 Rolling Updates

Rolling updates are a key feature of Kubernetes that enable updating the version of an application or
its configuration with zero downtime. This process is fundamental in cloud-native environments where
continuous delivery and high availability are crucial. Rolling updates work in Kubernetes work as
follows:

e Gradual Replacement: When a new version of an application/service group is ready to be
deployed, Kubernetes starts by creating new pods with the new version while simultaneously
removing the old-version pods. This is done incrementally, a few pods at a time, according to
the defined strategy in the deployment configuration.

e Health Checks: Kubernetes checks the health of new pods before proceeding to terminate
more of the old ones. If something goes wrong with the newly created pods, Kubernetes halts
the rollout and prevents the termination of healthy old-version pods, ensuring service
availability.

e Configurable Update Policy: We can configure the update strategy in Kubernetes deployments.
Two important parameters are maxUnavailable and maxSurge. maxUnavailablespecifies the
maximum number of pods that can be unavailable during the update, and maxSurge specifies
the maximum number of pods that can be created over the desired number of pods.

¢ Rollback: If the rolling update encounters an error or is not behaving as expected, Kubernetes
allows us to roll back to the previous version of the application. This ensures that we can
quickly revert to a known good state if the new version fails.

e Continuous Delivery: Rolling updates facilitate continuous delivery by allowing frequent and
controlled updates without service interruption. They support agile development practices by
enabling rapid iteration and feedback.

By using rolling updates, Kubernetes provides a robust method for application deployment, ensuring
that services remain available and responsive throughout the update process. It's a powerful feature
that embodies the cloud-native principles of automated, reliable, and resilient infrastructure
management.

Rolling updates will be the vehicle for delivering adaptation effectors with Kubernetes managing
container lifecycles as shown below in Figure 43.
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Figure 43: In our modified MAPE-K loop, Kubernetes delivers container management and effectors.
4.5.2.1 Rolling Update in Action

To test out the rolling update feature, we migrated the Collins Use Case from using docker-compose
to Kubernetes. The architecture uses a Pod-per-user model to simplify scaling and ensure clean
resource separation between users. The high-level model is depicted below in Figure 44.
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Figure 44: Dedicated pods per user in the Collins Use Case.

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 68 of 1



D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive ... n.

Changing the QMode for a user entails starting up a new pod with configuration delivering the target
QMode and then switching traffic over from the original pod to the new pod. To accomplish this, we
use a Kubernetes rolling update as depicted below in Figure 45.

When deployment update is initiated then
* Must always have 1 operational Pod serving traffic
*  We may start 1 other Pod to facilitate updated deployment

ReplicaSet

deployment.yml

ReplicaSet

CLOUD POD

Figure 45: Rolling update of pod in Kubernetes.

We conducted experiments with a live rolling update of a cloud pod to validate the viability of using
this approach. The cloud pod is challenging as it requires seamless handover of incoming HTTP traffic
and outward streaming of live media streams without interruption of the user session.

4.5.2.2 Configurability

A fundamental issue is how we can collectively reconfigure a group of services. In Figure 46 below we
see that such a procedure can grow complex quickly.

Conventional static

configuration tec!'mlques e —
for software servicescan —————— varz:y Sz oy

require complex, Command line Confighile  Environment Settings
distributed
configuration . ‘ .

management for a
microservice model

COMPLICATED

Figure 46: With many configuration routes, orchestrating change can be complex.
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We began with deploying services in containers and then managing the deployment of groups of
related containers using docker-compose. We leveraged the environment file capability of docker-
compose to enable a single point of change in terms of configuration settings. This is depicted below
in Figure 47.

Added Docker Compose and

adhere to widely adopted pattern Compose .env 1 . =
of supporting priority hierarchy in

which environment variables take - —
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contained environments fed in compose e .
through Docker Compose

__DOCKER » o
COMPOSE ®*o oo

Each.env willmap to a
single orchestration
blueprint according to
resource demands of a
given configuration

Figure 47: Centralising configuration change

In the journey to cloud-native, we migrated from docker-compose to Kubernetes. There is a somewhat
similar facility available in Kubernetes known as configmaps which were introduced to separate
configuration data from code.

CONFIGMAP Cn

Deploy with ConfigMap X

KUBEAPI SERVER

Figure 48: Kubernetes ConfigMaps can be used to reconfigure pods as required.

4.5.2.3 Supporting Diverse Configurability Channels

The Collins Flight Simulator use case provided a strong case study into how an existing application may
be adapted to suit a centralised configuration scheme. The application involves numerous third-party
components for which modification of the source code is not a realistic option. Figure 49 below depicts
the services to be collectively deployed on the cloud for each user and summarises how each service
can be configured.
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Figure 49: Collins use case configuration landscape.

The services work closely together and changing the configuration in one service can have knock on
effects for others. For example, changing the resolution displayed by the Scenery Generator has
repercussions for the configuration of the Virtual Frame Buffer which in turn has repercussions for the
Capture & Transcode service. The configuration of all has be done in lockstep or else we risk placing
the services into an inconsistent state. For services that can only be configured through command line
flags, we introduced shell scripts to launch those services within containers and then made those
launch scripts configurable through environment variables. For services that require static
configuration files then we assemble a selection of pre-configured files and select the appropriate file
according to environment variable settings at runtime. The scheme described is presented below in
Figure 50.

ENVIRONMENT
VARIABLE SETTINGS
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ENVIRONMENT VARIABLES which can beinjected into container at launch time from the Pod

FILE SELECTOR ENVIRONMENT VARIABLE which can be injected into
container at runtime from the Pod. It contains the path of a config file I_CONFIG
injected into the container at build time which is used to select a

particular configuration file FlghtGear_1.xml Each of these
config files
FlghtGear_2xmi woud be used
tosupport a
% different
FlghtGear_3.xml aMode

Figure 50: Example of how a single configuration set can be injected into Pod and effect change even in
applications that do not directly support configuration through environment variables.
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Kubernetesconfigmaps then become the Knowledgebase within our MAPE-K loop by providing a
catalogue of QMode states that the application can be moved into as depicted below in Figure 51.

m

Adaptation Management Layer

Analyse Plan

Knowledge Base
kubernetes
Confighlaps
1508 Jso — — — — EON

I

Rolling Effectors
Updates
— Container
Monitoring kubernetes Manager

Application Layer

Figure 51: Kubernetes ConfigMaps form our application knowledgebase.

4.5.2.4 Adaptation Tactics

We examined a use case in depth - the Collins Aerospace Flight Simulator (UC3-2 Manned-Unmanned
Operations Trainer Application) and sought to identify whether purely configurational changes could
be executed which would deliver tactics that we could bring into play to deal with resource deficiencies
observed from resource monitoring (see Figure 52 below).
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Figure 52: Configurability options to deliver adaptability tactics.

We can observe how the same tactic can be used in multiple scenarios. Tactics 1 and 2, for example,
can be brought into play if we need to reduce bandwidth needs between the edge and cloud or free
up compute resources on the cloud.

It became clear during analysis that changing the configuration of one service regularly requires
changes to others to compensate or adapt to the new execution landscape. We cannot just lower the
resolution generated on the cloud in isolation as the end user would experience a catastrophic drop
in their Quality of Experience. We must simultaneously enable resolution upscaling on the edge on
compensate. We see this need to deal with collateral effects of changes to how a single service
operates repeated elsewhere.

Naturally, not all applications can lower their resolution on the cloud and have the necessary
allowances in their design to compensate through upscaling elsewhere. Indeed, we expect other
applications to have opportunities not offered by the flight simulator use case.

4.5.2.5 Resolution Modification
The resolution we adopt for cloud rendering has significant effects on the physical cloud resources

that we require. Bigger resolutions require more pixels to be generated which requires more GPU,
more memory and more bandwidth to transfer.

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 73 of 1



D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive ... n.

4.5.2.6 Feature Enablement

Enabling or displaying GPU intensive features can have significant repercussions for resource usage.
In looking at the Collins Use Case, we identified a range of rendering effects that could be toggled at
startup. Examples include:

®  Generation of random buildings, roads, pylons and vegetation to increase scenery density
* The nature, density, and visibility range of clouds

¢ Sophistication of runway lighting

* Precipitation and smoke particle effects

e  Overall shader quality (increased quality produces increased realism)

The enabling and disabling of advanced graphical effects had repercussions beyond the GPU resources
needed to render them. With increased rendering activity per frame, then the visual output became
more dynamic. Precipitation and smoke, for example, increased the amount of visual change between
frames which reduced the amount of compression that could be achieved with video codecs (which
rely on just capturing changes between frames). This resulted in increased bandwidth usage even
though the resolution and frame rate remained the same.

4.5.2.7 Frame Rate

Increasing the frame rate produced on the cloud increases the bandwidth which needs to be made
available to transmit the video stream. Experimenting with various frame rates (10, 20 and 60) showed
the pressure that it exerts on network capacity as we will see later in this section.

4.5.2.8 Dynamically moving resource dependency between edge and cloud

What became clear during experimentation is that the most efficient place to produce high quality
media streams is at the source. Reducing the quality at source with the goal of recovering this loss at
the edge through upscaling is significantly more expensive in terms of overall GPU, CPU and memory
consumption when viewed as a whole across the cloud and edge. The tradeoff is about bandwidth,
Below we see a high-level summary of key metrics if we generate 1K resolution on the cloud

60 FPS
1920x1080 resolution
All features turned on

20

1% % 60 FPS

GPU RAM GPU Utility  Bandwidth 1920)(1080 resolution

Figure 53: Generate high quality on the cloud.

Above we can see that we can generate the target stream with 20% of the available GPU computation
resource and consume 2.6 MB/sec of bandwidth

If we instead generate low quality on the cloud and see to try and recover that quality on the Edge
then the high level metrics are presented below in Figure 54.
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Figure 54: Generate low quality on the cloud and seek to recover quality at the edge. Significant bandwidth
reductions but also significantly increased resource usage overall.

45.2.8.1  Effects of adaptation

We ran various experiments to observe the variations in resource consumption of the flight simulator
Cloud Pods under different configurations and results are shown below in Table 18. The flight simulator
can be run with just a single window (showing the scenery straight ahead) or multiple windows for left
and right views?:. Low QModes signify operation with disabled advanced graphical features (smoke,
shadows, etc.) while high QModes signify operations with all features enabled.

The bandwidth reflects the amount of data being sent from the transcoder to the streamer.

Table 18: Resource usage profiles across various QModes.

Low single window 105 2% 10 848x480 0.1
Low single window 120 4% 20 848x480 0.16
Low single window 122 13% 60 848x480 0.38
High single window 208 3% 10 848x480 0.51
High single window 208 6% 20 848x480 0.75
High single window 208 18% 60 848x480 1.2
Low multiple window | 270 8% 10 848x640 0.3
Low multiple window | 284 16% 20 848x640 0.35
Low multiple window | 316 37% 60 848x640 0.5
High multiple | 675 13% 10 848x640 1.35
windows

28 We encountered a persistent problem with the display of the right-hand window with FlightGear that we have not yet
succeeded in solving. The results with multiple windows only represent two windows.
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High multiple | 675 29% 20 848x640 1.75
windows

High multiple | 675 33% 60 848x640 2.4
windows

High single window 268 6% 10 1920x1080 2.1
High single window 268 16% 20 1920x1080 2.6
High single window 268 19% 60 1920x1080 3.2

We can observe from the results that all attributes - resolution, frame rate and feature enablement
- play a significant role in terms of compute and bandwidth resources and thus all should be

considered when formulating QMode configurations.

4.5.3 Monitoring & Alerting

A fundamental aspect of adaptation is knowing when it is required. In line with the CHARITY
architecture, we used Prometheus, custom exporters, Grafana and the Prometheus Alert Manager to
deploy supporting infrastructure to monitor resource usage, raise alerts when appropriate, and
instigate an adaptation. This work was done in close conjunction with the Collins Use Case. Metrics
are reported through custom exporters which can be deployed independently of the application or
integrated into an application. Our primary focus was on the former where we deployed custom
exporters for the Cloud pods in the Collins Use Case. This is summarized below in Figure 55.

s 1O Grafana

1

1

-Q-Prometheus

1

CPU Metrics
GPU Metrics
Disk Metrics
Network Metrics

HOST METRICS

1

Rendering features status
Frame Rate
Frame generation lags

Processed Frames
Output volume
Dropped Frames
Duplicate Frames

Frame rate

1

Volume received
Volume Sent

% ' Y)FFmpEG ./ MEDIAMTX"

SCENERY GENERATOR

CAPTURE & TRANSCODE

Figure 55: Custom exporters deployed for cloud pod monitoring.

STREAMING

The integration of custom exporters enables monitoring while also giving us crucial insights into
behaviour using graphical dashboards with Grafana and the ability to configure custom alerts in
response to key indicator changes as depicted below in Figure 56.
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O Fps
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Monitor key metrics Configure alert condition and have the alert
routed to a http endpoint

Figure 56: Leveraging the CHARITY monitoring technology stack to monitor, analyse and react.

This brings us to a more complete MAPE-K loop where we can show Prometheus and alert manager
playing their roles as shown below in Figure 57.

Host

Host
Effectors

Rolling
Updates

SENnsors

Plan

Analyse ' : ‘ometh aus OZ' neth aus

kKnowledge Base

Monitor kubernetes Execute
ConfigMaps '
ISON | = = = = ISON
Application
o Rolling Effectors
Application ' i
Sensors o i
Gt i Container
Monitoring kubernetes Kahagii

Application Layer

Figure 57: Adapted MAPE-K loop showing roles fulfilled by Kubernetes & Prometheus.

As can be observed above in Figure 57, we show Host and Application sensors both being delivered
with Prometheus Exporters. In the case of Host Sensors, we employ application-independent
Prometheus exporters whose role is focused exclusively on monitoring host resource metrics (such as
CPU, GPU, disk, network). Application Sensors are application dependent. They may be embedded
into application code itself (to monitor the number of active users for example) or as standalone tools
that monitor application behaviour through application APIs or log files and report onwards to
Prometheus.

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 77 of 1



D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive ...

£

4.5.4 Adaptation Execution

In Figure 58 below we present a high-level view of how the adaptation process currently executes.
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Figure 58: Dynamic software adaptation driven by monitoring.

Kubernetes ingress and egress services are instrumental in maintaining a seamless connectivity
experience from the perspective of service clients. Initial experiments revealed the need for
Kubernetes readiness probes to delay the switch from active pod to replacement pod. Such probes
ensure that the replacement pod is fully bootstrapped, initialized, and ready to take over. Without
this step we experienced jarring breaks in service as the handover was happening before the new
services were ready to take over. In Figure 59 below, we present a rolling update in action where we
move a user from a fully featured, resource intensive experience to a reduced feature experience.

Existing Pod configured to run with full

graphical features enabled

Point pod to new configuration with majority
of graphical features disabled and initiate

rolling update
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Figure 59: Dynamic Software Adaptation using rolling updates for the Collins use case.
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5 Enabling XR technologies

5.1 Enabling Advanced Computing Mechanisms: The Virtual Machine and
GPU Challenges

This section describes the incorporation and the role of advanced computing mechanisms, namely
Virtual Machines (VMs) and Graphics Processing Units (GPUs), in the XR deployment and orchestration
process. The benefits of such mechanisms are many-fold. Virtual Machines emerged in the past as a
first step towards achieving hardware abstraction. Indeed, encapsulating the entire software stack in
a VM facilitates consistent and reproducible environments, including for Extended Reality (XR)
applications. Nevertheless, throughout various fields, Cloud-Native and microservice-oriented
approaches are gaining prominence, offering additional layers of flexibility and scalability. Cloud-
native emphasizes deploying applications as smaller and more manageable micro-services (i.e., the
containers) and uses orchestration tools like Kubernetes for their lifecycle orchestration. This modular
approach facilitates the development and deployment of XR applications, allowing for a more efficient
and dynamic workflow. Indeed, the portability brought by Cloud Native architectures is particularly
relevant in highly dynamic and distributed XR scenarios, as CHARITY considers. That being said, as in
other domains, the usage of Virtual Machines is still a today’s reality. Whether dealing with intricate
legacy code or unsupported third-party libraries, their use remains essential. Hence, their usage
creates the challenge of seamlessly orchestrating both (i.e., VMs and containers). Namely, how to
ensure their coexistence, communication, and compatibility with the various tooling. In the opposite
direction, GPUs are progressively used for data-intensive processing tasks such as Machine Learning
or physics rendering engines. Therefore, their support should also be considered taking into account
a comprehensive XR orchestration process. For instance, an XR orchestration solution should be able
to recognize the GPU requirements of specific components and strategically plan the deployment
process accordingly. The orchestration solution should also be capable of deploying infrastructure
environments appropriately, including additional infrastructure settings. Similarly, adaptations in
monitoring and decision workflows are necessary for incorporating both VMs and GPUs requirement
and to ensure an optimal component deployment. In CHARITY, the need for VMs and GPU support can
be seen in use cases such as the Holographic assistant or the VR Medical Training.

