
D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 1 of 1

Grant Agreement No.: 101016509Research and Innovation actionCall Topic: ICT-40-2020: Cloud Computing

Cloud for Holography and Cross Reality

D3.2: Energy, data and computational-efficient mechanismssupporting dynamically adaptive and network-aware services (finalversion)
Version: v0.4

Deliverable type R (Document, report)
Dissemination level PU (Public)
Due date 31/12/2023
Submission date 21/12/2023
Lead editor Massimiliano Corsini (CNR)
Authors Antonios Makris (HUA), Konstantinos Tserpes (HUA), TheodorosTheodoropoulos (HUA), Michael McElligott (CAI), Tom Loven (PLEXUS),Laura Sande (PLEXUS), Yago Gonzalez Rozas (PLEXUS), AntonisProtopsaltis (ORAMA), Maria Pateraki (ORAMA), Enrico Zschau (SRT),Federico Ponchio (CNR), Pedro Sá (ONE), Joao Rodrigues (DOTES), TarikTaleb (ICT-FI), Nora Taleb (ICT-FI), Massimiliano Corsini (CNR), SomnathDutta (CNR)
Reviewers Fermin Calvo, Ferran Diego Andilla
Work package, Task WP3
Keywords XR enablers, storage system, software dynamic adaptation, renderingalgorithms, data compression

Abstract
WP3 is the work package devoted to the research and development of strategies, mechanisms, andalgorithms, for the efficient exploitation of available network and computational resources to enablesophisticated XR applications. Several aspects are investigated; innovative management of advancedcomputational resources, intelligent solutions for data storage and data access, innovative strategiesto adapt the Quality of Experience of the running application according to the available resources.Regarding the advancement of XR technologies, we investigated techniques to obtain more complexrealistic VR simulation, technical solutions for rendering adaptation, novel algorithms for 3D point

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 2 of 1

1 http://creativecommons.org/licenses/by-nc-nd/3.0/deed.en_US

cloud compression and for the next-gen multi-user AR gaming experience, and for the editing andstreaming of immersive 360 video.
Document revision history

Version Date Description of change List of contributor(s)
v0.1 17/10/23 Initial skeleton Massimiliano Corsini (CNR)
V0.2 10/12/23 Contributions Antonios Makris (HUA), KonstantinosTserpes (HUA), Theodoros Theodoropoulos(HUA), Michael McElligott (CAI), Tom Loven(PLEXUS), Laura Sande (PLEXUS), YagoGonzalez Rozas (PLEXUS), AntonisProtopsaltis (ORAMA), Maria Pateraki(ORAMA), Enrico Zschau (SRT), FedericoPonchio (CNR), Pedro Sá (ONE), JoaoRodrigues (DOTES), Tarik Taleb (ICT-FI),Nora Taleb (ICT-FI), Massimiliano Corsini(CNR)
V0.3 20/12/2023 Post internal review Ferran Diego Andilla (TID), Fermin Calvo(PLEXUS), Massimiliano Corsini (CNR)
V0.4 21/12/2023 Version for the GA Massimiliano Corsini (CNR), AlessandroBassi (EURESCOM)

Disclaimer
This report contains material which is the copyright of certain CHARITY Consortium Parties and maynot be reproduced or copied without permission.
All CHARITY Consortium Parties have agreed to publication of this report, the content of which islicensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License1.
Neither the CHARITY Consortium Parties nor the European Commission warrant that the informationcontained in the Deliverable is capable of use, or that use of the information is free from risk, andaccept no liability for loss or damage suffered by any person using the information.

CC BY-NC-ND 3.0 License – 2021-2023 CHARITY Consortium Parties

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 3 of 1

Acknowledgement
The research conducted by CHARITY receives funding from the European Commission H2020programme under Grant Agreement No 101016509. The European Commission has no responsibilityfor the content of this document.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 4 of 1

Executive Summary
The research and development activities in the WP3 will drive the advancement of complex and highlydemanding, in terms of computation and/or bandwidth resources, XR applications. The systems andthe algorithms delivered by WP3 are under integration into the CHARITY platform and in some of theUse Cases (UCs) of the CHARITY project according to the integration plan described in the Deliverable4.2. These ad-hoc technological solutions regard different aspects of the deployment, thedevelopment, and the lifecycle management of advanced XR applications.
Advanced computing mechanisms to enable the management of VMs, essential to manage thecomplex software stack of XR applications, and GPUs, necessary for XR application has been developedand tested.
A flexible monitoring framework which fills the needs of the different UCs of CHARITY has been definedand realized. This monitoring framework is based on the open-source Prometheus technology.According to the metrics identified, different types of exporters are under development to enable thedifferent UCs to monitor their metrics of interest. The monitoring framework interacts with theorchestration system of the CHARITY platform.
A new intelligent data management system, for highly efficient data storage and data access has beendeveloped in the ambit of the CHARITY project. This system is called CHES, which stands for CHARITYEdge Storage. The CHES takes into account the high degree of heterogeneity that characterises thecomputational resources considered in the CHARITY project and it is lightweight so that it can also beused on edge devices with limited capabilities, such as a Raspberry Pi. The CHES has reached its thirdversion. Experimental results demonstrate the validity of the system, also in terms of the KPIs achieved.The CHES is released as an open-source software under GPL 3 license.
Often, XR applications are demanding in terms of computational and network resources, and theenvironmental circumstances may become sub-optimal during their running, for example, due to areduction of bandwidth. Inmany of these cases, it is convenient tomodify the behaviour of the runningapplication so that the application itself adapts to the available resources instead of deploying it againin an environment with more resources. In CHARITY, a variant of theMAPE-K Loop [7] approach, basedon micro-services, is proposed to perform an adaptation of XR applications at runtime. This novelsolution has been carefully designed and some preliminary studies related to the flight simulator ofthe Collins Aerospace (UC3-2 Manned-Unmanned Operations Trainer Application) have beenconducted.
Virtual Reality applications often require high realism in rendering and physical simulation. The UC2-1 VR Medical Training Application of CHARITY is one of these types of virtual reality applications. ThisVR UC is currently being optimized by exploitingmulti-threading tomake the rendering and the physicspart more efficient. Experiments conducted demonstrate that the physics simulation can benefit ofthis type of optimization, while multi-threaded rendering has shown limits of applicability in Unity,that is the framework where the UC2-1 runs.
The immersive applications, to reach high-quality levels of experience, require ultra-low latency andlarge bandwidth resources. To improve the performance of immersive applications, we haveinvestigated how adaptive rendering solution may be integrated into some selected UCs to reduce themotion-to-photon computational burden, and hence, the overall latency of the application.
Another important aspect of immersive applications is 360-degree video. The UC2-2 VR Tour CreatorApplication of CHARITY regards the advancement of a platform for the creation of virtual tours basedon 360° video. To follow this goal new features and technological advancements have beenimplemented in the Cyango Cloud Studio, that is the name of the UC2-2 platform. Additionally,investigation and experiments about cross-video streaming has been done.
Specific data services to satisfy the needs of XR applications like the UC1-3 Holographic Assistant andthe UC3-1 Collaborative AR Gaming have been developed and tested. Respectively, a novel ad-hocpoint cloud encored/decoder, to allow the transmission from the cloud to the edge (the holographic

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 5 of 1

display) of a large amount of 3D points, and a geometry processing algorithm to enable the creationand the continuos updated real and the virtual gaming environment, called Mesh Merger service. Atthe moment of writing the Mesh Merger prototype is ready and the first integration phase underfinalization; the PC encoder/decoder is under tests inside its target UC.
In this deliverable, the research and the technical work related of the activities mentioned above isdescribed and the corresponding results and software products are reported.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 6 of 1

Table of Contents
Executive Summary .. 4
Table of Contents..6
List of Figures..9
List of Tables...13
Abbreviations ...14
1 Introduction..15
1.1 Activities in a nutshell..15
1.2 Relationships between the CHARITY Framework and the WP3 Tasks.......................17

2 Monitoring..21
2.1.1 Monitoring Manager..21
2.1.2 Monitoring Data...23
2.1.3 UC metrics..24

2.2 Resource Indexing..30
3 CHARITY Edge Storage (CHES)..33
3.1 Component descriptions..33
3.1.1 Kubernetes Dataset Lifecycle Framework..34

3.2 Package information..36
3.2.1 CHES Storage..36
3.2.2 CHES Registry ...38
3.2.3 Prometheus..39
3.2.4 Semi-automated Deployment and off-loading .. 39

3.3 User Manual .. 40
3.3.1 CHES Storage..40
3.3.2 CHES Registry ...43

3.4 Licensing..43
3.5 Results obtained in relation to the objectives (KPIs)...43
3.6 Relation to research questions..44
3.7 Evaluation of CHES...45
3.7.1 Evaluating CHES through Resource Utilization and Quality of Service MetricAnalysis...45
3.7.2 Assessing CHES's Performance Perspectives..48
3.7.3 Evaluating CHES Registry sub-component ...51

4 Resource-aware Adaptation Mechanisms..52
4.1 Dynamic Software Adaptation...52
4.2 A structure for adaptation...53

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 7 of 1

4.2.1 Context Monitoring & Analysis .. 54
4.2.2 Planning..54
4.2.3 Execution..54

4.3 Challenges..54
4.4 Adaptation Infrastructure..55
4.4.1 Configuration Containment..57
4.4.2 Service Dependencies ..58
4.4.3 Service Routing...58
4.4.4 Application Quality Modes...59
4.4.5 Monitoring & Analysis..62
4.4.6 Planning & Execution ...64

4.5 Investigation& Experimentation..66
4.5.1 Service Mesh Routing...66
4.5.2 Rolling Updates..67
4.5.3 Monitoring & Alerting..76
4.5.4 Adaptation Execution...78

5 Enabling XR technologies...79
5.1 Enabling Advanced Computing Mechanisms: The Virtual Machine and GPUChallenges..79
5.1.1 Virtual Machine Support in Kubernetes Environments......................................80
5.1.2 GPU support in Kubernetes environments .. 84

5.2 Migrating from on-premise to on-cloud..89
5.2.1 The Latency Challenge..91
5.2.2 Tackling XR Latency..91
5.2.3 Towards Cloud Native..100

5.3 Dissection of the Unity3D Physics engine..100
5.3.1 Dissection of Physics Simulation Engine...101
5.3.2 Methodology – Notation..101
5.3.3 Methodology - Overview..101
5.3.4 Implementation..102
5.3.5 Lab Testing ...102
5.3.6 QoE Subjective remarks ...103
5.3.7 Conclusions - Future Work...103

5.4 Investigating Multi-threaded rendering in the Unity3D game engine.....................103
5.4.1 Single-threaded Rendering...104
5.4.2 Unity3D Multi-threading Built-in System...104
5.4.3 Graphics Jobs System...104
5.4.4 Vulkan Graphics API ...105

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 8 of 1

5.4.5 Conclusions ..106
5.5 Adaptive rendering algorithms for low latency immersive applications.................106
5.6 Point Cloud Encoding / Decoding ..107
5.6.1 UC1-3 Holographic Assistant..107
5.6.2 Point cloud encoder/decoder (PC E/D) – first design considerations..............108
5.6.3 PC generation module..111
5.6.4 PC E/D component...112
5.6.5 Geometry encoding - evaluations..114
5.6.6 Conclusions ..116

5.7 Virtual Experiences Builder Platform...116
5.7.1 Milestones..116

5.8 Immersive services and cross-video streaming experiments..................................123
5.9 Mesh Merger...132
5.9.1 Mesh Merger core..134
5.9.2 Mesh Merger Service...135