From the CHARITY orchestration perspective, VMs and GPUs introduce four conceptual changes. First,
TOSCA definitions derived from AMF should be able to characterize such additional requirements. For
instance, the need of a GPU-enabled node for running a given component. Then, Low-Level
Orchestrator should be able to understand and translate them into its internal CRD definition.
Moreover, the cluster bootstrapping process, should also consider the correct installation of additional
components, both for VMs and GPUs. Furthermore, specific VMs and GPU metrics should also be
exposed for the remaining monitoring components of CHARITY which will be leveraged by the Al-
based algorithms. Figure 60 depicts the overall interaction between different components.
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Figure 60: VM and GPU orchestration support architecture.

The rest of this section is split into two key parts, one devoted to VMs and another to GPUs. For each,
we analyse the state of the art, compare the existing solutions and detail the experimental work for
evaluating their current support in Kubernetes.

5.1.1 Virtual Machine Support in Kubernetes Environments

Effectively managing a hybrid infrastructure involving container-based applications alongside VM
remains an open challenge; Mavridis et al. [54] discuss an approach to overcome this problem and
ensure both can co-exist side-by-side within the same infrastructure and tooling. In broad terms, such
an approach consists of having them being orchestrated by the same platform and different types of
workloads (VM or container-based) scheduled, hosted and managed in a unified way.

Lee, J. et al. [55] integrated the Kubevirt platform?* as part of their Management and Orchestration
(MANO) proposal, where they translate Virtual Network Functions (VNF) into both containers or VMs

24 https://kubevirt.io .
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as required. Other authors also suggest the usage of Virtlet? for bringing VM support to Cloud Native
environments and orchestration platforms [56] . Mavridis et al. [57] compare different container
routines for addressing multi-tenant workloads, including using Kubevirt for running Unikernels and
Virtual Machines on top of Kubernetes clusters. Despite being more resource-intensive, they achieved
comparable performances and low deployment times when utilizing Kubevirt and VMs compared to
other container runtimes. Their analysis touches on the performance of various solutions, a
consideration that holds relevance for the demanding requirements of XR applications.

Indeed, Kubevirt and Virtlet are both open-source technologies for supporting the coexistence of VMs
and containers on top of the same computing infrastructure. Whereas both serve the same purpose,
they differ in their implementation?®. Kubevirt works as an extension that uses Kubernetes Custom
Resources (CR) to define Virtual Machines. Whereas Virtlet is a Container Runtime Interface (CRI)
implementation to run/interpret Virtual Machines in the same way as other Kubernetes resources
(e.g., pods). When comparing both technologies, Virtlet provides a simpler and lighter approach,
whereas Kubevirt provides more flexibility regarding the virtual machines' configuration and storage.
Moreover, Virtlet, with its own CRI, builds on existing higher-level Kubernetes objects such as
StatefulSets or Deployments, which makes it possible to think and map virtual machines to existing
Kubernetes resource abstractions. Furthermore, Virtlet supports Kubernetes networking and multiple
CNI implementations (e.g., Calico, Weave, and Flannel). On the other hand, Kubervirt was designed as
a hypervisor-agnostic solution which builds on top of existing hypervisors such as Kernel-based Virtual
Machine (KVM), leveraging its own Custom Resources and controllers, which can enable additional
customization/configuration options. For instance, Kubevirt offers an option of using PVCs as disks via
the Containerized Data Importer (CDI)¥, which is implemented by Kubernetes itself. Overall, both
intend to provide a Kubernetes native experience of managing Virtual Machine definitions either by
using kubectl or Kubernetes API. Regardless of the debate on whether it is preferable to have a new
CRI versus the integration of existing and widely-used hypervisors, as of the time of writing, the last
stable release of Virtlet was in 2019. Whereas, KubeVirt had several releases in 2023.

Hence, we choose KubeVirt as the technology to evaluate within the CHARITY project due to its active
state, broader adoption and support within the Kubernetes community. We plan to leverage KubeVirt's
flexibility and container-native experience within Kubernetes to seamlessly integrate virtual machines
with containerized workloads.

Figure 61 depicts an overview of the Kubevirt architecture and main components introduced on
Kubernetes.

25 https://github.com/Mirantis/virtlet .
26 https://www.mirantis.com/blog/kubevirt-vs-virtlet-comparison-better .

27 https://github.com/kubevirt/containerized-data-importer .
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Figure 61: KubeVirt architecture?®.

In Kubevirt, each VM instance is seen as a Kubernetes CR -- a Virtual Machine Instance (VMI) in this
case, as depicted in Figure 61. KubeVirt uses a dedicated controller (i.e., virt-controller) for detecting
and reacting to changes in the VM resources and interacting with Kubernetes API. It also uses a
dedicated component designated as virt-handler on each node to interface (via libvirtd) with each VM
and the underlying hypervisor. Notice, that the setup of all of these components becomes a non-
functional requirement, implying that the CHARITY orchestration solution should be able to install and
configure them as required on the target computing clusters. Like Kubernetes pods, Kubevirt VMs can
use Kubernetes Services and Ingresses to expose application endpoints allowing the connection with

other applications and/or users.

binersion: kubevirt.io/vl
kind: VirtualMachine
metadata:
name: debian
labels:
special: debian-vm
spec:
runStrategy: Always
template:
metadata:
labels:
kubevirt.io/size: small
kubevirt.io/domain: debian
spec:
domain:
devices:
disks:
- name: operative-system
disk:
bus: virtio
- name: cloudinitdisk

Figure 62: Example of Kubevirt VMI definition.

28 https://kubevirt.io/user-guide/architecture/
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Kubevirt focuses on Kubernetes integration and the means to provide the same tooling as any other
Kubernetes resource while it relies on widely used hypervisors for the virtualization itself. Indeed, such
an architectural approach helps to mitigate the challenges of orchestrating both types of workloads
without needing different workflows or separate management tools. The external hypervisor strategy
of Kubevirt also facilitates the use of operating system-dependent applications and extends
compatibility to legacy applications that were previously virtualized and deemed impractical to
containerize. Moreover, Kubevirt provides a live migration feature, which brings additional value to
highly dynamic environments, as considered in CHARITY, where it is possible to migrate Virtual
Machines without disrupting services running within them.

In the following, we detail the experiments executed to assess Kubevirt functionalities and their usage
within the CHARITY project.

Virtual Machine Deployments through KubeVirt

In the first experiment, we conducted a series of tests to deploy Virtual Machines within a Kubernetes
environment, utilizing KubeVirt. These initial steps were performed to enhance our understanding of
KubeVirt's capabilities in managing the lifecycle of Virtual Machines. We also use these experiments
to assess the connectivity between containers and KubeVirt Virtual Machines, along with the necessary
requirements for their integration into the orchestration solution.

(2] ; Kubeadm Cluster
CHARITY Gitlab
Registry KubeVirt Components
Virt-Controller Virt-API Creates Virtual Machine
Imports Disk Image Container Data
2 Importer Virt-Operator

Persistent Persistent l
—

Volume Claim Volume

Virtual Machine Instance

HTTP|Request

Sleep Pod

Figure 63: KubeVirt experimental scenario.

Figure 63 shows the scheme of the experimental scenario reproduced within the CloudSigma testbed.
It consists of a single-node Kubernetes Cluster deployed using kubeadm as the bootstrap provider.
The installation of Kubevirt followed the steps outlined in the official documentation?’.

Virtual Machine creation was performed using a Virtual Machine image coming from a private registry,
the Containerized Data Importer (CDI) from Kubevirt and Persistent Volumes (PVs) from Kubernetes.
CDl is a utility designed to enable PVs as data volumes of the Virtual Machines. For the sake of proof
of concept, we used a standard Linux/DebianOS 12 image hosted in the GitLab registry of CHARITY and
a sleep pod (for testing the communication). Next, we specified the VMI resource (i.e., virtual machine
definition) by defining the Virtual Machine properties and image location. The VM was started through

29 https://kubevirt.io/quickstart cloud/
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Kubect! and Virtctl (i.e., KubeVirt's CLI*°) was used to check the VM instance status, confirming the
success of the VM deployment.

To validate the communication between pods and VMs, an Apache2 web server was installed within
the deployed VM, featuring a simple web page. To assess the communication, first, we exposed the
web page by attaching a Kubernetes service -- a similar process for container service exposure. Later,
we used a lightweight sleep container running within a pod and a curl command to test their
communication through HTTP.

Both deployment and communication testing were successful. Yet, more than testing the successful
communication between the pod and the VM instance, this first experiment was pivotal in
understanding how the process could be later realized and automatized from the orchestrator's
standpoint. In CHARITY, XR developers, which rely on AMF and image registry to upload their
application components, can use the same approach for uploading VM machine images. For
communication, although additional evaluation is needed, by using Kubernetes service resources to
expose their communications, we can expect similar support in Virtual Machines. Indeed, KubeVirt
documentation states their support for ClusterIP, NodePort and LoadBalancer types of services.

5.1.2 GPU support in Kubernetes environments

This section delves into the challenge of how GPUs can be used within Kubernetes and later integrated
into the CHARITY orchestration solution. From Al-based workloads to enabling High-performance
computing (HPC) applications, GPUs in Kubernetes, in tandem with KubeVirt, extend the array of
possible workloads. Whereas with VMs, we are mainly focused on enabling the otherwise not possible
VM-based workloads when considering GPUs, we mainly focus on bringing performance and efficient
exploitation of hardware-specific resources. Bringing GPU to Kubernetes can be defined into two key
challenges: the additional changes, interfaces and components involved in the software stack; and
how the scheduling and sharing occur among GPUs [58][59][60]. In this section, we expand the first
one.

GPU-enabled infrastructure highly depends on the underlying vendor hardware (e.g., AMD, NVIDIA)
and, thereby, their specific drivers. This way, like the underneath hypervisor components in Virtual
Machines, GPU vendor-specific drivers become non-functional for such setups. Considering the
existing CHARITY testbed facilities, we choose to focus on NVIDIA GPU environments.

30 https://kubevirt.io/user-guide/operations/virtctl client tool/
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Figure 64: NVIDIA GPU components for Kubernets®..

Figure 64 shows the main components involved for NVIDIA GPUs, including the NVIDIA GPU driver,
the NVIDIA container runtime, the Kubernetes device plugin, the Data Center GPU Manager (DCGM)
monitoring agent, and GPU Feature Discovery. NVIDIA provides NVIDIA Container Toolkit®2, which
contains a container runtime library and utilities to expose GPU hardware capabilities to allow GPU-
accelerated containers. At the cluster level, the NVIDIA device plugin® provides the facilities for
exposing, keeping track, and running GPU-enabled containers. Hence, Kubernetes CRI should be
compatible with the NVIDIA Container Toolkit. Moreover, Node Feature Discovery is used for exposing
GPU characteristics as a set of Kubernetes labels. This is especially relevant for scheduling algorithms,
as they benefit from precise knowledge of the cluster capabilities, in this instance, those related to
GPUs. This information becomes an integral part of their decision-making logic. Furthermore, NVIDIA
also provides a GPU operator to facilitate the installation of NVIDIA components into the cluster. Such
NVIDIA GPU Operator simplifies node configuration by autonomously managing most of the setup
aspects, though it's important to note that not all NVIDIA GPUs are supported. In other words, the
GPU model can be seen as a non-functional requirement according to the NVIDIA GPU Operator
compatibility list**. Finally, there is the DCGM component to interface with Prometheus' monitoring
capabilities and gather specific GPU telemetry data.

To evaluate the GPU support, two scenarios were devised. The first scenario focuses solely on the
usage of GPU containers in a Kubernetes cluster. The second one combines the usage of Virtual
Machines and GPU to enable the most complex scenario of supporting GPU-enabled Virtual Machines
in Kubernetes. For the first experiment, we used a single-node Kubernetes cluster on top of a bare-
metal server equipped with an NVIDIA GPU GeForce GTX 1660 SUPER. The setup of GPU-related
components and monitoring followed the official documentation aforementioned.

31 https://developer.nvidia.com/blog/nvidia-gpu-operator-simplifying-gpu-management-in-kubernetes/
32 https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/index.html
33 https://github.com/NVIDIA/k8s-device-plugin

34 https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/platform-support.html
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In this first experiment, we focused on evaluating the challenges of setting up containers within a GPU-
enabled Kubernetes cluster. For comparison, we run a sample training Tensorflow-based application®
on CPU-only and GPU-enabled containers and compare their performance. Figure 65 illustrates the
time necessary to train each batch on CPU and GPU. Whereas, Figure 66 depicts the CPU and GPU
usage of each one.

¥RFRXERE O CPU: FEFFFERRR

batch size 8: 750@/750@0 - 135s 18ms/step - accuracy: 0.9323
batch size 16: 3750/375@0 - 102s 27ms/step - accuracy: 0.9786
batch size 32: 1875/1875 - 87s 47ms/step - accuracy: 0.9877
batch size 64: 938/938 - 83s B8ms/step - accuracy: 0.9926
batch size 128: 469/469 - 83s 176ms/step - accuracy: ©.9949
batch size 256: 235/235 - 83s 355ms/step - accuracy: ©.9966

batch size 512: 118/118 - 82s 697ms/step - accuracy: 0.9973

cpu_times: [134, 102, 87, 82, 82, 83, 82]

RREEEK KKK On GPU- HEREEREE KKK

batch size 8: 7500/7500 - 24s 3ms/step - accuracy: 0.9321
batch size 16: 375@/375@ - 13s 3ms/step - accuracy: 0.9781
batch size 32: 1875/1875 - 8s 4ms/step - accuracy: 0.9883
batch size 64: 938/938 - 6s 6ms/step - accuracy: ©.9930
batch size 128: 469/469 - 5s 1@ms/step - accuracy: 0.9955
batch size 256: 235/235 - 4s 17ms/step - accuracy: 0.9972
batch size 512: 118/118 - 4s 34ms/step - accuracy: ©.9978

gpu_times: [24, 12, 7, 5, 5, 4, 4]

Figure 65: GPU vs CPU times from each training batch.
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35 https://www.tensorflow.org/api_docs
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Figure 66: CPU and GPU usage from Tensorflow.

The faster result times on the GPU application prove the functional behaviour of the setup and the
efficient exploitation of GPU-enabled containers. Moreover, Prometheus and Grafana proved to be a
good choice when it comes to the ability of monitoring the performance and behaviour of resource
usage, in particular the GPU-specific metrics. As discussed before, such metrics are pivotal for the
orchestration solution.

For the second scenario, our objective was combine the previous experiments and have a KubeVirt
VM instance with GPU. For that, we specified a KubeVirt VM with Windows 10 and GPU-passthrough.
The Kubernetes cluster was installed as described in the previous experiment. For the VM definition
three datavolumes were used: one for the OS installation 1SO, another for the VirtlO drivers and the
last one for the storage of the VM itself. For the OS installation we set up a local docker registry which
we used to store a Docker image containing the Windows ISO. The second volume contained the virtlO
drivers which are used by Kubevirt for interfacing with guest OS. illustrates the KubeVirt GPU
Passthrough components. VirtlO drivers were later load as part of Windows installation (see Figure
68). Finally, the third volume was configured as a PersistentVolume (PV) to host the VM disk.