6 Conclusions ... 138
References..139

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 9 of 1

List of Figures
Figure 1: CHARITY Architecture components and project WPs/Tasks mapping.17
Figure 2: Monitoring Framework. ... 21
Figure 3: Monitoring Architecture defined in D2.1. ..23
Figure 4: Alarm and alert notifications..24
Figure 5: Questionnaire for Collins Aerospace..26
Figure 6: Resource Indexing components. ..31
Figure 7: Dataset CRD..35
Figure 8: Conceptual overview of the Dataset Lifecycle Framework (DLF)...36
Figure 9: CHES Registry..38
Figure 10: The MinIO web-based interface...40
Figure 11: Connection to MinIO using the client command tool. ...40
Figure 12: An example of mounting a PVC created by the Datashim integration if the PVC is called"ches-dataset"...41
Figure 13: Kubernetes Dashboard...41
Figure 14: Prometheus configuration YAML file..42
Figure 15: Prometheus console example metric...42
Figure 16: Prometheus-MinIO Console integration. ... 42
Figure 17 Catalog API example..43
Figure 18: Example of the catalog API for CHES Registry hosted in a K8s cluster.43
Figure 19: Percentage change of various resource utilization metric...46
Figure 20: Read, Write and Delete operation response times in milliseconds for the local CHESdeployment...46
Figure 21: Read, Write and Delete operation response times in milliseconds for the remote CHESdeployment...47
Figure 22: Comparison of response times for various operations for the remote and local CHESdeployments..47
Figure 23: Transaction rate achieved by each storage solution..48
Figure 24: Performance of read/write operations of each storage solution...49
Figure 25: Statistics for the read operation of each storage solution...50
Figure 26: Statistics for the write operation of each storage solution..50
Figure 27: MAPE-K Loop [7]...53
Figure 28: Service Editions used to satisfy different environment conditions......................................56
Figure 29: MAPE-K look modified to enable extraction of sensors and executors from the applicationlayer...57
Figure 30: Run differently configured copies of a single application simultaneously...........................57
Figure 31: Co-dependent Containers are deployed as a unit in a single pod..58
Figure 32: A Kubernbetes Service conceals pod churn from the clients. ..59

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 10 of 1

Figure 33: Simplified Application with Microservice Architecture..59
Figure 34: XR Application Quality of Experience is often multi-faceted...60
Figure 35: Logical QMode Switch and how it could be employed to divert traffic between differentservice configurations. ..61
Figure 36: Monitor for conditions that warrant changes to QMode...61
Figure 37: Monitoring High level indicators reduces decision complexity..62
Figure 38: Monitoring the manifested user experience is more tractable and efficient......................63
Figure 39: Monitoring, Analysing & Planning based on observed sensor data.....................................63
Figure 40: QMode Routing..64
Figure 41: Application about to switch over to application variation that consumes less resources...65
Figure 42 - QMode Transitioning...65
Figure 43: In our modified MAPE-K loop, Kubernetes delivers container management and effectors.68
Figure 44: Dedicated pods per user in the Collins Use Case..68
Figure 45: Rolling update of pod in Kubernetes..69
Figure 46: With many configuration routes, orchestrating change can be complex. 69
Figure 47: Centralising configuration change..70
Figure 48: Kubernetes ConfigMaps can be used to reconfigure pods as required................................70
Figure 49: Collins use case configuration landscape...71
Figure 50: Example of how a single configuration set can be injected into Pod and effect change evenin applications that do not directly support configuration through environment variables.................71
Figure 51: Kubernetes ConfigMaps form our application knowledgebase. ..72
Figure 52: Configurability options to deliver adaptability tactics..73
Figure 53: Generate high quality on the cloud..74
Figure 54: Generate low quality on the cloud and seek to recover quality at the edge. Significantbandwidth reductions but also significantly increased resource usage overall....................................75
Figure 55: Custom exporters deployed for cloud pod monitoring..76
Figure 56: Leveraging the CHARITY monitoring technology stack to monitor, analyse and react.77
Figure 57: Adapted MAPE-K loop showing roles fulfilled by Kubernetes & Prometheus......................77
Figure 58: Dynamic software adaptation driven by monitoring..78
Figure 59: Dynamic Software Adaptation using rolling updates for the Collins use case. 78
Figure 60: VM and GPU orchestration support architecture. ... 80
Figure 61: KubeVirt architecture...82
Figure 62: Example of Kubevirt VMI definition. .. 82
Figure 63: KubeVirt experimental scenario...83
Figure 64: NVIDIA GPU components for Kubernets. ...85
Figure 65: GPU vs CPU times from each training batch. ... 86
Figure 66: CPU and GPU usage from Tensorflow..87
Figure 67: KubeVirt + GPU Passthrough experimentation scenario..88

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 11 of 1

Figure 68 Windows 10 initial boot...88
Figure 69 TechPowerUp GPU-Z detecting the GPU...89
Figure 70: Some deployment models for the existing flight simulator. ..89
Figure 71: Existing deployment options revolve around a monolithic approach..................................90
Figure 72: Motion To Photon budgets become even more demanding with XR and the cloud.91
Figure 73: The latency budget available depends on the activity. ..92
Figure 74: Movement of an aircraft can be predicted to enable pre-rendering of scenes...................92
Figure 75: Long Term Short-Term Memory model of operation...93
Figure 76: Predicted trajectory versus observed trajectory..94
Figure 77: The VMAF Pipeline. ..96
Figure 78: Flight Simulator redesigned as cloud native...100
Figure 79: Unity3D multi-threading Built-in System..104
Figure 80: Graphics Jobs System...105
Figure 81: The Holo Assistant User Case...107
Figure 82: Relationship between the eye boxes and visibility of the 3D points..................................109
Figure 83: Example data sets used for comparing V-PCC (image taken from paper in Ref MPCC-1)..110
Figure 84: Example of three slightly different views (depth + RGB data). These views can be mergedtogether to form the point cloud..111
Figure 85: Rendered final result after reconstructing into an image..112
Figure 86: Example of a merged point cloud visualized from a different, invalid, perspective. 112
Figure 87: (Left) Depth+RGB, central view (Right) Hidden points revealed through the others views..112
Figure 88: Depth map can be used to find the hidden points using projection between different views.In green and red the points revealed by this operation..113
Figure 89: Example of a point cloud decoded from 8 views with small offset....................................114
Figure 90: New design of Cloud Studio (screenshot 1)..117
Figure 91: New design of Cloud Studio (screenshot 2)..118
Figure 92: Video timeline editor..118
Figure 93: Camera end network settings. ... 119
Figure 94: End user network settings..119
Figure 95: Screenshot of the livestream test...120
Figure 96: WebXR environment on Cyango. ... 121
Figure 97: Dashboard of analytics inside the platform..122
Figure 98: Total round trip time of a 360 livestream test done within 2 hours.122
Figure 99: Available incoming bitrate of a 360 livestream test done within 2 hours..........................123
Figure 100: XR use cases and their requirements [50]..124
Figure 101: GTG latency for two types of 360 cameras [51]...125
Figure 102: Performance evaluation of RTMP in case of Insta 360 Pro [51].......................................126

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 12 of 1

Figure 103: Performance evaluation of RTMP for varying DRR values [51].126
Figure 104: Performance evaluation of RTMP for varying FPS values [51]. ..126
Figure 105: Detailed analysis of the GTG. The size of each box does not reflect the processing time ofthe respective task [51]...127
Figure 106: GTG latency of different protocols when streaming at different bitrates [52].128
Figure 107: The high-level architecture of the system envisioned for VR-based remote control of UAVs[53]. ...129
Figure 108: The hardware and software components of the system envisioned for VR-based remotecontrol of UAVs and the measurement of the different considered delays [53]................................129
Figure 109: The different delays analyzed to evaluate the system envisioned for VR-based remotecontrol of UAVs [53]..130
Figure 110: Measured latency [53]..131
Figure 111: Video quality evaluation in terms of VP-PSNR and VMAF [53]. 131
Figure 112: Environment scanning using RGB method on Android device...132
Figure 113: Environment scanning using LiDAR with instant mesh collider building..........................133
Figure 114: Merging mesh colliders. ...133
Figure 115: Individual meshes to align and fuse. ..135
Figure 116: Final result..135
Figure 117: Mesh Merger testing website. ... 136
Figure 118: Game Server communicates with Mesh Merger Service via REST API.............................136

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 13 of 1

List of Tables
Table 1: CHARITY Component List...19
Table 2: CHARITY proposed mechanisms and algorithms...19
Table 3: Monitoring Manager communications..22
Table 4: Migration triggers..24
Table 5: Metrics definition..25
Table 6: UC1-1 and UC1-2 - elements and metrics..27
Table 7: UC1-3 - elements and metrics ...27
Table 8: UC2-1 - elements and metrics. ..28
Table 9: UC2-2 - elements and metrics. ..28
Table 10: UC3-1 - elements and metrics. ..29
Table 11: UC3-2 - elements and metrics. ..30
Table 12 - Resource Indexing prototype metrics...31
Table 15: List of package files for Edge storage component...37
Table 16: List of files included in the Kubernetes Dashboard. ..37
Table 17: List of files included in the CHES Registry repository...39
Table 18: Resource usage profiles across various QModes...75
Table 19: Challenges presented by the traditional deployment model..90
Table 20: Target benefits from redesign...90
Table 21: Performance of upscaling techniques investigated...98
Table 22: Average network usage metrics. ...103
Table 23: Potential increase of performance of Unity3D using Vulkan graphics API for Windows.....105
Table 24: Evaluation geometry compression algorithm..115
Table 23: Requirements of XR services [50]..124

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 14 of 1

Abbreviations
AR Augmented Reality
CCU Concurrent Users
CHES CHARITY Edge Storage
COS Container Orchestration Information
CPU Central Processing Unit
CRD Custom Resource Definition
CSI Container Storage Information
DLF (Kubernetes) Dynamic Lifecycle Framework
DLSP Dynamic Software Product Line
DoW Description of Work
GPU Graphics Processing Unit
HMD Head Mounted Display
ISP Internet Service Provider
JSON JavaScript Object Notation
KPI Key Performance Indicator
PC Point Cloud
PVC Persistent Volume Claim
QoE Quality of Experience
QoS Quality of Service
SPLE Software Production Line Engineering
TCP Transmission Control Protocol
WP Work Package
UC Use Case
UDP User Datagram Protocol
VM Virtual Machine
VR Virtual Reality
XR Extended Reality

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 15 of 1

1 Introduction
WP3 is devoted to the development of strategies, mechanisms, and algorithms that support both partsof the CHARITY Framework (described in the Deliverable D1.3 and D4.1) and the Use Cases (UCs)(described in D1.2 and D1.3). The UCs support is provided by developing specific technologies anddata services that are used by some of the XR applications selected as case studies in the CHARITYproject. Most of the technological solutions developed are generic and can be applied by any advancedXR application. The XR data services have been developed to fulfil the specific requirements of specificUCs, but they can be used/adopted by other XR applications with similar needs, beyond the onesinvolved in the project itself. For example, the 3D point cloud encoder/decoder can be used by any XRapplication which needs to transfer a huge amount of 3D data points.
The R&D work conducted is reported in the following way: first, a brief introduction of the differentactivities is given, together with their mapping with the WP3 Tasks. The relationships between theWP3 activities and the rest of the project (othersWPs/tasks) are also described. After this introduction,the R&D activities are described in details in the subsequent sections. The activities description isorganized by topic and does not follow the task subdivision.
1.1 Activities in a nutshell
The activities described in the next sections are:

 Monitoring framework
 Virtual Machine and GPU support in Kubernetes environments
 CHARITY Edge Storage (CHES)
 Resource-aware Adaptation Mechanisms
 Transformation of the flight simulator UC to a cloud-native XR application
 Multi-threading optimization of rendering and physics simulation for realistic VR applications
 Adaptive rendering for high QoE
 Point Cloud Encoding/Decoding
 Immersive Virtual Tours builder platform
 Evaluation of 360 video streaming based on different camera types, and in terms of differentmetrics (e.g. Glass to Glass latency, Streaming Frame Rate, etc)
 Mesh Merger

The monitoring of the available network and computational resources plays a fundamental role fortheir assignment within a system according to specific requests, i.e. for the orchestration, and for theapplications performance management, i.e. QoE or latency. Regarding performance, sometime, theapplications should adapt their behaviour during their execution to guarantee a target QoE or reduceit in case of loss of resources. The monitoring is based on the open-source Prometheus framework.Such technology is configured and integrated to satisfy the CHARITY requirements. This is one of themain activity of the Task 3.1, the task committed to the efficient exploitation of computing resources.The approach followed for monitoring and the architecture of the monitoring system is detailed inSection 2.
Virtual Machine and GPU support in Kubernetes environments is another activity about the advancedexploitation of computing resources (Task 3.1). XR applications can greatly benefits of suchmechanisms. VMs are essential to deal with intricate third-party libraries, but their usage createschallenges to orchestrate them together with containers. On the other side, containers enable CloudNative architectures and micro-services, which facilitate the development and deployment of XRapplications. GPUs are fundamental for almost all the XR applications. Therefore, their support should