Debian Machine

NVIDIA
GeForce GTX 1660 SUPER

l

vfio-pci Drivers
Kubernetes cluster

Calico

RI - Containerd DNS
Networking

Kubevirt GPU device

Kubevirt
plugin

Virtual Machine

Using NVIDIA GPU

Figure 67: KubeVirt + GPU Passthrough experimentation scenario.
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Figure 68 Windows 10 initial boot.

In Figure 69 the correct GPU detection using GPU-Z is shown. Such results proves the ability of KubeVirt
support for GPUs. It is important to note that GPU-passthrough allocates the GPU hardware to a single
VM. From an orchestration standpoint, this means each VM will be mapped to a single GPU. For sharing
GPU resources across multiple VMs, it should be used the vGPU feature of KubeVirt instead®®.

BB TechPowerlUp GPU-Z 2.46.0

Graphics Card  Sensors Advanced Validation @ o

Name | NVIDIA GeForce GTX 1660 SUPER | Lookup |
GPU |  TU116 Revision | 00
Technology 712m17 Die Size ]ﬁéé;i’mim?r @2
Release Date 08729727015 Transistors \76606M7 I'IVIDIA
BIOS Version | Unkrown [ Ouen
Subvendor _T Device 1D iﬁmﬂm

ROPs/TMUs | 48/88  Bus Inteface | PClex1630@x1630 7
Shaders |  1408Unfied DirectX Support [ 12021

Piel Filrste | Urirown  Texture Fillate |

Memory Type | Urbrown  Bus Width |

Memory Size T Bandwidth %

Driver Version | 27.21.145671 (NVIDIA 456.71) DCH / Win10 64
Driver Date m Digital Signature ‘W
GPUClock | OMHz  Memory | 0MHz

Default Clock | 0 MHz Memory | 0 MHz

NVIDIA SLI | Unknown " Resizable BAR |  Disabled

Computing [ |OpenCL [ ]CUDA []DirectCompute [ | DirectML
Technologies [ ]Vulkan [_]Ray Tracing [ PhysX [+]OpenGL 1.1

NVIDIA GeForce GTX 1660 SUPER ~ Close

36 https://kubevirt.io/user-guide/virtual_machines/host-devices/
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Figure 69 TechPowerUp GPU-Z detecting the GPU.

5.2 Migrating from on-premise to on-cloud

For Collins Aerospace, the vision of CHARITY to enable highly efficient network slices spanning the
domains of Cloud providers, Edge infrastructure and local resources inspired a radical re-imagining of
what could be achieved in terms of real-time, interactive XR streaming on the cloud. The traditional
approach to flight simulators has been to deploy sufficient compute and storage resources alongside
2D fixed screens to deliver on the stringent quality demands of a certification-grade simulator. Scaling
up or down is essentially constrained to vertical scaling in which we use more powerful or less powerful
hardware as the deployment dictates. In Figure 70 below, we depict three sample deployment
configurations

Flight Simulator Demonstration Rigs

==

SIMULATOR Lite

+ Can be broken down for
portability

* Small form factor COTS PCs

« Different Display Layout

\ Configurations Possible /

Figure 70: Some deployment models for the existing flight simulator.

As presented in Figure 71, the traditional approach is somewhat monolithic in terms of deployment
flexibility. Multiple flight simulators co-located on the same site have no interaction or resource
sharing and each operates independently on its own dedicated hardware.

HARDWARE ~Duplicate  gorTWARE
/ for each

PROPRIETARY

PHYSICS [ GENERATO
ENGINE S R
GENERATO
TIGHTLY COUPLED i

Requires highly reliable &\ GENERATO

deterministic behaviour

Network rlg
Switch

Significant
amount of EXTERNAL
hardware to

= NO NO NO
Federation of User Monitoring

Simulators Management Framework

e AIIow’:r?ces or
Contalnerization § o ibility for delay

Figure 71: Existing deployment options revolve around a monolithic approach.

The current deployment model presents a variety of challenges as outlined below in Table 19 .

Table 19: Challenges presented by the traditional deployment model.

Challenges

Each user requires their own full rig - dimension | MS Windows focused
site hardware up front for max number of
simultaneous users
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No sharing of resources between rigs Strict latency demands

Software updates are problematic - especially | Specialized scenery generator coupled with

tiles database which is very large flight dynamics

Hardware updates are problematic Difficult to scale

Sense of immersion with low-end rig is poor Licensing complicates experimentation on third
party edge/cloud

No centralized monitoring (across users)

At the outset, these considerations drove our decision to rethink the flight simulator architecture, to
work in a distributed manner with the ability to leverage the CHARITY platform. We envisaged clear
benefits that a redesign should bring as outlined below in Table 20.

Table 20: Target benefits from redesign.

Greatly reduced local hardware footprint User & session management, simulator federation

Edge and cloud resources shared between | Monitoring framework integration
simulators

Tiles database and rendering engines can | Improved versatility through Microservices with

be updated on the cloud Docker containers

Hardware upgrades simplified Caching with lookahead rendering to manage delays
Improved sense of immersion Pluggable scenery generator -> flightgear

Improved Scalability Headless remote rendering for remote computation

and local display

Pluggable upscaling Customizable latency compensation tactics available

5.2.1 The Latency Challenge

Operating a commercial Flight Simulator requires speed and consistency. The turnaround budgets are
tight. In deploying to the cloud, we take an already demanding problem that is currently addressed
using dedicated local hardware and network resources and exacerbate it by distributing resources
across large distances as summarized below in Figure 72.

CURRENT SITUATION MOVE SCENERY GENERATION TO THE CLOUD
USER PHYSICS IMAGE USER USER PHYSICS  NETWORK IMAGE N':_Frr:"(’)?f'( USER
ACTION ISUCT  GENERATION DISPLAY ACTION =X (TP RSV GENERATION i DISPLAY

70-100ms 70-100ms ?

How can we maintain the same performance while introducing significant additional

overhead due to network and coding?
MTP < 100ms How can we EXCEED current performance to enable use of XR in the face of this additional
30 FPS overhead??

NETWORK
USER PHYSICS | NETWORK IMAGE
% MTP . 70ms I:> Sas gfg&\‘é
—— 60FPS
\
20ms ???
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Figure 72: Motion To Photon budgets become even more demanding with XR and the cloud.

In 2018, Collins conducted internal experiments assessing the viability of cloud hosted flight simulation
[23]. The findings revealed significant challenges that needed to be overcome with respect to network
latency and jitter:

e Network Latency is a significant obstacle “Transport delays vary widely based on network
topology, provider, virtual private network, user-to-cloud distance, and other factors”.

e Sporadic variations in rendering times can result in stalls “cloud-based computing model will
require stringent provisioning of shared resources to provide the kind of performance and
determinism guarantees users expect”.

The experiments were predicated on the display of scenery on two dimensional monitors - not XR
headsets which have far more demanding latency budgets. It was clear from the early stages of the
CHARITY project that we were facing significant challenges that could be alleviated but not solved
entirely by the CHARITY platform alone. The physics of distance needed to be tackled.

5.2.2 Tackling XR Latency

A key observation about latency budgets in XR is that there are different types - rotational and
translational as shown below in Figure 73. The charts on the right portray how latency demands are
dependent on the nature of the user activity [25] and we superimposed the position that scenery
generation for a flight simulator would occupy.

Variance across mechanics

Rotational Latency needs < 20ms

If we don't stay within budget
then could induce nausea

() a . S
— p %
S e B .‘ LA N\
Translation Latency is different ¢
because it is not generated by \\
equivalent motion of the user N
Already have a sensory mismatch \\
which is not worsened by latency N
Image courtesy of Wikipedia FLIGHT SIMULATOR scenery viewing is classified as an omnipresent exploratory activity

— the category of interactive media deemed to have the least demanding latency needs to
deliver acceptable user experience

Figure 73: The latency budget available depends on the activity.

Updates caused by the user rotating their head need to be very fast (< 20ms) to prevent nausea for a
significant proportion of the population. However, in [24] the authors note that translation motion
delays of 100-200ms are “non-trivial to notice”. For the flight simulator scenario, we have a user that
sits within a virtual cabin and is able to look out the window at synthetically generated scenery. If the
user turns their head then the local view inside the cabin needs to update quickly. The outside view
only changes with the movement of the simulated aircraft itself (which alters course slowly in response
to user actions). We propose to leverage this dichotomy to move the generation of synthetic scenery
seen through the cabin windows to the cloud while keeping the rendering of the cabin itself local.

5.2.2.1 Prediction to extend the latency budget

If we detach the world outside a simulated aircraft cabin from the world inside then an additional
opportunity presents itself to further extend our latency budget. As pointed out previously, the out-
the-window view updates in accordance with movement of the aircraft. Aircraft possess nothing like
the rapid freedom of movement of a human pilot. Its position within the seconds ahead should be
predictable with a high degree of accuracy. This presents the opportunity to render what we need
ahead of time on the cloud and cache it locally to enable what Google have referred to as Negative
Latency [27] - a variation of which they employed in the Google Stadia platform.
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Figure 74: Movement of an aircraft can be predicted to enable pre-rendering of scenes.

By caching at the edge, our goal is to detach the cloud from the stringent motion-to-photon loop to
reduce the latency and jitter that would otherwise be experienced with cloud rendering in the real-
time chain.

5.2.2.1.1  Experiments
We employed an LTSM (Long Short-Term Memory) approach for trajectory prediction.
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Figure 75: Long Term Short-Term Memory model of operation.

4 Output Gate .

[ ———

LSTM CELL

LSTM processes sequential data by controlling the flow of information through a combination of gates
(input, forget, and output gates) and a cell state:

Input Gate:

e Significance: The input gate controls how much of the current input should be
incorporated into the cell state. It helps in determining what information from the current
input is important and should be remembered.

e Operation: The input gate computes a sigmoid activation, which acts as a filter to gate the
input and decide what information is relevant for the current time step. It determines how
much to update the cell state with new information.

Forget Gate (f):

¢ Significance: The forget gate regulates what information from the previous cell state
should be retained and what should be discarded. It helps the LSTM in forgetting
unnecessary or outdated information.
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e Operation: The forget gate computes a sigmoid activation, which decides what portion of
the previous cell state should be retained. It controls what information should be carried
forward from the past and what should be discarded.

Output Gate (0):

e Significance: The output gate controls how much of the current cell state should be
exposed as the hidden state for the current time step. It influences what the LSTM cell will
output as a prediction or what information will be passed to the next LSTM cell or the
output layer.

e Operation: The output gate computes a sigmoid activation and a tanh activation. The
sigmoid activation determines how much of the cell state should be exposed, and the tanh
activation scales the cell state to produce the new hidden state. The new hidden state
captures the relevant information from the cell state for the current time step.

We trained a model using a small number of recorded flight trajectories and tested with an unseen
trajectory. The position of an aircraft is captured by a set of values for latitude, longitude, heading,
altitude, pitch and roll. Of these figures, we would expect a fast moving commercial aircraft to
experience most change on the geographical coordinates - latitude and longitude - and this has been
borne out with our predictions which demonstrate prediction errors on these vectors. Our results can
be viewed below in Figure 76.
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Figure 76: Predicted trajectory versus observed trajectory.

Our goal within the scope of CHARITY was to demonstrate the feasibility of the concept and we feel
this has been accomplished. We believe future refinement that considers additional sensor data such
as aircraft velocity and windspeed offer significant room for improvements.

5.2.2.2 The Frame Rate Challenge

As witnessed by the steadily increasing refresh rates of XR headwear, high frame rates are seen as an
essential component of an acceptable XR user experience. Regardless of what is deemed to be an
acceptable rate of frames per second - 30, 60, 90, 120 - we assume that the originator of the media
stream must generate that rate. If we want to attain 90FPS with flight scenery, then must we render
90FPS in the cloud and ship back to the nearest cache? As with modern televisions, frame interpolation
has become standard functionality in XR headsets. The manufacturers of such headset want to avoid
inconsistent or below-par frame rates emanating from media sources to result in compromised
experience for the user who may attribute blame to the headset itself. XR headsets need a consistent
frame rate. If they do not get it, then they use predictions cached locally on the headset to backfill any
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missing frames. We observe functionality termed Asynchronous Timewarp and Spacewarp [26] in the
Oculus headsets and Motion Smoothing in SteamVR headsets.

Instead of the XR experience imposing more stringent quality demands than conventional 2D monitors,
we propose to explore using the stabilization technology built into XR headsets to our advantage. It
gives us the option of generating a lower frame rate on the cloud when resourcing pressures preclude
us from either rendering the required frame rate due to computational resource stresses or from
delivering the required frame rate to the edge due to bandwidth stresses.

5.2.2.2.1  Experiments

We first set out to investigate doing frame rate upscaling on the Edge. This offers a means independent
of headset choice to ease experimentation while additionally enabling us to investigate the latest
developments in frame interpolation that may not have made their way into commercial headsets.

Frame interpolation algorithms estimate the content of intermediate frames that would fill the gaps
between existing frames. These intermediate frames are generated by interpolating pixel values
between the original frames. The key is to create new frames that smooth out the motion between
the existing frames. To create the intermediate frames, pixel values are blended or interpolated
between two consecutive frames based on their motion.

During our investigation we experimented with several approaches:

e Bicubic Interpolation: Produces smooth results. It considers a 4x4 neighbourhood of pixels
around the non-integer coordinate and uses cubic polynomials to estimate the interpolated
value.

¢ Lucas-Kanade Optical Flow: estimates the motion or displacement of image features between
two consecutive frames in a video sequence. Lucas-Kanade optical flow estimates the motion
vectors (displacements) of image features between two frames. These motion vectors can be
used to understand how objects or points in the scene move from one frame to the next.
Once the motion vectors are obtained, they can be used to guide the generation of
intermediate frames. Given two consecutive frames and the estimated motion vectors, we
can interpolate pixel values between these frames to create intermediate frames. The
interpolation process involves warping and blending pixel values based on the estimated
motion.

* RIFE (Real-Time Intermediate Flow Estimation): This is a deep learning image interpolation
technique which derives intermediate frames using Convolution Neural Networks (CNNs).
RIFE estimates bidirectional optical flow fields between the input frames. By estimating optical
flow in both directions, RIFE can generate more accurate and visually pleasing intermediate
frames. Furthermore, RIFE aims to ensure temporal consistency between the interpolated
frames and the original frames, resulting in smooth motion and reduced artifacts. As the name
suggests, RIFE is designed for real-time applications, making it suitable for video frame
interpolation in scenarios like video playback and video editing.

RIFE was the approach we adopted. It operates in real-time (less than 0.5 seconds to upscale 10 frames
to 40 frames) across a range of resolutions and consumes acceptable GPU resources in testing so far.
We are still in the process of quantifying the precise performance under different conditions.

The Pixel Resolution Challenge

As consumer XR headsets evolve to target 4K or 8K resolutions, there is a growing imperative on the
part of media stream producers to render higher and higher resolution imagery. This has significant
impact for bandwidth as 4k resolution requires an order of magnitude more bandwidth than High
Definition (approx. 15Mbps versus 1.5Mbps). As with frame rate, we assume that the originator of the
media stream must generate the required resolution. Modern TVs and games consoles need to deliver
a high-resolution viewing experience even when the source of frames is of low resolution. To
accomplish this, they employ upscaling algorithms to ‘fill out’ the missing pixels. We propose to
integrate a resolution upscaling component into our streaming pipeline to cater for scenarios in which
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we cannot render high resolution imagery on the cloud for reasons of resource availability (compute
or network bandwidth). Lower resolution frames will be received at the Edge and upscaled as
appropriate.