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 16 of 1

2 https://www.cyango.com

also be considered to take into account a comprehensive XR orchestration process. For example, anXR orchestration solution should be able to recognize the GPU requirements of specific componentsto plan its deployment in an optimal way. This activity and the experiments conducted are describedin details at the begin of Section 5, as part of the XR enabling technologies.
The CHARITY Edge Storage (CHES) is a solution for the optimized edge storage services to the CHARITYframework and its hosted applications. The goals of the CHES are ambitious; it should work onhardware with limited resources (e.g. a Raspberry Pi), and, at the same time, should provide reliable,robust, and fast access to the information. It is based on Lightweight Kubernetes (K3s), MinIO andPrometheus technologies. The CHES is the main activity of the Task 3.2. The current status of thedevelopment is detailed in Section 3.
The Resource-aware Adaptation Mechanisms are designed according to the MAPE K-Loop [7]approach. It consists in adapting the running applications according to the available resources byacting on applications’ variability points (changing the frame rate, changing the resolution, and so on).Such adaptation can be achieved by dynamically modifying the configuration of the application. InCHARITY, a variant of the standard MAPE K-Loop approach is proposed which leverages cloud-nativerolling update functionality to seamlessly reconfigure an application an runtime while maintainingservice continuity. This concept is explained in details Section 4. This is the main activity of Task 3.3.
In CHARITY, we are also modifying the architecture of some UCs such that these XR applicationsbecome cloud-native. The case of UC3-1 Manned-unmanned Operations Training Application isparticularly complex and requires a lot of effort. Such technical effort has been described in Section5.1.
Many VR applications require both high-quality rendering and accurate physical simulation to providea realistic virtual environment. One of the UC of CHARITY, UC2-1, regards VR simulation for medicaltraining. The idea is to improve the performance of this VR medical simulation platform by employingmulti-threading to speed up rendering and physics simulation (as detailed in Sections 5.3 and 5.4). Themulti-threading exploitation of rendering and physics for the realistic simulation of virtualenvironments is also part of the activities for the efficient exploitation of computational resources(Task 3.1).
VR immersive applications, to be comfortable, satisfying, and convincing, require low latency and highbandwidth. In CHARITY, we aim to integrate in two UCs, the UC2-1 VR Medical Training Simulator andthe UC3-1 Manned-unmanned Operations Training Application, an adaptive rendering algorithm toreduce the computational burden and, consequently, the motion-to-photon latency. This activity isdescribed in Section 5.5.
The Point Cloud Encoder/Decoder is the main component of the UC1-3 Holographic Assistant. The HoloAssistant must efficiently transmit a huge amount of 3D data from the cloud to the edge (theholographic display). This UC is described in detail in D1.2. The current status of the development ofthis innovative PC encoder/decoder is given in Section 5.6. This activity is conducted in the ambit ofthe Task 3.4, devoted to the development of an adaptive data compression/decompression for highdemanding rendering applications.
Another activity of the Task 3.4 is the development of a virtual tour platform (UC2-2 VR Tour CreatorApplication) to create interactive immersive VR experiences. This platform, called Cyango2, supports360 videos, panoramas, 3D models, standard images and videos and basic 3D meshes. Thetechnological advancements of the Cyango platform are described in Section 5.7. In this context, it isalso important to understand how streaming protocols operate under different scenarios and whendifferent cameras are used. In this regard, it is important to evaluate the performance of thesestreaming protocols in terms of different metrics, such as glass to glass latency, streaming frame rate,display refresh rate. Experiments about such aspects are reported and analyzed in depth in Section5.8.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 17 of 1

TheMesh Merger is a data service built on a geometry processing algorithm which runs on the serverto enable the UC3-1 Collaborative Game. This algorithm integrates the different pieces of geometry ofthe environment so that the game players can interact with a virtual environment. Initially, the MeshMerger is used to set up the virtual environment to resolve collisions, during the game to align thechanges of the real environment with the virtual one. For example, if a chair inside a room is movedduring the game, and one gamer acquires this change through her smartphone, the Mesh Mergershould integrate this environment change in the virtual environment. The Mesh Merger data serviceis described in Section 5.9. This activity is also conducted in the context of Task 3.4.
1.2 Relationships between the CHARITY Framework and the WP3 Tasks
An overview of the mapping between the CHARITY architecture components and the Work Packages/ Tasks is given in Figure 1. The architecture is subdivided into three planes: i) the Domain Specific XRService Monitoring and Reaction Plane, ii) the XR Service E2E Conducting Plane, and the iii) XR ServiceDeployment Plane. Further details about the architecture are provided in the respective deliverable,D1.3.

Figure 1: CHARITY Architecture components and project WPs/Tasks mapping.
The XR Service Deployment Plane is the plane where XR services are executed. It thus hosts thedifferent Virtual Network Functions (VNFs) that compose the different XR services. The mainresponsibility of this plane is to manage the computational, network, and storage resources of theinfrastructure. Two of the main components of the XR Service Deployment Plane are the XR DeviceController and the XR Service Enabler Controller. The XR Device Controller is in charge to control theXR devices. This allows to separate the data plane from the control plane. Similarly, the XR ServiceEnabler Controller is in charge of control specific XR services instead of devices. The XR DeviceController and the XR Service Enabler Controller are developed as part of the activities of theWP3, thelast one in particular.
The Domain-specific Monitoring and Reaction Plane is responsible for monitoring the service inside atechnological or administrative domain. It keeps track of the resource usage and of the XR servicesrunning in the domain, and it makes decisions according to the monitored data. In particular, isresponsible for implementing XR-specific orchestration mechanisms following a closed-loop model tosupport the lifecycle management of XR services at the domain level.
The XR Service E2E Conducting Plane is responsible for preparing and supporting the resource

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 18 of 1

orchestration within the respective domains based on the XR Service Blueprint Templates Repository(which stores the templates of the XR services), the XR Service Enabler Repository (which holds theimplementation details of the services referenced in the XR Service Blueprints), and the Running XRServices Repository (which provides the ability to track the status of these services).
A detailed description of the different planes and components of the CHARITY architecture can befound in Deliverables D1.3 and 4.2 (Section 3). The roles and details about the different componentsof the XR E2E Conducting Plane can be found in Section 5 of Deliverable 4.2; more information aboutthe orchestration mechanisms can be found in Section 5, 5.1 and 5.2 of Deliverable 4.2.
The WP3 tasks are connected to the CHARITY architecture as described in the following (see Figure 1,Table 1 and Table 2):

 Task 3.1 Efficient exploitation of CPUs, GPUs and FPGAs on edge devices. This task is focusedon providing efficient solutions for exploiting computational resources to support the projectneeds. The main activities are related to the monitoring and the resource indexing, as well astechnological and algorithmic solutions for enabling the exploitation of the different andheterogeneous computational resources belonging to CHARITY. The monitoring framework isstrictly connected with Tasks 2.1, 2.2, and 3.3.
 Task 3.2 Efficient storage and caching for AR, VR and Holographic applications. In the ambitof this task several components for the realization of a distributed edge storage frameworkspread across heterogeneous edge and cloud nodes, with intelligent data management, highquality performance (QoE), and high-security levels (in collaboration with Task 2.3) are underdevelopment. These components, parts of the XR Service Deployment Plane, are: the CHarityEdge Storage (CHES) which is a distributed hybrid storage component and the CHES Registrycomponent that realizes a localized Docker registry in order to support the faster applicationdeploying and limit the network flooding caused by large image downloads duringdeployment.
 Task 3.3 Network and infrastructure awareness for efficient exploitation of resources: Thistask explores the Dynamic Software Production Line (DSPL) paradigm to adapt XR servicesdynamically and automatically to network and environment changes. Task 3.3 also designsand develops specific Monitoring, Analytics, Decision and Actuation Engines for both domainand cross-domain levels. This work is related to the realization of the XR Service SpecificAnalytics Engine, the XR Service Specific Decision Engine, and the XR Service Specific ActuationEngine components, which are parts of the Domain-specific Monitoring and Reaction Plane aswell as of the XR Service E2E Conducting Plane.
 Task 3.4 Adaptive rendering and contextualized data compression / decompression: TheR&D activities conducted in this task relate to the development of the algorithms that will beintegrated in data services for XR applications such as the Point Cloud Encoder/Decoder (PCE/D), used by UC 1-3 Holographic Assistant, or the Mesh Merger, developed to support UC3-1 Collaborative Gaming. This task is also devoted to R&D activity on immersive videoexperiences.

To make this document self-containing and more readable, we report below two tables adapted fromD4.1. Table 1 contains the name of the component of the CHARITY Framework together with the nameof the tasks related to its development, Table 2 contains the names of the algorithms/mechanismsthat are at the base of some specific plane/components, and the tasks within which they were studiedand developed.
Table 1: CHARITY Component List

Component Name Architectural Layer Tasks

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 19 of 1

Component Name Architectural Layer Tasks
Monitoring Agents Monitoring & Reaction Plane T3.1, T3.3
XR Service Specific Analytics Engine Monitoring & Reaction Plane T2.1, T2.2, T3.3
XR Service Specific Decision Engine Monitoring & Reaction Plane T2.1, T2.2, T3.3
XR Service Specific Actuation Engine Monitoring & Reaction Plane T2.1, T2.2, T3.3
Running XR Services Repository Monitoring & Reaction Plane T2.1, WP3, WP4
Plane Services Registry & Discovery Monitoring & Reaction Plane T2.1, WP3, WP4
E2E Service Specific DE/AE/ACT XR Service E2E Conducting Plane T2.1, T2.2, T3.3
XR Service Enabler Repository XR Service E2E Conducting Plane T2.4, WP3
Running XR Services Repository XR Service E2E Conducting Plane T2.1, WP3, WP4
Resource Planning XR Service E2E Conducting Plane T3.1
Resource Indexing XR Service E2E Conducting Plane T3.1
XR Device Controller XR Service Deployment Plane WP3
XR Service Enabler Controller XR Service Deployment Plane WP3

Table 2: CHARITY proposed mechanisms and algorithms
Component Name Component Description Architectural Layer Tasks
Prometheus andMonitoring agents Resource monitoring toolAgent to facilitate VNF monitoring.

Monitoring Agents /Monitoring & ReactionPlane
T2.2,T3.1,T3.3

Adaptative NetworkTraffic Mechanisms
Mechanisms to dynamically routenetwork traffic accordingly toinfrastructure conditions.

DE/AE/ACT
Monitoring & ReactionPlane / E2E ConductingPlane

T3.3

XR Service EnablerRepository
Repositories for container images,VM images and metadata. XR Service EnablerRepository / XR ServiceE2E Conducting Plane

T2.4,WP3

CHES (CHARITY EdgeStorage)

A distributed hybrid storagecomponent spread acrossheterogeneous edge and cloud nodeswith intelligent decisions on dataplacement, data caching andconsiderations on performance (QoE)and security.

XR Service DeploymentPlane T3.2

CHES Registry
A sub-component that realizes alocalized Docker registry in order tosupport the faster applicationdeploying and limit the networkflooding caused by large imagedownloads during deployment.

XR Service DeploymentPlane T3.2

Mesh Merger
Data service which create a commonmesh of a virtual environment tointeract with it, merging collisionmeshes coming from different user

XR Service DeploymentPlane T3.4

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 20 of 1

Component Name Component Description Architectural Layer Tasks
devices.

3D Point cloudencoder/decoder
Data service component tocompress/decompress point cloudfor efficient transmission.

XR Service DeploymentPlane T3.4

Decentralisedstorage / networkperformance
Measuring the performance of DHT-based decentralised storageplatforms such as IPFS and pub-subbased federation networks.

XR Service DeploymentPlane T3.2

For the complete list of components and algorithms/mechanisms, the interested reader is referred toAppendices A, B, and C of Deliverable D4.2. The corresponding tables of D4.2 provide also additionalinformation for each component/algorithm, like the names of the partners involved in thedevelopment.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 21 of 1

2 Monitoring
The adaptive scheme devised by CHARITY implies the migration of components to offer maximumperformance in XR services. The monitoring is a key part between dynamically adaptive network-aware services and efficient exploitation of resources. The continuous monitoring of components andnetwork allows to anticipate performance failures that will affect the QoE, so monitoring, predictionandmigration are the key cycle in the CHARITY project after the initial deployment of the applications.
Themonitoring framework (Figure 2) designed for CHARITY expands the functionalities of Prometheus,the leading open-source monitoring solution, turning it into a dynamic and reactive tool by adding acustom module to manage communications and configurations. Previously called Monitoring Agent(in D3.1), it has been renamed as Monitoring Manager for a more accurate meaning regarding itsfunctions.
The large community behind Prometheus has sponsored the development of a tool to expand theserver capacity, Thanos, a high availability storage module able to collect data from multiplePrometheus servers. It adapts the single cluster environment to the needs of the multi-provider, multi-domain and multi-cluster environment considered in the CHARITY project. Thanos concentrates all themonitoring data in a single point, allowing to run multi-cluster requests for monitoring the combinedperformance of the XR components.

Figure 2: Monitoring Framework.
The monitoring architecture, presented in Deliverable D2.1, responds to the preliminary requirementsof XR applications to be deployed on amulti-cloud platform: reduce complexity focusing on preventionand reactivity in ecosystems with heterogeneity of technologies. To translate these formal needs intofunctional values, it is necessary to identify the components of the architecture of each UC, the linksbetween them, and the needs of each of the developing partners.

2.1.1 Monitoring Manager
CHARITY’s monitoring platform use a set of open source-based tools, Prometheus, Grafana andThanos, to achieve the goals of monitoring, alerting, data storage and visualization. However, theworking functionality of this tools is that they are particularly focused for a single-cluster platformwithbasic adaptability, andwe aim to achieve amulti-cluster platformwith dynamic adaptation. To achievethis, a new monitoring component is necessary, focused on prevention and reactivity, and capable offollowing changes in the network over time andmigrations. TheMonitoringManager oversees carrying

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 22 of 1

out the necessary tasks, receiving instructions from the HLO, updating the configurations of thePrometheus servers, and responding to the requests of the Data Analytics Engines. Table 3 providesan overview of these communications.

Table 3: Monitoring Manager communications.
Source Destiny Description
HLO Monitoring Manager Change configuration and alerting
Monitoring Manager Prometheus server Change configuration and alerting
Monitoring Manager Thanos Change configuration
HLO Monitoring Manager Monitor new component
Monitoring Manager Prometheus server Monitor new component
Monitoring Manager Thanos Collect data from a new component
HLO Monitoring Manager Stop monitoring a component but don't deleteThanos stored data
Monitoring agent Prometheus server Stop monitoring a component
HLO Monitoring Manager Stop monitoring a component and delete Thanosstored data
Monitoring Manager Thanos Stop monitoring a component
Data Analytics Engine Monitoring Manager Request Data
Monitoring Manager Data Analytics Engine Scrape forecasted data

Figure 3 shows the communications of the Monitoring Manager with the rest of the monitoringframework and the interactions with other components of the CHARITY architecture. Flows forchanges in monitoring configuration start from the High Level Orchestrator. Two types of flows areconsidered, the first is the deployment flow, when the services are configured for the first time in themonitoring framework. The second one is on runtime, when the migration of a service requires toupdate the configuration of two Prometheus servers, the one that monitors the cluster that the serviceinitially occupied and the Prometheus of the cluster to which the service has been migrated. Themigration triggers are detailed in the Monitoring Data section.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 23 of 1

Figure 3: Monitoring Architecture defined in D2.1.
The Monitoring Manager has three functionalities:

- Manage request through a REST API.
- Download Prometheus servers configuration and update YAML configuration files.
- Trigger the configuration reload to apply the changes.

2.1.2 Monitoring Data
Prometheus servers deployed with each new cluster are in charge of monitoring VNFs, XR services,network performance between nodes and the available resources of the cluster itself. This observanceof the environment is in CHARITY platform the trigger of the reactive flows that turn deployedapplication architectures into dynamic ones.
Three architecture components employ the monitoring data gathered:

- HLO: It uses cluster performance metrics to make decisions about deployments andmigrations. This is described in Resource Indexing section, section XX.
- Data Analytics Engine: The monitored data of each metric feeds the forecasting instances,that predict future values.
- Prometheus: The monitoring servers allow to define alerting rules over the observed data,triggering its own alerting system to notify that a certain value has been reached.

Migration triggers: Alarms vs Alerts
In CHARITY project, we differentiate two types of performance notifications, that differ in the origin ofthe data, the components that provides that data, and what mitigates the migration they trigger, asstated in table Table 4. While the alarms use real data collected by the monitoring system, the alertsare based on predictions calculated by forecasting instances. It is necessary to differentiate thenotifications (Figure 4) because one is triggered by the current performance of the monitoredcomponent, which means that the migration it triggers aims to correct a certain condition, exceedinga limit value established by the UC owner. However, in the case of the alerts, the data used arepredictions, estimates of values that this metric will reach in a certain time. Therefore, the migrationdoes not seek to reverse an existing situation, but rather to prevent it from occurring.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 24 of 1

Table 4: Migration triggers
Data Type Data provider Migration

Alarms Monitored Prometheus Fix a performance failure
Alerts Predicted Data Analytics Engine Avoid a performance failure

Figure 4: Alarm and alert notifications.
The use of two types of notifications allows CHARITY platform to use them as a verification factor tovalidate one of the objectives of CHARITY project, anticipation of performance failures. This is key forXR applications, that in today’s highly competitivemarket must guarantee to their users an high qualitygraphics and smooth interactions. Therefore, the metric thresholds established in the AMF are thevalues that the UC considers critical and that overcoming them means entering a range in which afailure of services could occur, and therefore reduce the user’s QoE.
The correct functioning of the alarm system ensures that predictions allow us to anticipate anomaliesin the user experience migrating the services so that they always have the necessary resources fortheir correct functioning in the cluster in which they are deployed. This situation will occur if in no casethe limits are reached, and therefore no alarm is activated.

2.1.3 UC metrics
The analysis of each UC and the KPIs collected in deliverable D1.3 allows to define the preliminary setof values ​​to be monitored according to the needs of each UC owner. These metrics and their formatswill be consulted and processed by CHARITY components, hence, it is necessary to establish commonvalues, as stated in Table 5.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 25 of 1

Table 5: Metrics definition
METRICS DEFINITION OUTPUTNAME OUTPUTUNITS FORMAT EXAMPLE

Latency
Time it takes for a request to reachthe destination and return,including the operation time of thedestination to respond to therequest latency miliseconds threedecimals 125.123

RTT
Round trip time. Time it takes for arequest to reach the destinationand return. It doesn't include theoperation time of the destinationto respond to the request rtt miliseconds threedecimals 125.123

Bandwidth Maximum capacity that can betransmitted over a link bw Mbps threedecimals 1000.000
CPU Percentage of used CPU cpu percentage positiveinteger 0-100
GPU Percentage of used GPU gpu percentage positiveinteger 0-100
Memory Percentage of used memory memory percentage positiveinteger 0-100
Resolution Number of pixels a screen iscapable of displaying resolution Megapixel threedecimals 4.096
Color bitdepth Number of bits needed torepresent the color of a pixel colorbitdepth bits perpixel positiveinteger 24

Frame-rate Frequency at which a devicedisplays images framerate

Framespersecond -fps positiveinteger 240
Petitions persecond Number of requests per second petitionspersecond

Requestspersecond positiveinteger 1000

A preliminary collection of the monitoring requirements of the use cases, from the performance ofeach of the components to the performance of the links between them opened communications witheach UC to find out their preliminary needs. Ad-hoc surveys were created. These surveys contained atable of metrics that affected the case and a series of questions with which to delve into the types ofdata they need and the technologies of the elements they are developing (see an example in Figure5).
The results of these surveys allowed to convert the requirements into a list of values to be monitored,with already defined formats. This allows also to design the exporters that will expose the datacollected by the Prometheus server, the core of the monitoring system. The Prometheus server pulls

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 26 of 1

metrics from elements monitored through the HTTP endpoint each one uses to communicate. Toexpose these metrics, the elements use exporters, which collect the monitoring information, convertit to the format used by Prometheus and expose it to the outside.
The extensive use of Prometheus benefits from the existence of a community thatmaintains numerousexporters developed by third parties, which are already identified in the tables in the following sectionsfocused on each use case. However, XR applications involve the appearance of new elements thatrequire the development of new custom exporters, and for such task Prometheus offers detaileddocumentation and compatibility with the most common programming languages. Therefore, thecollection of information, made through a questionnaire (as in Figure 5), needs to be made prior tothe development of the monitoring system is a key step for the following phases, since it allows effortsto be focused on understanding the elements, their languages and the need or not to develop customexporters, that can be similar between different use cases.

Figure 5: Questionnaire for Collins Aerospace.
Prometheus allows the use of four metric formats, two of them for individual values ​​and the other twofor storing a set of values ​​during a certain period. Counter is an integer value that is incremented byone or reset to zero, while gauge allows the numeric value to increment and decrement. Histogramallows to collect values ​​between certain margins over a period of time to later perform statisticalanalysis. The use of summary is similar to that of histogram, with the difference that it does not requirea bucket definition, so it allows obtaining frequencies of more adjusted values ​​than those of ahistogram. In the questionnaires made to the UCs, these four possibilities were offered for the values​​to be monitored and they were asked to choose the formats according to the needs of each of theirelements. In the following tables they will be defined as Counter -C-, Gauge -G-, Histogram -H- andSummary -S-.
The information discussed in this section serves as background for the following sections, whichinclude the tables with the monitoring needs of both use cases and CHARITY own architecture,compiling metrics, formats and the existence of exporters already developed that expose the data.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 27 of 1

2.1.3.1 UC1-1 - UC1-2: HOLO 3D - Holographic concert and holographic meeting
In the case of the holographic systems for concerts and meetings devised by Holo3D, we find keymetrics related to image quality, as well as the performance of communications to eliminate delaysand offer a real-time experience.

Table 6: UC1-1 and UC1-2 - elements and metrics
USE CASE ELEMENT Links Latency RTT Bandwidth CPU GPU Memory Resolution Colorbitdepth

Frame-rate
Petitionspersecond Exporter Thirdpartyexporter

Musician (PC withcamera,microphone)
Charityedge HG HG HG - - - H G G - CUSTOM -

Client (personwatching thehologram on aholographic display)
Charityedge HG HG HG - - - H G G - CUSTOM -

Windows server X HG HG HG G - G - - - - EXISTING Windowsserver
Speaker (PC withcamera andmicrophone)

Charityedge HG HG HG - - - H G G - CUSTOM -
Client (personwatching thehologram on aholographic display)

Charityedge HG HG HG - - - H G G - CUSTOM -

Windows server X HG HG HG G - G - - - - EXISTING Windowsserver

2.1.3.2 UC1-3: SRT - Holographic assistant
The elements of the SRT holographic assistant are developed onWindows servers, which already haveexisting exporters to expose data in Prometheus format. The only custom exporter to be created is theone that involves the end user of the application. The creation of this type of exporter is common toall use cases, since Prometheus cannot monitor screens, virtual reality headsets or cockpits. Itsmonitoring will be carried out on another element of the architecture of the use case thatcommunicates with these final elements.

Table 7: UC1-3 - elements and metrics
USE CASE ELEMENT Links Latency RTT Bandwidth CPU GPU Memory Resolution Colorbitdepth

Frame-rate
Petitionspersecond Exporter Thirdpartyexporter

PC with holographic3D device andEyetracker Charity edge HG HG HG - - - H G G - CUSTOM -

Windows server X HG HG HG G - G - - - - EXISTING Windowsserver

SRT_SW_CLIENT SRT_SW_CONTENT HG HG HG G - G H G G - EXISTING Windowsserver

SRT_SW_CONTENT SRT_SW_BEHAVIOUR,SRT_SW_PCGEN HG HG HG G G G - - - - EXISTING Windowsserver

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 28 of 1

SRT_SW_PCGEN CHARITY_SW_PCENC HG HG HG G G G - - - - EXISTING Windowsserver

CHARITY_SW_PCENC SRT_SW_CLIENT HG HG HG G G G - - - - EXISTING Windowsserver

SRT_SW_BEHAVIOUR Google API HG HG HG G - G - - - - EXISTING Windowsserver

2.1.3.3 UC2-1: ORAMA - Medical training
Surgical training through virtual/extended reality implies high synchronization between all theparticipants in the session to accurately simulate the collaborative work that takes place in anoperating room between the end users of the application and the responses of the virtual elements tocollisions with users.