5.2.2.2.2  Investigation & Experiments

Traditional resolution upscaling entails copying and repeating pixels from a lower resolution image to
produce a higher resolution version. Filtering is applied to smooth the image and round out unwanted
jagged edges that may become visible due to the stretching. The result is an image that could fit on a
larger display but can often appear muted or blurry.

Al upscaling takes a different approach. Given a low-resolution image, an Al model predicts a high-
resolution image that would downscale to look like the original, low-resolution image. To predict the
upscaled images with high accuracy, a neural network model must be trained on large numbers of
images. The deployed Al model can then take low-resolution video and produce impressive sharpness
and enhanced details beyond the capabilities of traditional upscaling - the edges look sharper; hair
looks more authentic and detail in general is crisper.

When evaluating upscaling approaches in CHARITY, we considered both traditional and Al approaches.
Our assessment of suitability was primarily based on speed and quality®’. To objectively assess the
quality of one approach over another we used VMAF which we will now briefly introduce before
continuing to the various upscaling techniques we investigated.

VMAF (Video Multimethod Assessment Fusion).

VMAF is a perceptual video quality assessment algorithm developed by Netflix. It is designed to
estimate the quality of videos as perceived by human viewers. It has been widely adopted in the video
streaming and broadcasting industry as a standard for measuring video quality, especially for contents
distributed over the internet.

VMAF uses a machine learning approach to train its models. It leverages a dataset of videos with
known quality scores, which have been rated by human subjects through subjective testing. The
models are trained to learn the relationship between the extracted features and the human-rated
quality scores. The essential pipeline is shown below in Figure 77.

Dataset with reference
data of Various video quality
and Reference Score
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Figure 77: The VMAF Pipeline.

VMAF starts by extracting a variety of features from the reference video and the upscaled video. These
features can include spatial and temporal information, luminance, contrast, and other visual
characteristics. After extracting features and applying the perceptual quality models, VMAF combines
the individual quality scores from these models using a fusion algorithm. This fusion step considers
the strengths and weaknesses of each model and produces a final quality score that is more robust
and reliable. The final VMAF score is a single value that represents the perceived quality of the
upscaled video compared to the reference video.

37 Secondary factors such as GPU memory usage and ease of integration were also considered.
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Approaches Evaluated.

Following a review of the state of the art, we narrowed our considerations to the approaches below.
This was based on the availability of open source code that could be readily tested and adapted to our
needs along with compelling published results in terms of speed and quality.

Bicubic Interpolation

This is a mathematical technique used to estimate the colour values of new pixels in an upscaled image.
It considers a larger neighbourhood of pixels surrounding the target pixel than bilinear interpolation
and has higher accuracy as a result. For each pixel in the target (upscaled) image, it considers a 4x4
grid of neighbouring pixels from the original image. It uses a weighted averaging technique to estimate
the colour value of the target pixel. These weights are derived from cubic functions and are used to
blend the colours of the neighbouring pixels.

Execution time is very fast at 0.007 seconds per frame® which comfortably delivers real time upscaling.
The difficulty with this approach is that it essentially does not do any reasoning or add any new data
to the image so this technique produced quite blurred images.

EDSR (Enhanced Deep Super Resolution)

EDSR [42] is a deep neural network architecture that uses convolutional neural networks (CNNs) to
perform image super-resolution. It has been designed to produce high-quality upscaled images with
a focus on accuracy and detail preservation. It takes a low-resolution image as input, which is typically
a down sampled version of a higher-resolution image. This low-resolution image is passed through the
network to generate an upscaled image.

EDSR typically consists of a deep stack of convolutional layers. These layers are responsible for learning
the complex features and representations from the input image. The core of the EDSR architecture is
the residual blocks. Residual learning is akey  component of EDSR, which involves skipping
connections (shortcuts) that allow gradients to flow directly through the network. This helps in training
very deep networks efficiently. Each residual block extracts and enhances features from the input
image. These features capture important information about the image, including edges, textures, and
other visual elements.

ESPCN (Efficient Sub-Pixel Convolutional Neural Network)

ESPCN [43] is a compact convolutional neural network architecture designed for real-time image
upscaling and super-resolution. It focuses on efficiently increasing the resolution of images while
minimizing computational requirements. The key innovation in ESPCN is the use of sub-pixel
convolution layers to upscale low-resolution feature maps into high-resolution images.

The network starts with a series of convolutional layers that extract features from the low-resolution
input image. These layers learn to capture essential information about edges, textures, and other
image features. The distinctive feature of ESPCN is its use of sub-pixel convolution layers. These layers
are responsible for the upscaling process. Instead of using traditional upscaling techniques, sub-pixel
convolution layers learn to transform low-resolution feature maps directly into high-resolution images.

The sub-pixel convolution layers rearrange the feature maps spatially, effectively increasing the
resolution. Each feature map is divided into non-overlapping sub-pixels and placed next to each other
to form the high-resolution image.

38 Using an Intel i9 processor.
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FSRCNN (Fast Super-Resolution Convolutional Neural Network)

FSRCNN [[41]] was introduced as an efficient and faster alternative to traditional methods for single-
image super-resolution. It focuses on providing high-quality results while minimizing computational
costs, and positions itself as suitable for real-time applications such as video upscaling and image
enhancement on resource-constrained devices. It takes a low-resolution image as its input which has
typically been down-sampled from a higher-resolution image.

The network starts with a series of convolutional layers that extract relevant features from the low-
resolution input image. These convolutional layers help capture important information about edges,
textures, and other image features. It typically incorporates a set of convolutional layers that reduce
the dimensionality of feature maps to simplify processing, followed by another set of layers that
increase the dimensionality. These layers help reshape the features for the super-resolution process.

A key innovation in FSRCNN Is its use of learnable filters and convolutional layers to increase the
resolution of feature maps. These filters are designed to upscale the image and are applied in a
learnable manner. This is different from traditional methods like interpolation or deconvolution.

LAPSRN (Laplacian Pyramid Super-Resolution Network)

Like FSRCNN, LAPSRN [44] is also based on deep learning but employs a different architecture and
approach. The difficulty with this approach is that it requires training on domain imagery. While it
exhibits impressive performance, its quality was poor due to the lack of training we carried out. We
were keen to seek an approach that was more reusable and avoid this type of customization that
would only deliver good results for our own application.

SRGAN (Super-Resolution Generative Adversarial Network)

SRGAN [45] is a deep learning architecture that is used for image super-resolution. It is known for its
ability to generate highly detailed and realistic high-resolution images from low-resolution inputs.
SRGAN is based on the principles of generative adversarial networks (GANs) and is specifically designed
for the task of single-image super-resolution.

Generator (G): The generator network in SRGAN is responsible for taking a low-resolution image
as input and producing a high-resolution image as output. It achieves this through a series
of convolutional layers, activation functions, and other operations. The generator aims to

learn the mapping from low to high resolution.

Discriminator (D): The discriminator network in SRGAN is used to evaluate the realism of the generated
high-resolution images. It attempts to distinguish between real high-resolution images and generated
high-resolution images. The discriminator is also a neural network that operates on images.

Generative Adversarial Network (GAN): SRGAN uses the GAN framework, which consists of a
generator and a discriminator. The generator tries to generate images that are indistinguishable from
real high-resolution images, while the discriminator tries to get better at distinguishing between real
and generated images. The two networks are trained in an adversarial manner, where the generator
aims to fool the discriminator into accepting its generated images as real.

ESRGAN (Enhanced Super-Resolution Generative Adversarial Network)

ESRGAN [46] is an extension and improvement upon SRGAN. It is more complex than SRGAN and builds
upon the SRGAN architecture by introducing additional enhancements and refinements. It is typically
trained on more diverse and larger datasets, which can lead to improved generalization and the ability
to handle a wider range of image types. ESRGAN generally uses deeper networks compared to SRGAN,
allowing it to capture more complex image features and textures.
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ESRGAN is generally considered more advanced and capable of generating even more realistic and
detailed high-resolution images from low-resolution inputs.

Experiments.

Below in Table 21 we see the results we gathered while evaluating different approaches. In cases
where the performance or quality was too poor, we discontinued and advanced onto the next
alternative.

Table 21: Performance of upscaling techniques investigated

FSRCNN | 0.01sec | 640480 2560*1920 22

EDSR 2.27 sec 640*480 2560*1920 12

NVIDIA | LapSRN | 0.007 sec | 640480 2560%1920 20

GeForce | ESPCN | 0.93sec | 640*480 2560*1920 24

RTX SRGAN | 0.33sec | 640*480 2560*1920 3

3090 ESRGAN | 0.05sec | 320*240 1280*960 20 70 200,704 bytes
0.09 sec | 480*360 1920* 1440 10 85 488,621 bytes
0.15 sec 640*480 2560*1920 6 89 757,760 bytes
NVIDIA | ESRGAN | 0.11sec | 320*240 1280*960 10 70 200,704 bytes
RTX 0.23sec | 480*360 1920*1440 4 85 488,621 bytes
A4000 0.31 sec 640*480 2560*1920 3 89 757,760 bytes

The hidden cost of GPU to Host transfer

The ESRGAN approach was the most suitable we found in terms of speed, quality and reusability.
However, we discovered an unexpected bottleneck when integrating the approach into our overall
pipeline. We were getting blistering speed per frame on the GPU (in the region of 0.004 seconds per
640x480px frame) but there was an enormous overhead in the transfer of data from GPU to CPU to
save the upscaled frame. We tried a wide range of tactics to reduce this cost. A significant challenge is
the GPU memory consumption of the ESRGAN approach. We were observing consumption exceeding
20GB which made the approach untenable. With tuning, we found we could pin the memory
consumption to approximately 9GB which was still very high but workable. Upon experimenting with
submitting batches of frames for upscaling however, we quickly exhausted available memory so had
to abandon this approach. We tried using queues and multiprocessing on the CPU and again ran out
of memory. We tried using GPU arrays (cupy®’) but this did not prove fruitful. We tried compression
on the GPU before transferring to the CPU but the three-dimensional tensor output from the ESRGAN
approach was not amenable to this. The only approach was to reduce the amount of data we needed
to transfer from the GPU and this entailed reducing the resolution we could achieve with upscaling.
Currently, the approach is only feasible for upscaling from input images of 320x240 to 1280x960px.

Ongoing work and future prospects

In seeking to deploy an application independent approach to upscaling, we limited our range of options
somewhat. If we opted for an application-specific approach which was trained specifically on our

%9 https://cupy.dev.
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application imagery, then we would expect better results (particularly from the LapSRN algorithm?*°
and the FRSCNN approach).

One avenue we seek to explore is a two-phase upscaling approach. We would initially upscale using
ESRGAN on the GPU and then upscale again using bicubic on the CPU. This would release pressure on
the GPU and enable us to multithread the bicubic upscaling on the CPU. The initial upscaling effort
would add detail and sharpness that would be absent from a pure bicubic approach.

We remain cognizant of the fact that our approach of upscaling imagery is limited by our inability to
intrude on the source rendering pipeline in the open-source image generator we employed. We have
no access to depth buffers for example that would otherwise have allowed us to experiment with
approaches such as NVIDIA DLSS*. From the outset, in the spirit of the CHARITY project, we sought to
push through with an approach that would be reusable for any third-party graphical application and
shied away from application-specific solutions. While hardware advances continue and will
undoubtedly deliver improved performance, we may have reached the limits of what is currently
feasible with the time and resources available.

5.2.3 Towards Cloud Native

We began our journey with a monolithic platform that was not amenable to distributed deployment
and execution. We proceeded to redesign the platform and move towards a cloud native architecture.
As can be seen below in Figure 78, we decomposed the platform into self-contained microservices.
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Figure 78: Flight Simulator redesigned as cloud native.

The new architecture better reflects modern application design and gives us the opportunity to
leverage core features of the CHARITY platform that would have been difficult and far more restricted
with the original design such as the CHARITY service mesh for application adaptation, monitoring and
alerting, dynamic deployment and orchestration. Crucially, it brings options and mechanisms to
explore distributed deployment across the edge and cloud.

5.3 Dissection of the Unity3D Physics engine

ORAMA’s commercial gamified multi-user VR medical training platform (UC2-1) is built using the

40 This approach produces two-dimensional output that can be compressed and produce far superior speeds as the GPU to
host transfer issue is greatly reduced. Without imagery-specific training however, the quality is poor.

“! https://www.nvidia.com/en-gb/geforce/technologies/dlss/.
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MAGES SDK on top of the Unity3D game engine. Exploiting Unity3D’s network layer, the MAGES SDK
handles and synchronises in-game interactions, deformable object transformations and physics
simulation by broadcasting transformation values over the network. Under the hood, as part of the
MAGES SDK, the custom Geometric Algebra interpolation engine is utilised for efficient network
transmission and local interpolation of in-between positions/rotations for each end-device (HMD).
The architectural design of ORAMA’s training applications involves a single application component,
installed and run on untethered HMDs, that employ local processes for storage, rendering, and physics
deformations.

An experimental architecture, based on MAGES SDK, allows the transition to an Edge-Cloud
application, upscaling to collaborative cloud VR training applications specially formulated for
untethered HMDs. The goal of this R&D version of ORAMA's training application is to optimize the
status of the cooperative mode in terms of lower latency, higher performance on average network
conditions, and, ultimately, higher number of CCUs. This new approach, realized through computation
offloading of the entire ORAMA's application in edge-cloud resources, requires interactions and data
exchanges between the different modules placed on device, and services on Edge-Cloud.

ORAMA is currently designing and developing the required technologies and solutions to support its
advanced media applications by exploiting methods and techniques for the dissection of the Unity
physics simulation engine as a separate VM microservice that will run on the Edge-Cloud. Methods
and techniques regarding multi-threaded rendering and physics in Unity are also being investigated.

5.3.1 Dissection of Physics Simulation Engine

Currently, a typical Unity3D game engine pipeline involves simultaneous execution of CPU physics-
related calculations along with GPU calculations related to the rendering of the scene.

In this section, we provide an overview of how a dissection of the physics and the scene-rendering
pipeline can be achieved. Although a distributed application architecture usually decreases running
times, an unoptimized dissection may lead to increased latency, since there are numerous inter-calls
between the physics engine and the renderer. In the case of a desktop-VR local network system setup,
the dissection is feasible and almost straightforward. However, in the case of a mobile-VR edge-cloud
setup the physics engine dissection is rather challenging. ORAMA investigated methods and techniques
to support the dissection and allow the physics simulation engine to be run as a separate edge-cloud,
as a containerized microservice.

5.3.2 Methodology - Notation
The dissected Unity3D pipeline involves two, bidirectionally communicating, components:

¢ The Graphics Client (Graphics rendering), and
®  The Physics Server (Physics simulations & Game Logic).

The Graphics Client includes the entire Unity3D pipeline, along with its own, local, physics engine,
which remains mostly inactive, only used for the initial connection to the Physics Server. Main goal of
the dissected Unity3D pipeline is to allow any Game Object on the scene to be fully simulated by the
dissected Physics Server and not by the Graphics Client’s local physics engine.

For the reader’s convenience, we define below some terms used throughout the dissection overview.

e Graphics Object: A Game Object component, with no physics-related scripts and data residing
within the Host.

®  Physics Object: A Game Object component, responsible for storing all physics parameters. It
has attached a Rigid Body script, a Collider script, or a combination of the two.

e Remote Game Object: A Fully Dissected Game Object, that exists on both the Graphics
Client and Physics Server. This is not a tangible component or Object, simply a term that
encompasses both Graphics and Physics Objects.
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5.3.3 Methodology - Overview

5.3.3.1 Communication of the two Components

The main two components, i.e., the Graphics Client and the Physics Server, communicate using Photon
Unity Networking, a solution for providing Multiplayer support in simulations and Games made with
Unity. All Remote Game Objects are known at build time for both the Physics and Graphics Server,
making it possible to synchronize across Host and Physics Server via Photon.