Table 8: UC2-1 - elements and metrics.
USE CASEELEMENT Links Latency RTT Bandwidth CPU GPU Memory Resolution Color bitdepth Frame-rate Petitionsper second Exporter Thirdpartyexporter
VRequipment Charityedge HG HG HG - - - H G G - CUSTOM -

LSpart_1 LSpart_2 HG HG HG G G G - - - - EXISTING WindowsVM

LSpart_2 LSpart_1 HG HG HG G G G - - - - EXISTING WindowsVM

2.1.3.4 UC2-2: DOTES - Virtual tours
Virtual tour applications are widely popular; however, they are still far from providing a realisticimmersive user experience as they don’t focus on the limitations that the network imposes onapplication performance. To achieve the quality of the image and interaction with the scenarios thatDOTES, UC owner, plans with its application, it’s essential that the communication speeds of thenetwork and the processing of the elements adjust to their maximum performance.

Table 9: UC2-2 - elements and metrics.
USE CASEELEMENT Links Latency RTT Bandwidth CPU GPU Memory Resolution Colorbitdepth

Frame-rate
Petitionspersecond Exporter Thirdpartyexporter

Cyango Story -front-end
Cyango APILivestreamservice HG HG HG - G - H G G - EXISTING Nginxserver

Cyango CloudStudio - front-end Cyango API HG HG HG - G - H G G - EXISTING Nginxserver
Charity mediaconverter Cyango API HG HG HG G G G - - - - CUSTOM -

Cyango API

3D engineCyango StoryCyango CloudEditorFile hostingTranscribeserviceCyangoDatabase3dEngineImage engine

HG HG HG G - G - - - - EXISTING Nginxserver

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 29 of 1

File Hosting Cyango APIVideo Engine HG HG HG G - G - - - - EXISTING AWS S3

3D engine Cyango front-endCyango API HG HG HG G G G - - - - EXISTING Nginxserver
Image Engine(Imageprocessor) Cyango API HG HG HG G - EXISTING Nginxserver
Video Engine(replace bycharity mediaconverter)

File hostingCyango API HG HG HG G - EXISTING
Now:AWSLambdaFuture:nginxserver

Livestreamservice Cyango StoryCyango API HG HG HG G - EXISTING Nginxserver

CyangoDatabase Cyango API HG HG HG - - EXISTING
Now:mongoDBFuture:nginxserver

TranscribeService Cyango API HG HG HG - - EXISTING Nginxserver

2.1.3.5 UC3-1: ORBK - Mixed reality
The extended reality application devised by ORBK focuses on the user's interaction with the virtualizedscenario, the virtual objects introduced and that all this happens with the minimum delay between allthe users of that application session. The mesh collider that is being developed in the CHARITY projectis key to the performance between real image and virtualized elements, and to achieve the KPIs of thenext generation XR applications, a proactive adaptive architecture like CHARITY is needed.

Table 10: UC3-1 - elements and metrics.
USE CASEELEMENT Links Latency RTT Bandwidth CPU GPU Memory Resolution Colorbitdepth

Frame-rate
Petitionspersecond Exporter Third partyexporter

Game client Game Server HG HG HG - - - H G G - CUSTOM -

Game Server
Game client,Meshcollider,GameServersStatus DB

HG HG HG G - G - - - - CUSTOM -

Game ServersStatus DB Game Server HG HG HG G - G - - - - EXISTING CloudWatch
Specialized XRService byCharity (Meshcollidergeneratorservice)

Game Server HG HG HG G G G - - - - CUSTOM -

Mesh MergingService -developed byCNR
Game Server HG HG HG - G - - - - - CUSTOM -

2.1.3.6 UC3-2: Collins Aerospace (CAI) - Flight simulator
To date, the simulation of high-speed scenarios has been limiting in terms of collaborative applicationsdue to the difficulties of synchronization between users and the performance of the differentmicroservices in charge of predicting the images to be displayed in the participants. In the case of

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 30 of 1

Collins Aerospace, an edge architecture is proposed to reduce interaction times and control over therequests received by each element to show the highest image quality to always maintainsynchronization between its users.
Table 11: UC3-2 - elements and metrics.

USE CASEELEMENT Links Latency RTT Bandwidth CPU GPU Memory Resolution Colorbitdepth
Frame-rate

Petitionspersecond Exporter Third partyexporter
Cockpit (flightstick, thrustor,pedals)

Flight Oracle,SceneManagement HG HG HG - - - H G G - CUSTOM -

Flight Oracle TerrainManagement HG HG HG G - G - - - - CUSTOM -
SceneManagement Device HG HG HG G G G - - - - CUSTOM -
TerrainManagement SceneManagement HG HG HG G G G - - - - CUSTOM -

Terrain DB
TerrainManagement,ImageGenerator

HG HG HG G - G - - - - EXISTING PostgreSQL

ArenaManagement SceneManagement HG HG HG G - G - - - - CUSTOM -

FlightDynamics/Physics?
Flight Oracle,Cockpit, ViewBuilder HG HG HG G G G - - - - CUSTOM -

Image Generator Flight Oracle,Terrain DB HG HG HG G G G - - - - CUSTOM -

Frame Caché
View Builder,ResolutionUpscaler,ImageGenerator

HG HG HG G G G - - - - EXISTING Redis

View Builder
FlightDynamics,Frame caché,WARP, webRTC Client

HG HG HG G G G - - - - CUSTOM -

WARP View Builder HG HG HG G G G - - - - CUSTOM -
web RTC Client PC-HMD HG HG HG G G G - - - - CUSTOM -
PC, HMD webRTC HG HG HG G - G H - G - CUSTOM -
ResolutionUpscaler Frame Caché HG HG HG G G G - - - HG CUSTOM -

2.2 Resource Indexing
The Resource Indexing collects performance related cluster metrics andmakes it available for the HLO,which is responsible for choosing the most suitable cluster based on the resources required by eachnew deployment or for migration to a new cluster.
The Resource Indexing is made up of instances per cluster, as shown in Figure 6, that collect data fromthe cluster in which they are deployed. These instances communicate with the main ResourceIndexing, an architectural component with information on all clusters available in all domain and forall providers.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 31 of 1

Figure 6: Resource Indexing components.
Each Cluster Resource Indexing is made up of a database, where the last value of each of the metricsis stored, and two update tools. The first one makes periodic HTTP requests to Prometheus withqueries in PromQL format, processable by the monitoring server, and stores it in the database. Thesecond one updates periodically the main Resource Indexing.
The cluster metrics the HLO needs to evaluate to take deployment decisions are: CPU, memory,storage, bandwidth between clusters and latency between clusters. The first prototype of the ResourceIndexing collects the first three. The table 12 collects the Prometheus metrics used by the ResourceIndexing prototype. Network performance metrics will be incorporated in the coming months.

Table 12 - Resource Indexing prototype metrics.
Metric Prometheus Metric Prometheus QueryCPU total machine_cpu_cores sum(machine_cpu_cores)

used container_cpu_usage_seconds_total sum(rate(container_cpu_usage_seconds_total))
available machine_cpu_cores

container_cpu_usage_seconds_total
sum(machine_cpu_cores)-sum(rate(container_cpu_usage_seconds_total))

Memory total machine_memory_bytes sum(machine_memory_bytes)
used container_memory_working_set_bytes sum(container_memory_working_set_bytes)
available machine_memory_bytes

container_memory_working_set_bytes
sum(machine_memory_bytes)-sum(container_memory_working_set_bytes)

Storage total container_fs_limit_bytes sum(container_fs_limit_bytes)
used container_fs_usage_bytes sum(container_fs_usage_bytes)
available container_fs_limit_bytes

container_fs_usage_bytes
sum(container_fs_limit_bytes)-sum(container_fs_usage_bytes)

The communication between the HLO and the Resource Indexing is through a REST API, where twotypes of queries are defined, according to the needs of the HLO. The first one returns the values of all

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 32 of 1

clusters and all domains, while in the second the values returned are from the clusters belonging tothe domain specified in the input parameters.
Some basic experimentation has been done regarding the communication between a main cluster anda couple of standalone clusters to check if all of the tools needed for the Resource Indexing work asexpected. To test it, we deployed each standalone cluster with a subset of a couple of servers, andadapted the Prometheus tool to obtain the necessary information. Then, we tested the ClusterResource Indexing, first to check if the information was stored correctly in the database, and then tosee if this information was sent to the Main Cluster, in which we checked that the information wascorrectly received. Finally, we simulated the HLO calls to the Resource Indexing through the Rest Api,particularly the ones related to availability, to check if the obtained data was useful to the HLO.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 33 of 1

3 https://kubernetes.io/
4 https://min.io/
5 https://prometheus.io/
6 https://datashim.io/

3 CHARITY Edge Storage (CHES)
3.1 Component descriptions
The CHARITY Edge Storage Component (CHES) is responsible for providing optimized edge storageservices to the CHARITY framework and its hosted applications. These services include data storage,retrieval and migration tasks, security and privacy protection capabilities, QoS and QoE violationprevention and mitigation, as well as other data-related services that serve the runtime requirementsof CHARITY. More specifically, the edge storage component has to provide a reliable, fast, stable andsecure shared storage engine, accessible by all devices and users in an edge-cloud. Furthermore, itneeds to be extremely lightweight since it is created for edge devices with extremely limited resources,like Raspberry Pies or other micro-computer devices.
Edge nodes generally have limited computation, storage, network, or power resources. Thedistributed, dynamic and heterogeneous environment in the edge and the diverse application’srequirements pose several challenges. The edge storage component needs to overcome some inherentedge challenges like:

 Coordination of unreliable devices and network Hardware and software incompatibilities that arise due to the plethora of different devices Integration of different data storage formats and data types Limited resources of the edge devices Security and privacy concerns QoE insurance
CHES component is based on the Kubernetes (K8s)3, MinIO4 and Prometheus5 technologies, combiningand optimizing them in order to better serve the needs of CHARITY. Kubernetes is an open-sourcesystem for automating deployment, scaling, and management of containerized applications. As astorage solution, an open-source framework created by IBM is utilized, called MinIO. MinIO is aninherently decentralized and highly scalable Peer-to-Peer solution, allowing us to deploy it freely onusable nodes. It is designed to be cloud native and can run as lightweight containers managed byexternal orchestration services such as Kubernetes. It supports a hierarchical structure to formfederations of clusters and it has been proven as a valid candidate for an edge data storage system [1].MinIO writes data and metadata together as objects, eliminating the need for a metadata database.In addition, MinIO performs all functions (erasure code, bitrot check, encryption) as inline, strictlyconsistent operations. The result is that MinIO is exceptionally resilient. Moreover, it uses objectstorage over block storage so it is in fact a combination of the two systems, preserving the lightweightdistributed nature of block storage while providing the plethora of metadata and easy usage of theobject storage. Unlike other object storage solutions that are built for archival use cases only, theMinIO platform is designed to deliver the high-performance object storage that is required by modernbig data applications. In addition, MinIO provides both a web-based GUI and an AWS S3 compatibleAPI library. The Kubernetes Dataset Lifecycle Framework provided by IBM’s Datashim6 is employed ontop of MinIO, allowing the edge storage component to be used as a file system folder, which is usefulfor applications that we cannot or do not want to integrate with the Restful API of MinIO. A detaileddescription of the Kubernetes Dataset Lifecycle Framework is provided in Section 3.1.1. Finally,Prometheus is responsible for collecting monitoring data about the real-time performance of thenodes and the component as a whole to analyze the behaviour of different applications and optimizethe cluster architecture, the options, and the data distribution.

https://min.io/
https://prometheus.io/
https://datashim.io/

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 34 of 1

7 https://kubernetes-csi.github.io/docs/
8 https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions

Additionally, a sub-component, called CHES-Registry, was implemented using CHES as its file storagebackend, to move application images closer to the edge and limit network traffic and delays duringthe operations of deployment, migration or scaling. CHES Registry hosts the Docker images andemploys Kubernetes containerization to provide its services, creating a new pod in the CHESnamespace that is able to connect to the MinIO storage backend. In addition, CHES Registry allows thesecure communication between the registry and its clients using the HTTPS protocol and a basicauthentication scheme.
3.1.1 Kubernetes Dataset Lifecycle Framework
Hybrid edge/cloud environment is rapidly becoming the new trend for organizations seeking theperfect mix of scalability, performance and security. As a result, it is now common for an organizationto rely on a mix of on-premises data centers (private cloud), and cloud/edge solutions from differentproviders to store and manage their data. Nevertheless, many obstacles arise when applications haveto access the data. On the one hand, developers need to know the exact location of the data and, onthe other hand, manage the correct credentials to access the specified data-sources holding their data.In addition, access to cloud/edge storage is often completely transparent from the cloud managementstandpoint and it is difficult for infrastructure administrators to monitor which containers have accessto which cloud storage solution. Even if containerized components and micro-services are widelypromoted as the appropriate solution for efficiently deploying and managing storage over a hybridedge/cloud infrastructure, containerization makes it more difficult for the workloads to access theshared file systems. Currently, there are no established resource types to represent the concept ofdata-source on Kubernetes. As more and more applications are running on Kubernetes for batchprocessing, end users are burdened with configuring and optimizing the data access [2].
To tackle the aforementioned issues, the Dataset Lifecycle Framework (DLF) is employed, which is anopen-source project that enables transparent and automated access for containerized applications todata-sources. DLF enables users to access remote data-sources via a mount-point within theircontainerized workloads and it is aimed to improve usability, security, and performance, providing ahigher level of abstraction for dynamic provisioning of storage for the users’ applications. Byintegrating DLF on Kubernetes pipelines, it is possible to mount object stores as Persistent VolumeClaims (PVCs), which are pieces of storage in the cluster, and present them to pipelines as a POSIX-likefile system. In addition, DLF makes use of Kubernetes access control and secret so that pipelines donot need to be run with escalated privilege or to handle secret keys, thus making the platform moresecure.
In more technical details, DLF orchestrates the provisioning of PVCs required for each data-source,which users can refer to their pods (the smallest deployable unit in Kubernetes), allowing them tofocus on the actual workload development rather than configuring/mounting/tuning the data access.DLF is designed to be cloud-agnostic and due to Container Storage Interface (CSI)7, it is highly extensibleto support various data-sources. CSI is a standard for exposing arbitrary block and file storage systemsto containerized workloads on Container Orchestration Systems (COS) like Kubernetes. With theadoption of COS, the Kubernetes volume layer becomes truly extensible. Using CSI, third-party storageproviders are able to write and deploy plugins exposing new storage systems in Kubernetes withoutinteracting or changing the core Kubernetes code. This provides Kubernetes users more options forstorage and makes the system more secure and reliable. On the infrastructure side, DLF also enablescluster administrators to easily monitor, control, and audit data access.
DLF introduces the Dataset as a Custom Resource Definition (CRD)8, which is a pointer to existing S3or NFS data-sources. A Dataset object is a reference to a storage provided by a cloud-based storagesolution, potentially populated with pre-existing data. In other words, each Dataset is a pointer to an

https://kubernetes-csi.github.io/docs/
https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 35 of 1

9 https://operatorframework.io/

existing remote data source and is materialized as a PVC. The Dataset is a declarative construct thatabstracts access information and provides a single reference for data in Kubernetes. Users only needto include this reference in their deployments to make the data available in pods, either through thefile system or through environment variables [3].
Figure 7 illustrates an example configuration of a Dataset CRD for data stored in COS. The mandatoryfields are the bucket, endpoint, accessKeyID, and secretAccessKey. The bucket entry creates a one-to-one mapping relationship between a Dataset object and a bucket in the COS. The accessKeyID andsecretAccessKey fields refer to the credentials used to access this specific bucket.DLF is completely agnostic to where/how a specific Dataset is stored, as long as the endpoint isaccessible by the nodes within the Kubernetes cluster, in which the framework is deployed.

Figure 7: Dataset CRD.
Creating a CRD is just the first step to add custom logic in the Kubernetes cluster. The next step is tocreate a component that has embedded the domain-specific application logic for the CRD. Essentially,a service provider needs to develop and install a component which reacts to the various events whichare part of the lifecycle of a CRD and implements the desired functionality.
DLF utilizes the Operator-SDK, an open-source component of the Operator Framework9, whichprovides the necessary tooling and automation in the development of these components in aneffective, automated, and scalable way. Operator-SDK is utilized to create the Dataset Operator inDLF. Its main functionality is to react to the creation (or the deletion) of a new Dataset and materializethe specific object. Specifically, when a Dataset gets created, the software stack invokes the necessaryKubernetes CSI plugin and creates a PVC that provides a file system view of the bucket in the COS.
Figure 8 demonstrates in an abstract view, the Dataset Lifecycle Framework with the variouscomponents employed in an example of a two-node K8s cluster.

https://operatorframework.io/

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 36 of 1

10 https://gitlab.charity-project.eu/hua/edgestoragecomponent

Figure 8: Conceptual overview of the Dataset Lifecycle Framework (DLF).

3.2 Package information
3.2.1 CHES Storage
CHES is a package including Kubernetes deployment files in YAML format, installation scripts in bashscript format, and a configuration file in JSON format that contains all options needed to configure thecomponent.
All files of the package are available on the official CHARITY GitLab page10 and can be obtained withthe following command:
$ git clone https://gitlab.charity-project.eu/hua/edgestoragecomponent.git
In detail, we have one YAML file called chesDeployment.yaml which is the Kubernetes deployment filefor the storage server (master). This file will install all necessary services, authentication keys, rolesand images on the Kubernetes cluster, reading information from the configuration file (.conf). It willuse the Kubernetes architecture, deploying most services on the Kubernetes master. Of course, theactual MinIO instances that store the data will be deployed on the nodes having the label “ches-worker” set to “true”. The second yaml file is called chesClientDeployment.yaml and it will allow nodesto use CHES as a file system folder bymounting the PVC that is connected to the CHES storage service.
The bash scripts are again two, chesInstalldeploy.sh that configures and deploys thechesDeployment.yaml on the Kubernetes master, and chesClientDeploy.sh that configures anddeploys the chesClientDeployment.yaml on the client nodes. These scripts are just applying the optionsselected in the configuration file to the YAML files and then run the necessary commands to deploy

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 37 of 1

the YAML files on the Kubernetes cluster. There is a third bash script called InstallScript.sh which isconfiguring and deploying the chesDeployment.yaml file in a single K8s cluster node installation,without requiring any additional configuration steps.Finally, a YAML file called dlf_kube.yaml is used for the deployment of the Dataset Lifecycle Frameworkand a bash script named Undeployches.sh which undeploys the CHES containers and jobs. A completelist of the files included is presented in Table 15.
Table 15: List of package files for Edge storage component.

Filename Description
chesDeployment.yaml Kubernetes deployment file for CHES masterchesClientDeployment.yaml Kubernetes deployment file for CHES client(s)chesInstalldeploy.sh Bash script for deploying the CHES serverschesClientDeploy.sh Bash script for deploying the CHES client(s)
InstallScript.sh Bash script for deploying the CHES servers on singlenode clusters

configuration_file.conf JSON file containing the configuration options forCHES
dlf_kube.yaml Kubernetes deployment file for the Dataset LifecycleFramework
Undeployches.sh Bash script for undeploying the CHES containers andjobs

3.2.1.1 Kubernetes Dashboard
Along with the CHES component, the Kubernetes dashboard is provided, which is a web-basedKubernetes user interface. In general, Kubernetes dashboard is used to deploy containerizedapplications to a Kubernetes cluster, troubleshoot the containerized applications, and manage thecluster resources. In addition, the dashboard can get an overview of applications running on a cluster,as well as for creating or modifying individual Kubernetes resources (such as Deployments, Jobs,DaemonSets, etc). Dashboard also provides information on the state of Kubernetes resources in thecluster and on any errors that may have occurred. The associated files are located in the samerepository with CHES.
In detail, the installation of Kubernetes dashboard includes four files, two deployment YAML files andtwo bash scripts. A bash script named InstallDashboard.sh is used for deploying the Kubernetesdashboard in a K3s cluster. A complete list of the files included, is presented Table 14.

Table 16: List of files included in the Kubernetes Dashboard.
Filename Description

InstallDashboard.sh Bash script for deploying the KubernetesDashboard
recommended.yaml Kubernetes deployment file for Kubernetesdashboard

dashboard_account_roles.yaml Kubernetes deployment file for creating a minimalRBAC configuration, i.e. a Service Account and aClusterRoleBinding
UndeployDash.sh Bash script for undeploying the KubernetesDashboard

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 38 of 1

11 https://hub.docker.com/_/registry

3.2.2 CHES Registry
CHES Registry is a sub-component that realizes a localized Docker image registry, taking Docker andVM images near the edge devices/nodes to support the faster application deploying and limit thenetwork flooding caused by large application image downloads during deployment. This functionalityacts as a proactive caching mechanism by optimizing the download delays and the network traffic. Theport of the CHES Registry as well as its credentials are pre-configured using the generalizedconfiguration file that is packed with the edge storage solution.
CHES Registry is based on the Docker registry technology in order to store and distribute containerimages. It combines the official Docker registry image11with Kubernetes orchestration, a MinIO objectstorage backend, and a set of automated deployment and configuration scripts. This enables CHESRegistry to automatically deploy and scale the Docker registry as needed while centrally controllingthe configuration options such as communication protocols, SSL certificates, credentials, connectionports and other. This configuration also enables us to fine-tune the back-end storage, placing theimages at the optimal physical locations according to the needs of each use case. As a result, CHESRegistry streamlines the storage and distribution of container images, offering enhanced control,scalability, and optimized edge deployment capabilities. The application images are handled as objects,stored in a MinIO bucket and accessed either using the S3 API it provides, its web interface or the DLFfunctionality the LDR has added on top of MinIO, making the buckets available as mountable virtualdisks.
Figure 9 illustrates the CHES Registry sub-component. The associated files are separated into adifferent folder, in order to separate them by functionality, make documentation and maintenanceeasier and decouple their installation process.

Figure 9: CHES Registry.
CHES Registry can be downloaded by running the command:
$ git clone https://gitlab.charity-project.eu/hua/edgestoragecomponent.git
In detail, the installation of CHES Registry includes six files, four deployment YAML files and two bashscripts. The YAML files are deploying all the necessary containers and jobs that need to be executed tosetup and configure the registry, in order to be functional and accessible by other containers hostedin the same K8s cluster. A complete list of the files included is presented in Table 15 .

Table 17: List of files included in the CHES Registry repository.
Filename Description

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 39 of 1

12 https://docs.min.io/docs/minio-quickstart-guide.html

add_certs.yaml Kubernetes deployment for a daemon job thatadds the appropriate SSL certificates to newcontainers
add_to_hosts.yaml Kubernetes deployment for a daemon job thatadds the appropriate configurations to thehosts files of new containers
deployment.yaml Kubernetes deployment for the Docker registrycontainer
registry_setup.sh Bash script for deploying the CHES LDRcontainers and jobs

registry_uninstall.sh Bash script for undeploying the CHES LDRcontainers and jobs
test_deploy.yaml Kubernetes deployment for a test containerthat loads a docker image from the deployedCHES LDR

3.2.3 Prometheus
Prometheus, as previously said, is a popular open-source monitoring and alerting tool that enablesusers to monitor the performance and health status of their systems and applications. It is specificallydesigned for highly dynamic environments, such as cloud-native applications and microservicesarchitectures. Prometheus collects time-series data from various sources, including its own clientlibraries, exporters, and third-party integrations, and stores them in an efficient and scalable manner.The associated files for the Prometheus setup are located in the same repository with CHES.
The deployment of Prometheus includes one YAML file (prometheus.yaml) that configures the scrapingjob and the target. A scraping job refers to the process of periodically collecting metrics from a targetusing HTTP, allowing Prometheus to monitor and analyze the performance and health of that targetover time. The target refers to the specific endpoint fromwhichmetrics are collected through scraping.This is achieved through a URL that exposes metrics in a format Prometheus understands.
3.2.4 Semi-automated Deployment and off-loading
In the context of the presented solution, a set of bash and YAML scripts have been developed thathandle all the configuration, installation and deployment processes that need to be contacted beforeand after the MinIO workers are deployed. These configurations include firewall rules, DNS settings,package installations and security checks that take into account the setup environment, thearchitecture and resources of the physical machines and the software involved. These tasks enablethe semi-automatic deployment of the edge storage solution, forming complex pipelines that in mostother cases are performed manually by a system administrator. This ensures that scaling can beperformed seamlessly on each cluster, regardless of the underlying physical machines that act asnodes. In addition, off-loading of data can be achieved by "ordering" more instances of the MinIOworker to be deployed on more nodes and adding them in the same MinIO cluster in real-time.
3.3 User Manual
3.3.1 CHES Storage
We have three ways to utilize CHES, the first way is through the MinIO Web GUI which is described indetails on the official MinIO documentation12. A sample MinIO storage deployment can be seen inFigure 10.

https://docs.min.io/docs/minio-quickstart-guide.html

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 40 of 1

13 https://docs.min.io/docs/minio-client-complete-guide.html
14 https://kubernetes.io/docs/concepts/storage/persistent-volumes/

Figure 10: The MinIO web-based interface.
The second way is through the MinIO client which is a command line tool that is also documented indetail on the official MinIO website13. A connection to a remote host can be seen as an example inFigure 11.