5.3.3.2 Splitting a Game Object into a Graphics and a Physics Object

All Graphics Objects have no Physics Related Components attached to them (Colliders, Rigidbodies)
and the Physics Server has no Rendering camera (thus, no Graphics processing takes place).

During gameplay, the transformations of the Graphics Client’s Graphics Object are synchronized with
the respective Physics Object present in the Physics Server. The Game Object’s transformations can
either be controlled entirely by the Physics Server, or by the Graphics Client. In the latter case, the
Physics simulation continues, and the controlled Physics Object interacts with the rest of the Physics
Objects as expected.

5.3.4 Implementation

5.3.4.1 Initial Setup

With the successful initiation of the Physics Server, the Physics Client creates a session and waits for
users to join. After the Host's successful initialization, the user chooses which session they would like
to join, and use the User Interface to join.

5.3.4.2 Game Object creation after Initialization

The Game Logic resides in both the Physics Server and Graphics Client, so any Game Object that exists
in all Graphics Clients also exists in the Physics Server.

5.3.4.3 Simulation and Gameplay

Depending on the developer’s choice, the transformations of a Game Object can be either controlled
by the Graphics Client or the Physics Server. In both cases, the Physics simulation is always running.
When a Graphics Object is translated by the Host, the corresponding Physics Object is also translated
using Physics calculations and not direct transformation changes so that the simulation is accurate and
ensuring that no undesirable object clipping occurs. All transformations and synchronization is handled
by Photon Networking, which sends only the necessary data to ensure minimal network usage with
optimal QoE.

5.3.5 Lab Testing

We conducted Lab Tests using simulated users to assess network usage and Quality of Experience on
a Local network set up.

The experimentation was conducted as follows:
e 1 Physics Server running in the Unity Editor
e 12 Graphics Builds running at the same time.

o 10 Bot Builds (User Input is simulated via software)
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o 2 Player Builds (Real Players)

*  Photon Relay Server located in the Photon Cloud, accessed via Internet.

Table 22: Average network usage metrics.

Per Client Upload Download
Idling Player 1.9 KB/s 13.4KB/s
1 Player moving Around 3 KB/s 14 KB/s
Physics Server Upload Download
Idling Player 400 B/s 13.3KB/s
1 Player moving Around 450 B/s 15.2 KB/s

The very low network usage observed is due to the usage of a Dual Quaternion Interpolator used in
the MAGES SDK Photon Implementation. This allows the objects’ transformation to be updated less
frequently over the network with the same QoE as if they were updated every frame.

5.3.6 QOE Subjective remarks

During gameplay, whenever the network quality falls below a threshold, there were two issues that
were especially noticeable. First, when directly interacting with objects in VR, the network latency
causes the objects to feel “squishy”, since the user’s hand that pushes the object would initially
penetrate inside the object and after some milliseconds the object would react to the push and move
away. Secondly, when there is a high amount of packet loss, some objects tend to “flicker” between
two positions. This issue is not very common as it is not experienced every time network conditions
deteriorate. The first issue, however, is rather common, but not distracting from the gameplay in a
severe way.

5.3.7 Conclusions - Future Work

The work in this section has shown that the dissection of the Unity3D pipeline is feasible, yet
dependent on the network characteristics between the Host and the Physics server. The conducted
tests helped the derivation of the network latency and packet loss thresholds, below which we can
achieve a pleasant QoE to the VR medical training application. These thresholds should not be
exceeded by the provided testbed network.

Although docker containers outperform VMs in the case of space and processing overhead, they are
rather immature in graphics acceleration processes. In this case, the use of VMs is far more
advantageous since they have highly optimized graphics drivers and kvm passthrough support.
Additionally, docker containers have limited graphics drivers support, since only experimental versions
(for all vendors) for Linux are currently available. As such, we opt for VMs when graphic acceleration
is required, while dockers are used when only CPU resources are utilised as it it the case of the Physics
Engine in Lspart2.
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5.4 Investigating Multi-threaded rendering in the Unity3D game engine

Multi-threading exploits a CPU’s capability of processing many threads concurrently across many
cores. A multi-threading program always starts in one main thread, which subsequently creates new
threads that run in parallel. Upon completion, these threads usually synchronise their results with the
main thread.

The generation of more concurrent threads than the available CPU cores, leads to a concurrent sharing
of CPU resources among the threads, which causes frequent, resource-intensive, context switching.
As such, the multi-threading approach always suits cases with a few long-life tasks. Game Engine
pipelines mostly deal with many short-life unrelated tasks that execute at once. Multi-threading in
such systems often results with a large number of short-life threads that challenge the CPU’s and
operating system’s processing capacity, due to frequent creation and destruction of threads for short-
lived tasks. The employment of a pool of threads, often mitigates this issue, increasing performance
and avoiding latency in execution. However, even this solution does not always prevent a large number
of concurrent active threads.

Multi-threaded programming faces high risks for race conditions which often produce significant
challenges. A race condition occurs when the output of one task depends on the timing of another
process outside of its control. This issue may be a source of crashes, deadlocks, incorrect output, and
generally non-deterministic behaviour that produce non accurate rendering or simulations. As the
cause of these problems depends on timing, the recreation of the issue could happen on rare
occasions, making debugging a cumbersome process. Debugging tools, such as breakpoints and
logging, often change the timing of individual threads, causing the problem to falsely disappear.

In the frame of taking advantage of the edge-cloud resources parallel processing, methods and
techniques for parallel/multi-threading Rendering and Physics in Unity3D was explored. Unity3D
supports multi-threaded math calculations and, in this regard, we will seek to exploit parallelization
techniques for various sub-tasks, such as the skinning algorithms. Furthermore, Unity3D supports a
limited form of multi-threaded rendering by utilising specific graphics APl implementations or through
the utilisation of Graphics Jobs System.

5.4.1 Single-threaded Rendering

Unity3D mainly features a single client occupying the main thread with the execution of the high-level
rendering commands. The client also owns the real graphics device GfxDevice and performs the actual
rendering through the underlying graphics APl (GCMD) on the main thread.

5.4.2 Unity3D Multi-threading Built-in System

Multithreaded rendering in Unity, provided its graphics API permits it, is implemented as a single
client, single worker thread. This works by taking advantage of the abstract GfxDevice interface in
Unity3D. The different graphics APl implementations, such as Vulkan, Metal and GLES, inherit from
the GfxDevice.

When this system is enabled, rendering calculations are performed on a separate thread, called the
RenderThread, while the rest of calculations are performed on the main game thread, namely the
MainThread.
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Figure 79: Unity3D multi-threading Built-in System.

5.4.3 Graphics Jobs System

The Unity3D Jobs system is not the traditional kind of multi-threading system as it manages multi-
threaded code by creating jobs instead of threads. In that frame, a game is split into small units of work
where each is responsible for one specific task. These units of work are called jobs. The Graphics Job
system manages a group of worker threads across multiple cores. It usually has one worker thread per
logical CPU core, to avoid context switching. Some cores may also be reserved for the operating system
or other dedicated applications. As the job system enqueues the generated jobs in the job queue, the
Worker threads take items from the job queue and execute them.

A job may receive parameters and operate on data in a similar way to a method call. As such they can
be self-contained, or they can depend on other jobs to complete before they can run. Once scheduled,
it cannot be interrupted. In complex systems, such as those required for game development, it is
unlikely that a job is self-contained. All jobs are usually dependent on other jobs as they prepare data
for them. The Graphics Job system supports dependencies across jobs, as it is responsible for managing
them, ensuring job execution in the appropriate order. The Unity3D C# Job System is able to detect all
race conditions, protecting the programmer from potential bugs.

Writing multithreaded code can provide high-performance benefits, such as significant gains in frame
rate. Using the Burst compiler with C# jobs gives you improved quality, which also results in substantial
reduction of battery consumption on mobile devices.

Graphics Job System integrates Unity's native job system. As such, User-written code and Unity3D
engine code share the same Worker threads, avoiding the creation of more threads than CPU cores,
which would cause contention for CPU resources.

Using the Job system, multiple native command generation threads take advantage of the graphics
APIs that support recording graphics commands (GCMD) in a native format on multiple threads. It is
implemented as multiple clients, no worker thread. This removes the performance impact of writing
and reading commands in a custom format before submitting them to the API.
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Figure 80: Graphics Jobs System

Note: Currently, Graphics Jobs do not have a RenderThread to schedule jobs, causing a small amount
of overhead on the main thread for scheduling.
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5.4.4 Vulkan Graphics API

By enabling Graphics Jobs and the use of the Vulkan graphics API for Windows on Unity3D, we tested
the potential increase of performance of Unity3D for our VR offloaded solution. In most cases, the
positive performance impact was minimal:

Table 23: Potential increase of performance of Unity3D using Vulkan graphics API for Windows

Direct3D-11 Vulkan

Average Frame rate 45.47 fps 46.16 fps

As an additional remark, Vulkan on Unity3D proved to be more unstable than Direct3D11; in some
cases, performance dropped significantly to ~30 fps when Vulcan was enabled.

5.4.5 Conclusions

In our research we noticed that, regarding multi-threaded rendering for 3D applications, one rendering
thread is used, while many other work threads can parallelize other jobs such as physics, logic, Al, etc.
To the best of our knowledge, there is no other multi-threaded rendering solution or any other
alternative solution within Unity.

5.5 Adaptive rendering algorithms for low latency immersive applications

Virtual Reality (VR) applications have gained importance and interest over the last few years in various
fields, like in manufacturing, training, entertainment, and so on. Moreover, modern wireless
lightweight powerful Head Mounted Display (HMD), reach a high level of maturity and provides a more
immersive experience. Despite these, a high level in quality of experience is still challenging when
using standalone HMDs. as well as modern cloud/edge rendering pipelines considering the
requirements for ultra-low latency (<20 ms) and high-bandwidth for a comfortable, satisfying, and
convincing immersive experience [30].

Several solutions have been developed by the VR research community to achieve this goal. A lot of
effort has been spent to reduce the computational burden related to the rendering. In fact, rendering
for immersive devices requires at least the rendering from two different viewpoints, or more in some
cases to generate a 360-degree panoramic image/video to stream accordingly to the position and
orientation of the gaze of the user. The computation of the rendering can be alleviated in different
ways. Some approaches exploit the fact that the best visual acuity is around the fovea, and exploit eye
tracking to optimize the rendering, obtaining the so-called foveated rendering. Many other solutions
exploit how the Human Visual Systems (HVS) works to reduce the quality of the rendering ensuring
the same visual perceptual quality. For example, the work in [31], modifies the standard primitive
rasterization considering some perceptual effects, allowing a more efficient rasterization pipeline for
HMDs. Some other approaches take into account that distant objects do not require to be rendered
with different disparities to be perceived correctly. For example, the work of [32], assumes that
disparities are reduced for distant objects, and it uses a mix of stereoscopic and standard rendering to
generate the images to be displayed. The experiments conducted demonstrate that this simple
solution can give a satisfying experience in many cases. Other approaches work by super-sampling the
temporal line, so they create/interpolate new frames in-between other ones to reduce the total
number of images to generate. The state-of-the-art of this type is ExtraNet [33], a deep learning
network capable to double the speed of the frame generation by extrapolating the new frame for the
previous ones. The new frame is generated by minimizing the visual artefacts that typically happen in
view-dependent parts of the images (e.g. specular reflection).

Recently, with the main goal of obtaining a high fidelity VR experience for standalone mobile devices,
solutions that take advantage of computing the rendering at the edge are explored [34]. In this case,
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the total end-to-end latency is dependent on the time to transmit sensor data from HMD to the edge
computing node, the time for physics computations, the rendering/encoding time of the views on the
edge node, the transmission time of the rendered images/video from the edge computing node to
HMD, and the time to decode and display the view on the HMD. The encoding and decoding phases
are optional and depend on the specific application. In this setting, different strategies can be used to
optimize the rendering, caching, and streaming of the different views.

FlashBack [35], is a VR system which pre-renders all possible views on a 3D grid of suitable size and
delivers frames according to the position and orientation of the viewers. Obviously, this is not optimal
from a caching point of view. The work of [36], adopts a parallel rendering and streaming mechanism,
that reuses rendering parts, that remain the same during the interaction, allowing a reduced streaming
latency. Long-Short Term Memory (LSTM) ([37], [38]) model and Recurrent Neural Networks (RNN)
([39], [40]) are used to predict the head/body movements, that allow the optimization of the view
generation, reducing the overall computational and improving performance.

In CHARITY, we investigated the integration of the above methods to some Use Cases, to obtain an
adaptive rendering solution, to support high-quality low-latency VR applications. In that respect, we
studied the above methods in relation with the CHARITY use case applications that utilize a remote
computation pipeline for VR: UC2-1 VR Medical Training Simulator (ORAMA) and UC3-2 Manned-
Unmanned Operations Trainer VR Simulation (CAl), and concluded that UC3-2 architecture is more
suitable to integrate frame extrapolation/interpolation and super-resolution based methods. These
algorithms have been tested extensively in the context of the UC3-2, as reported in Section 5.2.

5.6 Point Cloud Encoding / Decoding

5.6.1 UC1-3 Holographic Assistant

The CHARITY UC1-3 Holographic Assistant (Figure 81) adopts the physical principles "diffraction and
interference of light" to enable real 3D holography, based on sophisticated custom optical components
and algorithms. This lays the foundation for showing a butler-like avatar in 3D space on a holographic
3D display with true depth and true eye focus - for your eyes it is like natural viewing. The butler shall
react to natural language and assists by providing information gathered from the cloud or the internet.
Beside the 3D holographic presentation, this use case enables a lot of challenging services and new
technology to be developed and implemented in the CHARITY cloud.

The use case is focusing on a cloud-based application rendering a virtual holographic 3D assistant
including additional information and transferring / streaming the content to a local client system in a
format compatible to interference-based holography. On the client system, the content is computed
into a real-time 3D hologram and is presented on a holographic 3D display from SeeReal Technologies
(SRT). By using eye-tracking, the observer always sees the correct perspective of the holographic
assistant 3D scene. The hologram enables natural viewing for correct eye focusing and convergence
to experience true depth and natural viewing. So, the well-known accommodation convergence
conflict known from classic 3D stereo does not apply here.

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 106 of 1



D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive ... n.

Holo Assistant

@

Holographic 3D display with eye tracking
showing the holographic assistant and information

voice processing

Local Services in the CHARITY cloud ﬂ
processing
Rendering
3D point cloud Assistant behavior

decoding <‘,:(>

3D point cloud computation
Hologram and encoding

computation

access to
information

Gathering and merging of information from cloud
services

X~
(: SeeReal i

o Al services
Technologies

Figure 81: The Holo Assistant User Case.

The preferred data format for the management of the visual data is a Point Cloud (PC) based format
which provides the following advantages:

e  Multiple views can be encoded acting as a cache on client side - if many views are available,
there is no missing data when data coming from the cloud is delayed

e Multiple points on one "line of sight" allow for looking around an object within one and the
same data set, but also enable transparency effects

e Compared to typical point cloud, here is targeted to include only certain views or a certain
view range, thus the point cloud scene must not be viewed correctly from all sides

The use case thus requires the following modules to be developed:

Point cloud (PC) generation module (which is dependent on the rendering engine)
PC compression

Data transfer of compressed PC data

e PC decompression

We underline that the R&D activity in CHARITY regards the aspects just mentioned, and no other
aspects involved in the fruition of the holographic content, such as the interaction modalities between
the user and the avatar or the design of the user interface.

5.6.2 Point cloud encoder/decoder (PC E/D) - first design considerations

The overall process that we have to take into account for the development of the PC E/D is the
following:

PC generation: We need to generate a point cloud from a generic 3D scene created with a
game engine like Unity 3D. This point cloud contains all the 3D scene points to be seen from
different views - at least two for the two eyes of the observer looking at the holographic 3D
display. The generation could be based for instance on rendering multiple views of the Unity
3D scene, but the point cloud can be generated also in other ways. An advantage of this
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method is that it relies on a very generic approach, easy to be applied to any 3D content and
any 3D engine.