Figure 11: Connection to MinIO using the client command tool.
Additionally, using the integrated Datashim’s DLF, CHES can be accessed through the K8s deploymentmanifest files by mounting the PVC it creates as a system volume. Detailed reference of the usage ofPVCs can be found in the Kubernetes API documentation14. An example of the deployment manifestfile is illustrated in Figure 12.

https://docs.min.io/docs/minio-client-complete-guide.html
https://kubernetes.io/docs/concepts/storage/persistent-volumes/

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 41 of 1

Figure 12: An example of mounting a PVC created by the Datashim integration if the PVC is called "ches-dataset".
The Kubernetes dashboard which is a web-based Kubernetes user interface is illustrated in Figure 13.

Figure 13: Kubernetes Dashboard.
To utilize Prometheus, it is necessary to configure the YAML file with the appropriate endpoint andtarget settings, as depicted in Figure 14.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 42 of 1

Figure 14: Prometheus configuration YAML file.
Subsequently, the user can access the Prometheus console and utilise query commands to retrieve amultitude of metrics. As an example, Figure 15 exemplifies the outcomes generated by theminio_bucket_objects_size_distribution query.

Figure 15: Prometheus console example metric.
Moreover, the integration between Prometheus and the MinIO console offers valuable information,as demonstrated in Figure 16.

Figure 16: Prometheus-MinIO Console integration.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 43 of 1

15 https://docs.docker.com/registry/spec/api/

3.3.2 CHES Registry
CHES Registry can be accessed through the Docker Registry APIs. These APIs are described in theofficial Docker documentation15. Catalog API is the simplest of the APIs provided, displaying a list ofthe available images pushed in a registry. An example of the catalog API is illustrated in Figure 17. Inthis case it hosts an example hello-world image.

Figure 17 Catalog API example.
Finally, a list of available images can be obtained from a terminal (using the curl utility), as illustratedin Figure 18.

Figure 18: Example of the catalog API for CHES Registry hosted in a K8s cluster.

3.4 Licensing
This component, including all originally created source files, scripts and other resources are releasedas free software under the terms of the GNU General Public License version 3 or later, as published bythe Free Software Foundation.
MinIO is provided under GNU Affero General Public License version 3 which enables us to use it as anopen-source component providing that we also use a GNU public License.
Prometheus, Datashim and K8s are protected under Apache License which gives us full usability oftheir open-source components.
3.5 Results obtained in relation to the objectives (KPIs)
The work conducted in Task 3.2 aims in achieving the objectives along with the requirements andtargeted KPIs. More specifically, the KPIs that will be met from Objective 2 (Provide holistic support forthe orchestration of advanced media solutions) are:

 KPI-2.2 Storage formats: at least one (block, file, object)o As already mentioned, as a storage solution, an open-source framework created byIBM is utilized, called MinIO. This framework uses object storage over block storageso it is in fact a combination of the two systems, preserving the lightweight distributednature of block storage while providing the plethora of metadata and easy usage ofthe object storage. Extensive research has been conducted in the field of storage solutions inedge computing infrastructures. A scientific journal entitled “A LightweightStorage Framework for Edge Computing Infrastructures/EdgePersist” [49] hasbeen published in Software Impacts (Elsevier) presenting the proposed edgestorage solution (CHES). KPI-2.3 Edge storage hit rate: higher than 70%o The native “disk cache” feature of MinIO has been investigated. Disk caching featurerefers to the use of caching disks to store content closer to the tenants allowing usersto have the following: i) object to be delivered with the best possible performance

https://docs.docker.com/registry/spec/api/

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 44 of 1

16 https://www.bigchaindb.com/
17 https://locust.io/

and ii) dramatic improvements for time to first byte for any object. Experimentalresults reveal a hit rate exceeding 84%.o An online proactive caching scheme based on deep recurrent neural network modelsis investigated for research purposed, to predict time-series content requests andupdate edge caching accordingly. KPI-2.4 Blockchain for edge storage transaction rate: more than 4 transactions per secondo A blockchain database, namely BigchainDB16 is being explored. More specifically,BigchainDB supports both blockchain (decentralization, immutability, and owner-controlled assets) and database properties (high transaction rate, low latency,indexing, and structured data querying). One design goal of BigchainDB is the abilityto process a large number of transactions each second. Each BigchainDB instance is avirtual concept consisting of three parts: i) a MongoDB database, ii) a BigchainDBserver and iii) a Tendermint communication node which uses a Byzantine FaultTolerant middleware for networking and consensus. Experimental resultsdemonstrated that MinIO is able to achieve a higher transaction rate (4.3) comparedto BigchainDB (3.2) for a specific class of experiments. The performance evaluationwas executed through Locust17, an open-source load testing framework that enablesthe definition of user behaviour and supports running load tests distributed overmultiple machines and simulates millions of simultaneous user requests. Overall, theexperimental results demonstrated that MinIO presents the best performance in bothread and write operations. To further evaluate the storage systems, we also measuredthe RAM usage, the CPU usage, the disk latency and the disk IO time for a single user'srequest and for all users' request. Again, MinIO achieved the best performance. Ascientific journal in the context of performance of storage systems in edge computinginfrastructures entitled “Performance Analysis of Storage Systems in Edge ComputingInfrastructures” has been published in Applied Sciences (MDPI) to the Special IssueCloud, Fog and Edge Computing in the IoT and Industry Systems.o In addition, we conducted extensive experiments within a distributed computingenvironment, utilizing a configuration consisting of four nodes, and once again, weobserved consistent outcomes. Specifically, MinIO demonstrated a superiortransaction rate in comparison to BigchainDB and also achieved a better performancein both read and write operations. This reaffirms the robustness and efficiency ofMinIO across varied deployment scenarios, further underscoring its potential as ahigh-performance data storage solution. A scientific conference paper entitled “AStudy on the Performance of Distributed Storage Systems in Edge ComputingEnvironments” has been submitted to the 9th ACM/IEEE Conference on Internet ofThings Design and Implementation (IoTDI 2024), showcasing the aforementionedresults.
3.6 Relation to research questions
There are a number of research questions regarding the edge storage, which are actively beingresearched at the moment. These questions include the intelligent data placement in computingnetworks, the pro-active and intelligent caching of data, the minimization of resource waste and themaximization of resource efficiency and the harmonization of IoT network diversity. The presentresearch work and the designed component provides solutions to most of these open researchquestions by providing a complete edge storage solution that takes into account the present issues inIoT edge networks and the vast number of data transactions that continuously happen between them.
Pro-active and intelligent caching of data are two questions that also trouble the academic community

https://www.bigchaindb.com/

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 45 of 1

and the industry for a very long time. It concerns the replication or migration of data before they areneeded to have them ready for usage when they are finally needed. This minimizes the wait time ofoperations since the I/O and network operations, which usually take much more time to be completedthan processing does, are performed before they are needed. In order to achieve that, an edge storagesystem needs to be able to predict the need for a specific data packet early enough to be able tocomplete the data operations before the need arises. Modern approaches are using machine learningin order to profile the applications and the users of a system, extracting patterns of behaviour thathint at the future data operations. The presented solution is using Kubernetes as an orchestrator,which enables us to define certain node affinity and node selection rules that aid the selection ofstorage workers and the placement of the data inside an edge cluster. The affinity rules are relaxedrules that are instructing Kubernetes to prefer nodes that are meeting most of the affinity rulesspecified. On the other hand, selection rules are strict and instruct Kubernetes to deploy the storageworkers on nodes that fulfil all of the selection rules. These rules can be dynamically set either by anetwork administrator or by an automated mechanism such as an intelligent agent or a machinelearning model that can estimate the most efficient placement of storage workers.
Harmonization of IoT network diversity concerns the definition of a uniform way of handling thevarious IoT devices that can be a part of an edge cluster. An IoT edge network is like a living organism.The parts that comprise it can change at any given time either because they do not wish to be part ofthe network anymore, due to hardware or software malfunction, scaling out and in operations or forany other reason that removes or adds new devices over the device-edge-cloud continuum. Thepresented solution is using K3s as an orchestrator which is compatible with most devices that runwindows or Unix based operating systems. This enables the administrators to create generalizeddeployment scripts that handle the deployment, configuration, un-deployment and re-deployment ofthe storage workers. These generalized scripts are highly configurable and can be edited in real timeby higher level scripts and automated mechanisms adding more layers of intelligence and automationto these deployment and configuration processes. Additionally, DLF provides a uniform way ofaccessing the data, using the local file system of each device, eliminating the need of customizedsolutions for each new device that becomes a member of the device-edge-cloud continuum.
3.7 Evaluation of CHES
3.7.1 Evaluating CHES through Resource Utilization and Quality of Service Metric Analysis
The CHARITY Edge Storage Component aims at improving the Quality of Experience (QoE) of the end-users by migrating data “close” to them, thus reducing data transfers delays and network utilization.To evaluate the effectiveness of the storage component, a number of resource utilization and Qualityof Service (QoS) metrics are collected using the Prometheus system. The data are collected on theedge, by Prometheus agents running on edge nodes that handle the data storage. These data arestored in the Prometheus database of each edge cluster. The data are collected at regular intervals of5 minutes throughout the functional period of the component, i.e. for the whole duration that theedge storage component is active and waiting for serving data requests.
The evaluation metrics employed are divided into two categories:

 Resource consumption: CPU available (total, used), RAM available (total, used), HDD available(total, used), Network available (total, used) Performance: Throughput, Data request response time, and Network time
The resource consumption metrics of the first category are all being passively collected by thePrometheus agents placed on storage nodes. The performance metrics of the second category on theother hand, require a client-side approach so they are actively collected only during benchmarks andtests.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 46 of 1

The evaluation is conducted using two CHES deployments, one in a local and one in a remote edgecluster. The behaviour of CHES is evaluated using a collection of small to medium binary files rangingfrom 15KB to 10MB. All these files are forming the evaluation dataset that is stored in various MinIObuckets, created and managed by CHES in the local and remote edge cluster. These buckets are thenmounted onto new pods, using the DLF, and these new pods are taking the role of clients, sending datarequests to the CHES and recording performance metrics for these requests.
Figure 19 illustrates the percentage change of various resource utilizationmetrics -CPUUsage,MemoryUsage, Available Memory, Disk Write Latency, Disk IO time- during intense data transactions andduring normal functionality of the node.

Figure 19: Percentage change of various resource utilization metric.
As the results suggest, CHES is not overusing the RAM of the node, although it is slightly increasing theusage of the CPU and the disk operations, as expected. This proves that CHES is lightweight enough tobe deployed on most edge devices. More specifically, the RAM related metrics are near to zero,meaning almost no change, the CPU metric is slightly increased while the disk metrics are increasedby a larger degree, proving intense I/O activity.
Client-side metrics collected to assess the impact of CHES on QoE, are presenting a clearer picture ofhow CHES improves the response times of various data requests. Figure 20 and Figure 21 show thecomparison between read, write and delete operations for the local and the remote CHES respectively.

Figure 20: Read, Write and Delete operation response times in milliseconds for the local CHES deployment.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 47 of 1

Figure 21: Read, Write and Delete operation response times in milliseconds for the remote CHES deployment.
Due to the object store nature of MinIO, it can be observed that write operations are more timeconsuming compared to read and delete operations. On the other hand, read and write operations donot differ much compared to each other, the only difference is the network delay for the final filetransfer, which is pretty small taking into account that present evaluation tests were conducted usingfile transfers of multiple small to medium files.
The comparison between the different operations are similar but at a different scale; for the localCHES, response times vary between 3 to 17 ms while for the remote CHES, response times varybetween 84 to 450 ms. This is becoming more obvious when putting the response times into directcomparison, as illustrated in Figure 22. The request response time for the local CHES is under 20 msfor all file operationswhich is significantly lower than the remote CHES. In summary, all data operationswere significantly enhanced during runtime when the data storage was placed near the edge devices.