PC compression: the 3D point cloud needs to be compressed. Algorithms and heuristics like
detecting changes from frame to frame can be applied in order to reduce the amount of data
to transfer. Network quality adaption is also done here, reacting to indicators and control
mechanisms from the CHARITY monitoring. For example, the resolution of the 3D point cloud
could be adapted dynamically and/or the number of encoded views could be reduced.

PC transfer and decompression: the data is transferred over the network. Some feedback
about network quality is provided by the receiving client to the cloud. The receiving client
decompresses the received point cloud data and applies it to the existing data model - i.e.
applies scene point changes for the case that only changes in the 3D point cloud have been
transmitted. In the last step, depending from the actual observer’s eye location at the
holographic 3D display, the views needed to generate the hologram are extracted from the
local 3D point cloud and the hologram is computed and presented to the observer.

To start, we need to define a data format suitable for data compression / decompression algorithm.
One good option is to use a volumetric format, i.e. a voxel, and store in each cell of the voxel a 3D
points plus additional information such as:

Location in space = defined by position in the grid

Color + optional alpha + material tag to define transparency behaviour

material tag could be something like: fog/smoke, clear glass, distorting glass, coloured glass
Viewability - definition from where the point or a certain list of points can be seen — certain
eye boxes in space are needed to be defined

If no eye boxes are defined, we assume this is not a reduced PC and could not be seen from all
sides, in this case no viewability attributes are provided.

For the overall PC we need:

Eye boxes / ranges for which this PC is valid = in 3D space we define the PC cuboid's location
and size + multiple eye boxes

Resolution in X/Y/Z = number of voxels / definition of the 3D grid

Information about globally contained attributes = alpha and / or material tags, viewability
information.

Figure 82 explains what is meant with eye boxes and 3D point viewability. Certain 3D points would be
seen only from certain eye boxes while most points are visible from all eye boxes.

n

=

=1

eye box eye box eye box
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Figure 82: Relationship between the eye boxes and visibility of the 3D points.

Regarding the existing standards for point clouds, we analysed the recently published MPEG Point
Cloud Compression (MPEG PCC) standard [21].

From the viewpoint of official standardization, good progress was made by the MPEG Point Cloud
Compression project (MPEG PCC). It was initiated in about 2014. A call for proposals in 2017 resulted
in a first draft of the standard at the end of 2018. Until today the standard is under development and
there is an actively maintained reference implementation. Basically, the standard proposes two types
of 3D point cloud compression - video based (V-PCC ISO/IEC 23090-5) and geometry based (G-PCC
ISO/IEC 23090-9).

(a) (b) (c)

Figure 83: Example data sets used for comparing V-PCC (image taken from paper in Ref MPCC-1).

The V-PCC variant uses classic image-based processing (color + depth + occupancy maps). By applying
common image-based compression methods (HEVC in the reference implementation), quite good
compression rates can be achieved. The method is based on projection of the 3D source scene or point
cloud on multiple 2D maps from different perspectives. These projections or patches are then mapped
into the frame - the "atlas" - to be encoded / decoded by means of video compression. Here multiple
maps are generated, attribute maps (can be RGB color but also something else), depth maps
(representing the distance from the according perspective) and an occupancy map (representing valid
pixels). Within a (lossless encoded) meta data channel, information about how to reconstruct these
patches back into the 3D point cloud are provided within the multiplexed data stream. Within the
process of generating the patches and atlas, some improvements on the data are done, i.e. detection
and removal of duplicate 3D points or improvement of quality on the regions between patches
(seams). As a result, very good compression rates are achieved. The MPEG PCC research group defined
some reference data sets (see Figure 83), where the rates and quality of different algorithm versions
and parameter variants could be measured and compared. For example, a scene with 100k
points @30fps corresponds to 360Mbit/s uncompressed data rate. With V-PCC a compression to
about 1 MBit/s can be achieved using version TMC2v8.0 while achieving good quality.

The G-PCC variant is based on compressing the 3D points directly one by one. Here the 3D points
structure (point locations) is encoded lossless by using an octree approach (divide a cube into 8 cubes
iteratively until we are at point level - noting down if there is something inside the cube or not -
represented with 8 bit per cube). For encoding point attributes (i.e. RGB color), three compression
methods have been developed. These methods basically make use of similarity / redundancy between
colors down the octree graph. The algorithm also allows for different level of details - usable e.g. to
adapt for variations in available data rate or to adapt for current detail requirement in rendering
process. Currently the algorithm does not use temporal compression approaches, that would enable
lower data rates in situations where the 3D scene does not change much from frame to frame - as
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compared to MPEG video compression where this approach is employed and is extremely effective.
However, some work in this direction may be done for the next version of the standard.

Preliminary analysis

For G-PCC some of the above data sets have been compared. For example, in a scene with 100k points
at 10 fps, corresponding to 110 MBit/s uncompressed data rate, a compressed rate down to about 24
MBIt/s could be achieved with good quality.

Further tests are required, but from this preliminary analysis, we can conclude that the V-PCC encoding
time is too much high for our target requirements, while G-PCC approach would be better. Anyway,
G-PCC has no support for taking into account visibility of the 3D points.

Hence, the key factors for the effective development are:

e toexploit the visibility information to reduce the amount of data required by the edge device;
the viewpoint information can be used also to make the generation of views more efficient

e to find/to develop compression scheme alternative to G-PCC and V-PCC standards to achieve
the target requirements.

5.6.3 PC generation module

Before a point cloud can be compressed, it needs to be generated. Typically, one creates a point cloud
from a static 3D scene/3D model, which then can be watched from different angles at different level
of details. In this case the point cloud is often directly generated from triangles or 3D-mesh.

In the context of the UC1-3 Holographic Assistant a different approach was chosen. The main goal is
to convert the visual output of any 3D-application with any content including animations, complex
materials and lighting into a video based, streamable 3D point cloud. The advantage is that such a
point cloud enables to generate the required views from certain directions locally at the end user
device, while the actual 3D-content is managed and rendered somewhere else, e.g. in the cloud. This
has following advantages: first the certain views required by the output device, e.g. a holographic 3D
display, are generated with very low delay independent from actual network performance. Secondly,
the end user device could be something like a thin client, thus it needs only to output the required
views and does not need to render high fidelity 3D-content. This is comparable to actual 2D based
game streaming services commercially available.

Thus, in our particular case, the point cloud is generated from GPU renderings of the 3D scene in Unity
3D from different viewpoints (one RGB and depth image per view, see Figure 84 and Figure 85) and
then merged into a single or multiple point clouds. Compared to typical point cloud data sets where
the data provides information from all watching directions, full details are in this case visible only from
certain angular ranges (see Figure 86). These limited valid viewing ranges or zones are generated from
the different provided views mentioned above. This concept has the advantage to dramatically
reducing overall amount of required 3D points in the point cloud to enable more efficient compression
and frame by frame-based transfer of point cloud-based video. Frame by frame-based point cloud
data will also enable the opportunity to make use of differences between point cloud frames, so for
quite static 3D scenes with limited changes from frame to frame, a lower number of changing 3D
points is to be expected so this can be used for efficient compression and transfer of video-based point
cloud data.
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“

Figure 84: Example of three slightly different views (depth + RGB data). These views can be merged together to
form the point cloud.

Figure 85: Rendered final result after reconstructing into an image.

Figure 86: Example of a merged point cloud visualized from a different, invalid, perspective.

This approach has been preferred over the voxel-based one of the initial design, because is general
and simple, and avoid to manage octrees that is more difficult to parallelize due to lack of memory
coherence. Obviously, this approach becomes costly if a large number of views are required, but a few
number of views from slightly different viewpoints, we used 8 views in our experiments, are typically
sufficient for a good quality of experience.

5.6.4 PCE/D component

The point cloud resulting from merging depth maps from slightly different views, can be more
efficiently represented as a 2D depth map with colour information and additional points whenever a
jump in depth occurs: (see Figure 87).
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Figure 87: (Left) Depth+RGB, central view (Right) Hidden points revealed through the others views.

For these reasons, a more suitable data structure is a 2D grid where each element is the start of a
linked list (usually containing zero or one element). A similar structure is a hash map with linked lists
to resolve conflicts, but in our case an ‘identity’ hash already guarantees very few collisions, optimal
memory coherence and O(1) access time.

To extract this merged mesh from the several depth maps+RGB generated from different viewpoints,
we can start from one of the views (VO) depth map, then for each pixel of the following views (V1) we
un-project in world space and re-project in VO space, compare the depth to determine if the point is
already present and if not add it to the merged point cloud (see Figure 88).

O O

oy

Vi

Vo Vo

Figure 88: Depth map can be used to find the hidden points using projection between different views. In green
and red the points revealed by this operation.

The most resource-intensive operation is the matrix multiplication required to convert between
different views' coordinate systems. We tested this strategy, and we can process 25 views 800x600 in
CPU in 30ms, including rendering and transfer of the views depth maps from GPU to CPU for a simple
dataset. Another advantage of this data structure is its potential for parallelization by dividing the
image into horizontal or vertical strips, depending on the displacement direction. In this prototype,
we adopted the CPU parallelization strategy due to its ease of deployment.

In order to increase the resolution, we can move the bulk of these computations in GPU: instead of
saving depth map and RGB, we project each point in a common final voxel space saving x y and z as
additional attributes. While data size increases, we save matrix multiplication per pixel in CPU.

The linked list could be relatively easily implemented on the GPU, recycling order-independent
transparency algorithms, resulting in improved computational speed and reduced data transfer from
GPU memory to the CPU: we use the first depth-map as a texture and the following renderings can
directly compare each pixel with the corresponding (projected and in the first view space) pixel in the
texture and write the ‘hidden’ pixels only if the depth does not match.
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Finally, the few ‘hidden’ pixels can be directly written to an array or compacted in a second pass, to
minimize the amount of data transferred back to the CPU.

The final data to be compressed consists of a depth+rgb map, where depth is quantized accordingly to
the precision needed by the hologram projector, and a small array of xyz+rgb points.

The RGB+depth data is encoded as two images, with the RGB image converted to YUV and the depth
data color-coded. These two image sequences are video encoded using the H.264 video codec, muxed
into an RTP stream. This approach allows for different parameters to be used for depth and colors, as
their effects on visual fidelity are distinct. We chose lossless encoding for the depth stream, as even
small errors result in noticeable artifacts, especially around depth discontinuities.

The additional hidden points and eventual parameters (resolution changes, for example) are entropy
compressed and transferred using the SEI message mechanism of the H.264 codec. We opted for LZ4
library as the best compromise between compression ratio and speed. For experiments conducted on
the possible geometry entropy encoders, see the next Section (Section 5.6.5).

A result of encoding, transmitting, and decoding 8 views is shown in Figure 89.

Figure 89: Example of a point cloud decoded from 8 views with small offset.

Performances

On a test dataset of about 50 frames, selecting lossless video compression we manage 20fps on a
common PC running both client and server using 4 cores. The most time consuming part is the point
cloud extraction and in particular the per pixel matrix multiplication required to compare the different
views, amounting to about 50% of the execution time. Further optimization in term of parallelization
(for example socket transmission is not currently parallelized with point cloud extraction and video
compression) or more importantly GPU matrix multiplication and point cloud extraction would easily
bring the fps above 30 or allow for additional views.

The compression ratio is dataset dependent: H264 performs an excellent job at exploiting temporal
coherence. The hidden points transmitted separately (not video encoded) depends on the depth
complexity of the scene.

Limitations

Compression artifacts in the depth channel are extremely apparent around the edges of 3D shapes, so
it is not advisable to lower the CRF quality setting parameter. This problem could be alleviated using
post processing filtering on the decoded video stream.
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5.6.5 Geometry encoding - evaluations

Data compression trades CPU computation and latency for reduced network bandwidth usage: the
effectiveness of a compression algorithm depends both on compression ratio which determines the
bandwidth reduction and on compression and decompression speed. However, long computational
time might negate the bandwidth advantage.

Compression and decompression speed of an algorithm have always played a crucial role in
determining its success, where good compression performances are especially difficult to obtain.
Historically, in Computer Graphics, geometry compression algorithm competition has been focused
mainly if not almost exclusively on compression ratio, and consequently widely used compression
algorithm has become available only very recently when good performances combined with fast
decompression have become possible, (Draco [15], Corto [18], Potree [19]) especially on the Web
where the limited performance of JavaScript prevented a solution for a long time, while at the same
time, bandwidth limitations made the problem more pressing.

We performed an evaluation of the performances of the available open-source libraries on a sample
point cloud containing 20K points with colour information, weighting 570KB in raw binary format. All
tests were performed using the same attribute and position quantization and a single thread
processing. Results are reported in Table 24.

Table 24: Evaluation geometry compression algorithm

Algorithm Compression time in seconds

Quantization < 0.001s 140KB

gzip -1 0.004s 100KB

gzip: -7 0.018s 90KB

Corto 0.005s 71KB

Dracol 0.030s 71KB (missing colours!)
Tmc13 0.138s 53K

All geometry compression algorithms perform some form of quantization on the vertex position and
attributes. Due to the limited size of the dataset, drastic quantization can be performed on the
positions (from 32 bits to 11 bits per coordinate) at a negligible cost in quality. Larger datasets can be
easily cut into blocks so the numbers from this experiment remain significant.

As a comparison we tested a zip library (actually zlib), a general-purpose compression algorithm. The
low compression ratio is mainly due to the fact that it cannot exploit the geometric coherence of the
point cloud. Due to the relatively low compression ratio, there is a small difference in compression
ratio when changing the dictionary length of the algorithm. On the other hand, large dictionaries
become a large penalty in decompression time (4 times here) mostly due to the fact that the dictionary
will not fit in the L2 cache generating many cache misses. Other entropy compression algorithms (LZ4
for example) have been tested, with much faster compression timings but worse compression ratio.

Corto [18] adopts a very simple Morton-code based geometry compression with a difference encoder
for the attributes (colours in this case).

Tunstall [20] (which is basically a reverse Huffman) is used as an entropy coder due to its extreme
speed in decompression while still being fast enough in compression and having compression ratio
similar to Huffman. Corto is able to encode five million vertices per second, while decoding at around
25M vertices per second. Adopting Huffman instead would probably reverse the speeds. Other entropy
coders could be used and offer different trade-off between speed and compression ratio.

Draco [15] adopts a similar approach based on differences combined with arithmetic entropy coding.
Surprisingly the compression ratio is worse while colour information has not been encoded (command
line software does not support it). Unsurprisingly, due to more sophisticate entropy coding, the
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compression timing is 5 times worse. Draco offers much better trade-off for meshes.

Tmc13 [21] offers the best compression ratio (1:10), at the cost of a long processing time 0.14s, 142K
triangles per second. This software offers a very large set of parameters to be tuned, coupled with a
lack of a decent documentation or guidance. We tested a (very) large number of configurations with
mixed results. We are confident that marginally better results can be obtained, the picture is not going
to change substantially.

For each compression algorithm, speed and compression ratio defines a bandwidth above which it
makes no sense to compress as it would take more time to compress/decompress the data than to
send raw, quantized (11 per coordinate 8 per colour channel, for small datasets, in total 58 bits) data.

Tmc13 becomes useful when the network bandwidth is smaller than (58/8)*142K/s ~ 1MB/s, while
Corto keeps being competitive up to 58*5M/8 = 36M/s. For bandwidth lower than ~1.3MB/s higher
compression ratio of Tmc13 allows to better make use the limited bandwidth.

Since it is relatively easy to perform point data compression in parallel, adding computational power
allows Tmc13 to remain competitive with higher available bandwidth.

The compression algorithm could be very easily swapped for a different one at any time in the
streaming depending on bandwidth or CPU limitations, and the most promising algorithms to adopt
for geometric compression, according to these preliminary investigations are Corto, Tmc13. Also the
simple quantization and LZ4 are competitive.

5.6.6 Conclusions

The current prototype, called “Cloudstream”, is implemented as a C++ library prototype. This library
consists of a server component that converts a set of RGB+depth data into a streamable dataset made
available through a socket, and a client component that connects to the socket and provides a point
cloud (RGB + XYZ) for rendering. It provides functionality for monitoring performance in terms of
framerate, compression ratio, and timing for various tasks. The library also allows for throttling
computational effort and data transfer at the expense of resolution and quality. The library is available
on CHARITY GitLab*2. The dependencies are OpenCV, libav, and libz4, and it has been tested both on
Linux and Windows. This library has been integrated and tested in the UC Holographic Assistant.

SRT developed and tested also an alternative, similar approach. The main difference consists in the
processing and transmission of the hidden points. Instead of the linked list, only the first conflicts of
the same pixels are saved to another texture which is then encoded in a second video stream. The
performances of both algorithms are similar (around 5 fps) due to the bottleneck of the CPU matrix
transform of the library.

The CPU version of the library is general, easily integrable in different rendering environments, and
further optimization can be implemented, as previously discussed, to increase the final number of fps.
The GPU version needs to be specific for the rendering engine used, and this is not ready at the
moment of writing. Anyway, we can estimate, according to tests conducted, that the usage of GPU
brings the final performance around 30 fps for a video of resolution 1280 x 752.

5.7 Virtual Experiences Builder Platform

Cyango Cloud Studio is the name of the software platforms related to the UC2-2 VR Tour Creator
Application in CHARITY. Cyango Cloud Studio is an easy-to-use and resourceful tool that will help
Explain, Show, Teach and Sell directly inside 360° Videos.

The 360° Video Editing Software provides access to technology to anyone who wants to create
marketable immersive digital experiences at an affordable price. Cyango Cloud Studio can be used to

42 https://gitlab.charity-project.eu/ponchio/cloudstream.
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showcase a story that help enhancing the business, product or brand of a company through a dynamic
and unique experience.

One of the main goal inside CHARITY is to deal with the micro services of the platform to provide a
better performance and better user experience. One of the biggest achievements is the total migration
of all the services of the platform to CHARITY, making it 100% cloud native. There are many problems
addressed in CHARITY, mainly related to the livestreaming, editing in real time of media content, and
transcoding / converting files uploaded by the users to create multiple adaptive levels.

Besides this we have been focusing and developing many features in the back-office while keeping
harmony with the user interface and user experience according to the feedback we gathered via user
focus groups, meetings, calls and demos at events showing our software.

5.7.1 Miilestones

We defined many milestones on our roadmap. Below we describe shortly the most relevant ones:
5.7.1.1 Refactoring of the 3D Web engine framework

We did a total refactoring of the 3D Web engine framework. We used Aframe® in the past, but we
decided to migrate to a more modern and compatible framework with React.js, which is called React-
Three-Fiber*. This change of framework required an extensive code re-factoring, as its logic was
different from Aframe, although both used Three.js engine.

This assured better scalability, allowing a more streamlined way of coding, and it is compatible with
our team’s knowledge.

5.7.1.2 Friendly to use

We also completely re-designed and improved the Ul/UX of the platform. All the cloud features we
had implemented needed to be in sync with the Ul/UX, for example the video conversion and assets
management needed to have many Ul/UX features to actually work. This also allows the software to
be actually user-friendly therefore marketable. The figures below (Figure 90 and Figure 91) show some
screenshots of the whole platform after the re-design.
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Figure 90: New design of Cloud Studio (screenshot 1).

43 https://aframe.io

4 https://github.com/pmndrs/react-three-fiber
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Figure 91: New design of Cloud Studio (screenshot 2).
5.7.1.3 Video Editor

We also made important research about how to achieve an important feature the users requested,
which is the online video editor, that allows the user to edit the video and audio.

We explored a possible video editor tool solution based on the FFMPEG+WASM*, a pure web assembly
port of FFMPEG which could allow editing video, audio and stream inside the browser. Unfortunately,
we found some critical technology obstacles so that this solution would not be feasible on the client
side. Hence, we have decided to create a solution that works on the edge-cloud. We call this
component the cyango-worker, which is mainly focused on heavy tasks like video and audio
conversion, image conversion, and 3D models conversion. To be able to do heavy tasks asynchronously
without blocking user’s work on the frontend, we had to implement a Kafka cluster to act as a message
broker between cyango-backend component and cyango-workers.
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Figure 92: Video timeline editor.

We also designed a screen of how this video editor tool would be like in Cyango Cloud Studio, shown

4 https://github.com/ffmpegwasm/ffmpeg.wasm
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in Figure 92.
5.7.1.4 360 VR Livestreaming

The implemented 360 VR livestreaming feature is still under optimization.

Regarding the performance, a series of livestreaming tests using a high quality 360 camera and a server
of the company has been conducted. These tests allow to understand what factors are preventing a
good user experience.

The setup used in such tests were: 360 camera streaming in Lisbon, Portugal and the consumer user
located in Evora, Portugal. The 360 camera was streaming to a service inside a docker container hosted
in our Synology NAS 918+% . This container is built on:

e Nginx 1.17.5 (compiled from source)
e Nginx-rtmp-module 1.2.1 (compiled from source)
* FFmpeg 4.2.1 (compiled from source)

and allows to stream to a RTMP url using a server public IP address, and then the front-end app
consumes the url called https://live.cyango.com . This url points to the docker container in a server of
the DOTES. This docker container receives a video stream from the 360° camera via RTMP and then
uses ffmpeg to convert the video in real-time to the HLS format so we can consume it on the front-
end.

The network parameters of each endpoint are the following:
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Figure 93: Camera end network settings.
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46 https://www.storagereview.com/review/synology-diskstation-ds918-review
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Figure 94: End user network settings.

We did some tests with different parameters as detailed below. These tests were conducted to
understand the performance of the algorithm and protocols used in Cyango Cloud Studio.

Test 1

In the first test the camera was streaming video at 4k 3840x2160 with a bit rate of 10MB/s. In this first
test we experienced an high number of video stops during playing, approximately 10 times per 20
seconds of streaming. An accurate perceptual measure of this problem is under evaluation but the
streaming quality has shown to be clearly insufficient.

/XHR JS CSS Img

nnnnnn
Blocked Requests

nnnnnn

""""""""""""""""

nnnnnn

cPu 0.08% RAM 69 M8

cyango-story-express P 0.05% RAM  4gms Runnin 9

cpu 0% RAM 78 M8
cpu 0% RAM o8

on cpu 0.13% RAM a3mp  Runnin °

cPu 0% RAM og Stopped

sssss

Figure 95: Screenshot of the livestream test

Test 2

In this test we lowered the camera settings to 1440P 2560x1440 with a bit rate of 10MB/s, and still
experienced video stops similar to test 1.

Test 3

We lowered the camera settings to 1080P 1920X1080 with a bit rate of 10MB/s, and still experiencing
the same as test 1 and test 2.

Test 4

In this test we used the camera settings as 960P 1920x960 with a bit rate of 5MB/s. And in this test the
video plays without stops, but we noticed about a 3 minutes delay. We could confirm this delay,
because we had a phone call between the two DOTES collaborators confirming the delay.

Test 5

In this test we lowered the camera settings to 720P 1440x720 and a bit rate of 5MB/s. In this case the
video plays without stops and with a delay of about 45 seconds, using the same process as test 4.

From these preliminary tests, we conclude that the server we used is the major factor of the delay,
because it does not have good hardware resources to quickly transcode the video coming from the
stream to HLS. In the next, we exploit resources made available by CHARITY partners to make
additional tests. Also, some tweaks could be done on the algorithm approach. In the next tests
iteration, we will research about Low latency HLS* to assess the latency reduction using this protocol.

47 https://developer.apple.com/documentation/http_live_streaming/enabling_low-latency_http_live_streaming_hls
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As the development was progressing, we implemented a new micro-service on the edge-cloud of
CHARITY which we call cyango-media-server. This component is based on Oven-Media technology®
and allows to stream from a 360 camera via RTMP url, that in the edge is then converted to HLS
protocol which is readable on the frontend.

5.7.1.5 Workers

One of the complex features we implemented was the component called cyango-worker. This
component lives on the cloud of CHARITY and is responsible for heavy tasks like the video editor, video
and audio transcoding, and image conversion.

This component is always actively listening to kafka messages from the Kafka message broker
implemented in CHARITY. One of the cases why we need a message broker like Kafka is because the
user can upload many videos, and the cyango-workers receive the orders asynchronously to start
transcoding or converting the videos, and when finished the cyango-worker starts doing the next task
waiting in the kafka message bus. The cyango-worker containers can also be scaled in terms of replicas
according to the demand. If there are many users sending many videos in a short period of time, the
system must be capable of adapting the resources. This is also related to the work done in a paper we
co-authored within CHARITY scope of work about Intelligent Multi-Domain Edge Orchestration [61].

5.7.1.6 WebXR compatibility

We also achieved major steps on the compatibility with WebXR. Traditional DOM elements on the
browser are not compatible with. We had to replicate many basic UlI/UX elements we had on mobile
and desktop to WebXR. For example, creating buttons, images, image carousels, popups, hotspots,
video players, audio player, are just a few of the components we had to do to make our application
work on WebXR. This allows us to test the 360 livestreaming for example and measure its performance.
This transition allows our platform to become ready for the spatial computing era. Spatial interactions
like hand tracking and poses, grab 3D meshes, anchors, and teleport, and interact with 3D Ul canvas.
With the help of an open-source repository® and engaging and contributing to this repository
community we had success in implementing cross-platform Ul elements that work in WebXR and
traditional DOM.
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Figure 96: WebXR environment on Cyango.

8 https://airensoft.gitbook.io/ovenmediaengine .

4 https://coconut-xr.com .
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5.7.1.7 Analytics and Monitoring

We also implemented the analytics and monitoring system for our platform, most precisely
implemented on cyango-backend, cyango-story and cyango-cloud-editor components.

This system allows to measure how much time the users spent using the platform, measure the
performance of the app on the client side, and other important analytics that allow a better
understanding of the performance and help us on deciding what is the best direction of the app.
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Figure 97: Dashboard of analytics inside the platform.

We also implemented the monitoring part of the 360 livestream that sends metrics about the
connection performance and latency params to a Prometheus component that lives on CHARITY cloud.

Until now we did an official test of around 2 hours livestreaming from a 360 camera with 2k resolution
video and a 20 mbps of bitrate, but we haven’t had a good quality of experience. We need to improve
and research more on how to achieve a good experience.As depicted in Figure 98 and Figure 99 below,
the measurements about the total round trip time and available incoming bitrate. These
measurements can vary depending of the video resolution and bitrate that is being streamed. In this
case the video had a resolution of 5k and an approximate bitrate of 2 mbps.

Figure 98: Total round trip time of a 360 livestream test done within 2 hours.
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Figure 99: Available incoming bitrate of a 360 livestream test done within 2 hours.

5.8 Immersive services and cross-video streaming experiments

Immersive services, such as VR, AR, and XR applications, have stringent latency and high bandwidth
requirements, often limited to standalone and costly installations [50]. Despite this, they are expected
to dominate next-generation networks due to their popularity and anticipated traffic volumes, making
XR applications mainstream by 2030. For this purpose, Standards Development Organizations (SDOs)
are actively addressing enabling technologies for VR, AR, and XR applications to ensure
interoperability. IEEE P2048, ETSI, 3GPP, MPEG, W3C, and IETF are among the organizations developing
standards and frameworks for various aspects of immersive experiences, such as streaming, data
representation, and communication protocols. Effectively, in the realm of Holographic-Type
Communication, HTC is recognized for its role in the Network 2030 initiative of ITU-T, focusing on
multi-sense networks and haptic communication services. MPEG is contributing to immersive data
representation through its MPEG-A series, introducing formats like OMAF for 360 videos and standards
for volumetric video under the MPEG-I project. For Augmented Reality, ETSI has defined the
Augmented Reality Framework, offering a functional reference architecture for AR components,
systems, and services. The architecture includes layers for hardware, software, and data, specifying
component placement and potential offloading to the cloud or edge.

Regarding immersive services' Quality of Service (QoS) requirements, Table 23 summarizes latency,
bandwidth, and reliability needs for each use case. Figure 100 illustrates these requirements from a
cloud perspective, mapping interactivity against bandwidth for various immersive services. It shall be
highlighted that the use cases shown in Table 23 and Figure 100 strongly relate to the CHARITY use
cases. Effectively, CHARITY's "real-time holographic applications" fall under the HTC telepresence use
case. CHARITY's "immersive virtual training" falls under both remote services and social tourism use
cases, whereas CHARITY's "mixed reality interactive applications" fall under both the remote services
and cloud gaming use cases.
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Figure 100: XR use cases and their requirements [50].

Table 23: Requirements of XR services [50].

Use Case QoS Requirements

Latency Data Rate Reliability
HTC telepresence 320 ms 2Gbps to 2 Tbps 99,999%
Remote services less than 5 ms 15 Mbps to 2 Tbhps 99,999%
Social tourism 320 ms 15 Mbps to 2 Gbps 99,999%
Cloud gaming 30 to 150 ms 15 Mbps to 500 Mbps | 99,999%

We conducted experiments to assess the impact of various metrics on Glass-to-Glass (G2G) latency in
immersive services, using the example of a remote control system with VR headsets managing devices
like robots. In the conducted experiments, the GTG latency is determined by activating a LED adjacent
to the 360 camera at time t1. A light sensor connected to the HMD captures the light at time t2. Both
time points are logged on a Single Board Computer (SBC). The GTG latency is calculated as the
difference between these two time points, namely (t2 - t1).

End-users can smoothly control industrial equipment through hand motions and HMD controllers,
facilitated by 360-degree video from remote devices. Both video streaming and device control demand
low latency and high reliability. Analyzing the streaming aspect, we focus on the communication
between VR HMDs and remote devices, utilizing real-time protocols like RTP or WebRTC. While RTP is
designed for broadcast scenarios, our VR-based remote control scenario demands direct
communication for minimal end-to-end latency, distinguishing it from traditional use cases like live
concerts [51].

In Figure 101 the GTG latency performance between Oculus Quest and the 360-degree camera is
depicted. Two cameras were employed in the experiments: i) Vuze XR and ii) Insta 360 Pro, both
streaming at 30 FPS using the RTMP protocol. The results, as shown in Figure 101, indicate that Insta
360 Pro outperforms Vuze XR by approximately 700ms. This difference can be attributed to two
factors. First, for live streaming, Vuze XR requires a connection to a smartphone via WiFi Direct,
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introducing additional delays. Second, Insta 360 Pro benefits from its built-in RTMP server, significantly
reducing GTG latency. In Figure 102: Performance evaluation of RTMP in case of Insta 360 Pro [51].
the RTMP protocol performance of Insta 360 Pro is plotted against GTG latency as a function of Display
Refresh Rate (DRR). The trend shows a decreasing GTG with increasing DRR, but with diminishing
returns. For example, increasing DRR from 144 to 244 results in only a 3ms GTG reduction, alongside
increased energy consumption. Current HMD displays typically max out at 120Hz refresh rate. To
assess the impact of Streaming Frame Rate (SFR) on GTG latency, Figure 103: Performance evaluation
of RTMP for varying DRR values [51]. Figure 103 and Figure 104 present evaluations. Figure 103
illustrates that, for various streaming rates, increasing DRR from 50 to 244Hz leads to a modest 40ms
GTG reduction. Figure 104 demonstrates a more significant GTG reduction with increased SFR, such as
a 100ms decrease when going from 20 FPS to 30 FPS. However, diminishing returns occur with higher
SFR values due to increased bandwidth and computational demands, causing bottlenecks in both
network and computation resources at rates like 120 FPS or 240 FPS.

Figure 105 provides a detailed GTG latency analysis, emphasizing the influence of both camera refresh
rate and Streaming Frame Rate (SFR) on immersive data processing. A 30 FPS camera refresh rate
contributes at least 66ms to the processing time at the sender, excluding additional processing delays
like stitching and encoding. Edge processing introduces a minimum of 33ms. Delayed packet arrival
affects decoding times at both the edge cloud and end device. While increasing SFR significantly
reduces GTG latency, it demands intensive computation to handle the higher throughput. However,
in holography, escalating SFR may compromise the streaming experience due to the need for
substantial network resources, potentially causing packet loss and delayed arrivals, ultimately
impacting GTG latency.

)
=
o)
=]
S

T

I

o
o
{em)
T
1

Vuze XR Insta 360 Pro
Camera Type

Figure 101: GTG latency for two types of 360 cameras [51].
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Figure 102: Performance evaluation of RTMP in case of Insta 360 Pro [51].
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Figure 103: Performance evaluation of RTMP for varying DRR values [51].
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Figure 104: Performance evaluation of RTMP for varying FPS values [51].
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Figure 105: Detailed analysis of the GTG. The size of each box does not reflect the processing time of the
respective task [51].

In another experiment focusing on remote driving assistance for autonomous vehicles, we explored
the efficiency of using a 360° stream augmented with vehicle-related information, delivered via an
HMD wearable device by a remote human operator (RHO) [52]. The setup involved a Labpano Pilot
One 360° camera, an Intel® Xeon® server, and a Latitude 7490 receiver device. We assessed various
streaming protocols and modes, comparing G2G latency for 4K 360° live streams. Results indicated
sub-second G2G latency, crucial for the RHO to react promptly. Three streaming scenarios (RTMP-
PUSH, RTMP-PULL, RTSP-PULL) were evaluated at different bitrates (6Mbps, 15Mbps, 30Mbps). Higher
bitrates resulted in larger stream sizes and improved quality but increased latency. The evaluation
focused on G2G latency at different stages: camera screen, network transmission to RHO's display,
and source to RHO. The DASH technique was considered for bitrate adaptation, but its latency was
relatively high. A stream selection approach based on parameters like location and video quality was
proposed for better system performance.

The VR experience, built using A-Frame, allowed RHOs to view the stream through VR via desktops or
HMDs. Relevant vehicle information was displayed, enabling the RHO to send commands for highway
engagement [52]. Results showcased latency comparisons at different bitrates for each streaming
scenario, emphasizing the impact on network latency. Notably, RTSP had higher latency than RTMP,
and higher bitrates increased G2G latency due to network delays. Effectively, Figure 106 illustrates the
average G2G latencies and standard deviations across various scenarios at encoding rates of 6Mbps,
15Mbps, and 30Mbps. At 6Mbps (Figure 106 (a)), the acquisition, encoding, and display times at the
camera's display are consistent (ranging from 144ms to 164ms) across all scenarios. Notably, the RTSP
protocol exhibits significantly higher network latency compared to RTMP push and pull, with a minor
difference between the two RTMP modes. For 15Mbps (Figure 106 (b)), acquisition and encoding
latencies are comparable to those at 6Mbps. However, network latency is markedly higher for RTSP
and RTMP pull modes, while RTMP push mode maintains similar network latency at both 6Mbps and
15Mbps, resulting in the optimal G2G latency to the RHO's display. At 30Mbps (Figure 106 (c)), there
is a noticeable increase in G2G latency for all streaming modes, primarily attributed to network delays
despite the camera's hardware capability to handle different bitrates simultaneously.
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Figure 106: GTG latency of different protocols when streaming at different bitrates [52].

In a third experiment, we explore the realm of VR-based remote control for Unmanned Aerial Vehicles
(UAVs), aiming to deliver a fully immersive user experience. Two distinct architectures take center
stage: the global architecture and the detailed architecture, depicted in Figure 107 and Figure 108
respectively. Each component is meticulously showcased, elucidating its interactions with other
system elements. The global system architecture, depicted in Figure 107, provides a comprehensive
overview of the system's components. In contrast, the detailed architecture in Figure 108 delves into
measured delays, offering a complete testbed that chronicles the interactions of components in a
chronological order. Envisioned as a real-life implementation, the architecture incorporates micro-
services based components at the edge server. Containerization is employed for components to ensure
both portability and scalability. The overarching goal is to empower end-users with the capability to
control remote UAVs using a 360-degree stream and sensed data from the UAV's location. At the
remote location, the UAV is equipped with a 360-degree camera that live streams to the user's Head-
Mounted Display (HMD). Upon receiving the camera stream, users can manipulate the remote UAV
using body movements and HMD controllers [53]. The primary objective of this experiment is to
conduct a detailed analysis of different latencies under varied conditions, encompassing i) mobile
networks such as LTE, 5G, and WiFi, ii) user reactions, and iii) video qualities. In this study, beyond G2G
latency, other critical latencies are considered. Human reaction latency characterizes the delay a user
experiences in perceiving a visual event and reacting to it. Command transmission latency represents
the time it takes for a user command to reach and be executed by the UAV. Figure 109 visually
illustrates the various analyzed delays, providing a comprehensive view of the experiment's findings.
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Figure 108: The hardware and software components of the system envisioned for VR-based remote control of
UAVs and the measurement of the different considered delays [53].

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 128 of 1



D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive ... n.

(1) LED blinks and event is (2) Light sensor at HMD detects LED (3a) UAV receives a signal
streamed to HMD by 360 blink & SBC at HMD immediately from SBC at user side and
camera on board UAV sends signal back to UAV triggered by light sensor
SRL :l
_________________________ I
G2G CTL
Light sensor
came-ra I UAV
.\9 w @HMD Network & Cloud “ e
LED (g—-) < oQ Computation Delay = =

£ =

S
=
1
(3b) User notices LED blink on (4) UAV receives command
HMD, and reacts by sending a from VR controller and
command to UAV executes it

Figure 109: The different delays analyzed to evaluate the system envisioned for VR-based remote control of
UAVs [53].

Hereunder presents an analysis of the results obtained through experiments on the system. Hereby,
the HMD used WiFi for edge services (to remotely control the UAV), and the UAV connected to the
edge server through WiFi, LTE, or 5G. The 360- camera streamed at 30 FPS using the H264 codec.
Figure 110 depicts the GRE (Glass to Reaction to Execution) latency for varying streaming bit rates,
access networks (WiFi, LTE, 5G), and two video qualities (HD or 4K). Two scenarios were considered:
with and without human reaction latency. Figure 110 (a) displayed G2G latency, revealing an increase
with higher Constant Bit Rate (CBR) encoding, particularly pronounced in 4G, especially for 4K videos.
5G demonstrated better results than 4G, nearly matching G2G latency with a dedicated WiFi
connection. Figure 110 (b) and (c) presented GRE latency and Sensor Reaction Latency (SRL),
respectively. Both increased with higher streaming bitrates, mirroring G2G latency trends. The average
GRE was 900ms, representing end-to-end round-trip latency. Figure 110 (d) and (e) illustrated human
reaction latency and command transmission latency. Human reaction latency converged to around
220ms, independent of network delays. Command transmission latency for 5G was similar to WiFi
(103ms vs. 88ms), while 4G exhibited a higher average delay (138ms) due to network latency and
bandwidth limitations compared to WiFi and 5G. Each graph's data points were averages from 40
experiment iterations by different individuals to minimize the impact of individual human reaction
latency.

Furthermore, we utilized View-Port Peak Signal to Noise Ratio (VP-PSNR) and Video Multimethod
Assessment Fusion (VMAF), a Full Reference metric by Netflix, for video quality evaluation (as shown
in Figure 111). VMAF, employing machine learning, predicts subjective video quality on a 0 to 100
scale. VP-PSNR gauges encoding-induced distortion in video transmission. For this purpose, we
followed the following steps:

e Recorded a 360° Equirectangular Projection (ERP) video at 4K (3840x1920) and 30FPS using a
360° camera.

® Generated a reference-view video using FFmpeg360 at a fixed orientation (pitch 0°, yaw 0°,
roll 90°).

e Streamed the reference video over the internet, recorded it at the receiving HMD (0°, 0°,
90°), creating the user-view video.

e Compared visual quality using PSNR and VMAF filters on the reference-view and user-view
videos.

e Repeated steps 3 and 4 for various streaming rates, including HD reference videos.

Figure 111 depicts the obtained results which can be summarized as follows:
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e VP-PSNR and VMAF increased with higher streaming rates for both HD and 4K videos.

e 4K videos exhibited more distortion at low rates due to higher data volume.

e OQverall, received streams had satisfactory quality, with the lowest VMAF values at 2Mbps
being 40 and 50 for 4K and HD, respectively, and reaching 78 and 90 at 8Mbps.

e VP-PSNR values remained satisfactory at all considered streaming rates.
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Figure 110: Measured latency [53].
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5.9 Mesh Merger

In UC3.1 Collaborative Gaming Application, the goal is to provide a highly immersive multiplayer
augmented reality game prototype using ORBK's specialised multiplayer engine. The engine will be
able to synchronise all game objects and user states across end devices, allowing for a seamless gaming
experience.

The proposed solution will use a client-server architecture, where the client devices will be responsible
for rendering the game and handling user input, while the server will manage the game state
synchronisation and run the game system simulation.

Initially, UC3-1 Collaborative Gaming Application required Mesh Collider Builder service. Based on the
point cloud data gathered on the mobile devices through RGB cameras, it is supposed to create a set
of well-defined polygons to allow a clean and precise interaction with the environment. During the
research process we found out that in many cases, 3D points reconstructed through RGB cameras
cannot reach high quality to obtain such clean geometry (as shown in Figure 112).

Main issues when scanning using this method are:

¢ Noise/phantom data: point generated in random locations not connected to the environment
features.

e No point generated at flat surfaces: flat surfaces was treated as empty space. This happens
also for other featureless surfaces.

e Low precision of feature points localisation.

Figure 112: Environment scanning using RGB method on Android device.

To address the aforementioned challenges and to anticipate the growing prevalence of 3D sensors in
future mobile devices, we are transitioning our focus to smart devices equipped with such technology.
Currently, LiDAR sensors are available on select Apple devices, including iPhones Pro and iPads Pro.
Consequently, we have chosen to conduct tests using LIDAR in conjunction with ARKit, a framework
tailored for Apple devices.

The advantage of incorporating ARKit lies in its supplementary features, notably the Mesh Collider
Builder (refer to Figure 93). Preliminary assessments of our reconstruction tests have yielded promising
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results. The scanned data exhibits high quality, while the automatically generated mesh colliders by
ARKit showcase commendable geometric attributes, including seamless continuity (absence of gaps)
and simplicity characterised by a reduced triangle count (see Figure 113).

Figure 113: Environment scanning using LiDAR with instant mesh collider building.

Since ARKit provides proper mesh collider generation functionality, it has been decided to switch the
focus on merging mesh colliders coming from different acquisition devices. The idea is to merge mesh
colliders that are scanned and built in the same game session (and physical location) by the gamers.
This functionality will significantly enrich the immersion of all participants of the game.

Each participant equipped with a smart device with LiDAR scans a fragment of the environment, ARKit
builds a mesh collider from the scanned data and all mesh colliders are sent to the Mesh Merger service
(see Figure 114) developed in the ambit of the Task 3.4. This service merges all mesh colliders into one
common mesh collider.
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Figure 114: Merging mesh colliders.
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5.9.1 Mesh Merger core

The core of the Mesh Merger relies on C++ based application that consist of two major components:

Mesh Alignment: The individual mesh colliders are in their local frame of references. To build
a complete environment, it is necessary to bring together those fragments into a common
frame of reference (the World frame) based on a mesh alignment algorithm. For our
implementation, we employ an open-source algorithm called "TEASER++"°.This algorithm is
specifically chosen due to its robustness and efficiency, making it well-suited for real-time
applications. We have made adaptations and modifications to tailor it to our application. The
average alignment time for a pair of scans varies between 0.65- 0.85ms. Therefore for an
environment represented by three scans as the one shown in Figure 115, for example, the
total time for alignment is approximately between 1.35-1.60s

Mesh Fusion: Despite the robust accuracy of mesh alignment, registration artifacts can still
arise due to data measurement errors. These artifacts can lead to misalignments between the
individual meshes. To mitigate such errors, the Mesh Merger employs a surface conversion
tool that converts the aligned meshes into a signed distance representation (SDF). The merged
mesh is then extracted from this SDF representation. To ensure computational efficiency
during the conversion process, the Mesh Merger utilizes the OpenVDB>! open-source library.
OpenVDB provides a framework for efficient voxel-based data structures and operations. By
adapting OpenVDB and implementing it within the Mesh Merger, we can perform the
conversion. with minimal computational overhead. On average, the entire mesh fusion
process takes approximately 1.1-1.3 seconds, providing a quick and responsive experience.
Additionally, the density of the output surface can be controlled based on the specific
application requirements, further reducing the overall processing time. By leveraging
OpenVDB and optimizing the implementation, the Mesh Merger achieves both accuracy and
computational efficiency, enabling the creation of a merged mesh, i.e. the mesh collider of
the environment, that is accurate while maintaining a fast-processing time. The result of align
and merge the meshes of Figure 115 is shown in Figure 116.

Note that this prototype works with no prior information about the mesh to merge, this makes the
tasks challenging. The current main limitation is a lack of robustness to align mesh with poor geometric
features, i.e. planar surfaces. This problem can be alleviated by exploiting prior information, like an
estimation of the relative position between the users’ smartphone.

50 https://github.com/MIT-SPARK/TEASER-plusplus
51 https://www.openvdb.org/
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Figure 115: Individual meshes to align and fuse.
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Figure 116: Final result.

5.9.2 Mesh Merger Service

The Mesh Merger component, developed by CNR, underwent extensive testing. ORBK designed a
scanner application capable of transmitting fragments of scanned environmental meshes to the Mesh
Merger. In the first stage of its development, the Mesh Merger was constructed as a web service (see
Figure 117) to facilitate quick and straightforward verification of scanning and merging outcomes.
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Figure 117: Mesh Merger testing website.

Now, the Mesh Merger Service is in the process of being enhanced with a REST API interface. The
Game Server application will leverage this interface to transmit mesh fragments and retrieve fully
merged meshes, streamlining the integration of merged meshes into the gaming environment (Figure
118).
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Figure 118: Game Server communicates with Mesh Merger Service via REST API.

In recent updates, a REST API paradigm has been implemented to establish communication between
the Game Server application developed by ORBK and the Mesh Merger Service. The implementation
is based on Node.js and follows REST-API principles of API calls. It is possible to request mesh alignment
jobs and to query the status of a particular job providing its job id. The status of a job returns the URLs
of the meshes being processed, the status of the algorithm, and the processing time. The actual data
format for scans exchange is binary PLY which provides the advantage of having smaller size of the
single colliders and so reduction in download time compared to JSON ASCII format used earlier. An
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average download time for a single mesh collider using this format is approximately 0.80s. This reduces
the overall latency and brings down the overall time to build the entire mesh collider.

At the moment of writing the Mesh Merger does not handle storage, so it retrieves the mesh colliders
to align from another server, where the Game Server store them. To avoid this overhead in data
streaming, in the following the Game Server could directly handle such storage, or it could ask to the
users’ devices to transmit the mesh colliders directly to the Mesh Merger, which cache them before
the alignment requests. Before this, the next steps (according to the D4.2) are the finalization of the
integration between the Game Server and the Mesh Merger, containerizing it and preparing the
blueprint for the deployment by the Application Management Framework of the CHARITY platform.
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6 Conclusions

The description of the research and development work conducted in the WP3 and the results reported
in this Deliverable, demonstrate the big effort put in developing innovative solutions for XR
applications, both from a scientific and a technological point of view. We do not only propose and
design new technical solutions, but we also develop novel algorithms. Regarding the prototypes, even
if in the past months some implementation activities are experiencing some delays, the first version
of the prototypes have been implemented. Additionally, the integration work is in line with the one
planned in the Deliverable D4.2. According to the just mentioned integration plan, the final version of
the integrated prototypes are expected the first months of the next year.
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