Figure 22: Comparison of response times for various operations for the remote and local CHES deployments.
In conclusion, the above experiments prove two things: a) the lightweight nature of the edge storagecomponent, making it a perfect fit for edge device deployments and b) the great reduction in datarequest response times, which on some edge use cases is a necessity for their basic functionality.Detailed results can be found at the scientific conference paper entitled “Towards a DistributedStorage Framework for Edge Computing Infrastructures” [29] which was presented at the 2ndWorkshop on Flexible Resource and Application Management on the Edge (FRAME 2022).

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 48 of 1

18 https://ipfs.tech/

3.7.2 Assessing CHES's Performance Perspectives
One of the main challenges in the development of applications at the edge is the efficient data sharingbetween the edge nodes, and it can be accomplished within individual application frameworks orthrough an external storage service. Despite significant improvements in offering an efficient edgestorage solution, there are still some issues to be addressed related to the functional and non-functional requirements of cloud/edge-based applications, including low data retrieval latency, highavailability and integrity, dealing with a potential shortage of storage resources at an edge node,supporting rapid application component deployment or automatic restart/replacement ofunresponsive components, and dealing with the high heterogeneity presented in edge environments.These requirements can be achieved by optimizing resource usage, allocation, and data managementplans on edge devices.
The plethora of available storage systems and underlying technologies have left researchers andpractitioners alike puzzled as to what is the best option to employ in order to manage and process, inthe most efficient way, the massive amount of data generated by IoT/edge devices. Therefore, wefocused on highlighting the advantages and disadvantages of various edge-enabled storage systems.Thus, we present a performance analysis between CHES (MinIO storage), IPFS18 and BigchainDB. Theevaluationmetrics employed are divided into two categories: resource consumption and performance.More specifically, three aspects were taken into consideration: i) transaction rate, ii) response time,and iii) resource utilization. To enhance the validity of our findings, each experiment was conductedover five iterations, thereby enhancing the reliability of our results and mitigating potential biases.
Figure 23 illustrates the transaction rate achieved by each storage solution. The results indicate thatCHES achieves the highest transaction rate followed by BigchainDB, while the IPFS exhibits the worstresults. For instance, the transaction rate obtained by CHES is 3.3 and 1.3 times larger compared tothe IPFS and BigchainDB, respectively.

Figure 23: Transaction rate achieved by each storage solution.

Figure 24 demonstrates the average response time in milliseconds of each storage solution. Figure 24aand Figure 24b visualize the average response time of a single request of read and write operations,respectively. On the other hand, Figure 24c and Figure 24d illustrate the average response time for allusers' requests. The standard deviation of the response time is also illustrated in each figure in astacked bar plot manner on top of each average response time. Overall, as indicated in the abovefigures, CHES (MinIO) presents the best performance in both the read and write operations.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 49 of 1

Figure 24: Performance of read/write operations of each storage solution.
To further evaluate the storage systems, we also measured the RAM usage, the disk latency, and thedisk IO time for a single user's request and for all users' requests, similar to the previous figures. TheCPU was also recorded but not plotted because its usage was negligible. This proves that the storageis lightweight enough to be deployed on most edge devices. Figure 25 and Figure 26 illustrate thestatistics for the read and write operations, respectively. Figure 25a and Figure 26a indicate thepercentage of the RAM usage where, as depicted, CHES consumes the least amount of RAM in eachcase. In addition, BigchainDB follows CHES, only in the case of a single request, with the IPFS is aheadof BigchainDB in all users' requests. In the rest of the figures where the disk latency and and the diskIO time are presented, CHES achieves the best performance followed by BigchainDB, while the IPFSyields theworst performance results. The diskmetrics are increased by a larger degree, proving intenseI/O activity.
Detailed results can be found at the scientific journal entitled “Performance Analysis of StorageSystems in Edge Computing Infrastructures” [28] which has been published in Applied Sciences (MDPI)to the Special Issue Cloud, Fog and Edge Computing in the IoT and Industry Systems.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 50 of 1

Figure 25: Statistics for the read operation of each storage solution.

Figure 26: Statistics for the write operation of each storage solution.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 51 of 1

3.7.3 Evaluating CHES Registry sub-component
The seamless delivery of XR applications on resource-constrained edge devices, poses uniquechallenges due to limited network bandwidth, latency constraints, and intermittent connectivity.Additionally, the size of XR application images is often significant, and downloading these images fromremote repositories can put a burden on the limited network bandwidth and introduce significantlatency. CHES Registry sub-component serves as a crucial component, addressing the need to bringapplication images closer to the edgewhileminimizing network traffic and image download durations.
The feasibility and efficiency of the CHES Registry are evaluated through the examination of twospecific use case scenarios: UC2-1 VR Medical Training and UC3-1 Collaborative Gaming. During thepilot evaluations of the VR medical training application, retrieving the 10GB-sized LSPart1 VM imagefrom a remote repository led to considerable network congestion, causing delays in image downloadand concurrent network operations. This issue was addressed by pre-positioning the VM image withinthe CHES Registry on the same edge node before initiating a new VR session request. This change,which involved deploying the new VM from a local repository rather than a remote one, significantlyreduced deployment times. In initial tests without CHES Registry pre-loading, the application took over10 minutes to deploy, and in some cases, even up to 20 minutes. With CHES Registry pre-loading,deployment times dropped to 1-2 minutes. These results indicate that CHES Registry achieveddeployment times up to 10 times faster than raw Kubernetes deployment. As the compressed LSPart1VM image size is further reduced to 2.82GB, it will provide even more optimal deployment times. Inthe case of the Collaborative Gaming Use Case, the CHES Registry solution proved instrumental inminimizing network load and reducing deployment time for new game servers. This was achieved bystrategically placing and hosting game server Docker images near the edge nodes in anticipation oftheir usage.
Overall, the evaluation reveals a significant reduction in application deployment time, indicating thepositive impact of the proposed solution. Detailed results can be found at the scientific conferencepaper entitled “Streamlining XR Application Deployment with a Localized Docker Registry at the Edge”[48] which was presented in the European Conference on Service-Oriented and Cloud Computing(ESOCC 2023).

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 52 of 1

4 Resource-aware Adaptation Mechanisms
While the cloud offers extreme scaling opportunities through the dynamic allocation of physicalresources to meet demand, it comes at a cost. Apart from the design challenges of engineering anelastically scalable architecture, the financial costs of cloud resources require careful monitoring.Although an application may be able to physically scale to meet demand, it may not be able to do soeconomically - unconstrained growth leads to unconstrained costs and if the returns do not exceedthe investment, then cost can serve as a scalability brake. Edge computing resources such as thoseincreasingly offered through metropolitan points of presence by hyperscalers and the forthcomingrollout of hyper-local edge infrastructure throughout 5G radio networks, offer new architecturaloptions for domains such as real-time media streaming which require the flexibility of the cloud withthe low latency typically associated with locally dedicated hardware. In comparison to traditionalcloud deployment, edge resources are far scarcer requiring a more measured approach to scalabilityas there may simply be insufficient physical resources available in proximity to the user for optimaloperation.
Across the cloud and edge, software engineers will increasingly find themselves challenged withdesigning software that needs to scale and dynamically adapt its tactics to suit the computational andnetwork resources currently available within the environment in which it operates. With a ServiceBased Architecture approach increasingly favoured in modern architectures, there is a growingchallenge with respect to how we equip services with sufficient adaptability to adjust their operationin linewith the ebb and flow of physical resources available, and affordable, in their local environment.
4.1 Dynamic Software Adaptation
Software should be designed for change so that maintenance and reuse efforts can be minimised.Designing for variability has the significant advantage of enabling architects and engineers to delaykey decisions until late in the development cycle or even until run time through site configuration. Thelonger we can accommodate a delayed decision, the more information we may have to hand whenhaving to make the decision as requirements are adjusted in line with customer needs andenvironmental realities. These delayed design decisions are known as variability points [6] and thesuccessful integration and curation of variability points has been the subject of intensive research fordecades [7]. Variability points serve a key role in the design and construction of software product linesin which organizations seek to reassemble collections of reusable components into distinct membersof a product family through leveraging a wide array of architectural, engineering and run-timevariability point strategies ranging from abstract, interchangeable design stereotypes to run-timecommand line parameters [8].
While there is much active research into Software Product Line Engineering (SPLE) to attaindevelopment and deployment reuse efficiencies at industrial scale [9], the approach necessitates ahighly planned, rigorous, and disciplined approach to variability management throughout the softwaredesign and implementation phases. It facilitates the reuse of software across multiple products in thesame family by carefully designing variability points that can be leveraged during the software buildand deployment process. An extension of this approach, known as the Dynamic Software Product Line(DSPL) paradigm, merges SPLE with techniques to adapt software at runtime to produce a collectionof variability points that may be manipulated through configuration or runtime binding to alter thebehaviour of deployed software [7].
Configurability lies at the heart of modern software development, and it is rare for software to bedeveloped to such a narrow purpose and exact set of parameter values that no deploymentconfiguration is required. Indeed, configurability is desirable as it can improve the versatility ofsoftware and often enable functional behaviour or adaptation to environmental setups that were notenvisioned at the time of initial software deployment. While some software is equipped with runtimedynamic configurability and zero downtime, most of the software at least supports static

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 53 of 1

configurability. This could be facilitated through environment variables, command-line parameters orconfiguration held in a file or repository of some form. Such configurability essentially exposes acollection of variability points which can be manipulated to affect the behaviour of the software andthe principle is the same irrespective of whether the software was developed in-house, open-sourceor closed-source acquired from a third party.
The number and nature of variability points exposed will vary from one application to the next and canrange from debugging trace activation to port numbers and timeout values, from sampling rates tothread numbers. In fact, the very configurability of software often results in a software configurationspace explosion [10] that causes challenges for the testability of software (Linux has well over 10,000configurable features [11]). In the hands of a knowledgeable user however, configuration is a powerfultool to adapt and tune software to its environment and user needs.
4.2 A structure for adaptation
In [12], the authors put forth a vision of autonomic computing in which software systems could self-manage according to specific goals. Each component would be designed as an autonomic elementwhich would manage its own internal behaviour and relationships with other autonomic elementsthrough integration of an autonomic manager in each element. This manager would take responsibilityfor monitoring the operation of the element and its interactions and adjust the operation of theelement as required (e.g., enable/disable features).
The autonomic manager comprises of what has come to be known as a MAPE-K loop – Monitor,Analyze, Plan and Execute according to available Knowledge. In DSPL, the autonomic managerbecomes the adaptation manager as shown in Figure 27.

Figure 27: MAPE-K Loop [7].
The Monitoring step is concerned with capturing data regarding the properties which will drive theadaptation choices. The Analysis step examines the monitored data and performs any necessary pre-processing before making it available to the Planning step which decides, if adaptation is required,which variant of the system is more suited to the current conditions. Once the variant has beenidentified then the Execution step performs the adaptation.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 54 of 1

4.2.1 Context Monitoring & Analysis
Applications and their environment need to be monitored to observe when the operation of softwareneeds to be adapted. To record the properties being monitored, the adaptation manager can maintainflat context variables [13] or a more sophisticated hierarchical ontology [14] maintained as adynamically updated property set that can be undergo analysis using pre-defined rules or queries tocheck for conditions that would warrant an adaptation.
4.2.2 Planning
“Our claim is that a major reason for the lack of context-aware, adaptive mobile applications is theinherent complexity of building them. Not only need the developers understand the main functionalityof the application and how this can be provided on a mobile device, but they also have to conceivedifferent application variants, specify how applications are linked to the execution context variables,and consider which variant should be activated under which context conditions. This complexity mayeasily appear like an insurmountable barrier to the developer” [13].
As mentioned previously, the potential system variant explosion arising from variability points in asoftware application can overwhelm the testing efforts. If left to an adaptation manager to exploreunbridled, automated manipulation of variability points at runtime can lead to operational profilesthat were not tested or foreseen by the developers. In the field of DSPL, the approach of static goalevolution involves an approach in which a software system has a fixed adaptation policy and systemvariants [7]. In the event the system needs to adapt to a new goal (operate at a reduced mediastreaming resolution for example), then the system is stopped, modified and restarted. Verification ofsuch systems is greatly simplified as the state space is highly constrained. This suggests a model inwhich the Planning step of the MAPE-K loop can collapse to the selection of a particular variant inresponse to a given goal.
4.2.3 Execution
To initiate adaptation, it is required to reconfigure the software using some form of runtimereconfiguration mechanism. How this may be accomplished naturally depends on the design andcapabilities of the software. Approaches based on capabilities of the software architecture range fromdynamic aspect weaving essentially rewiring the software assembly on the fly [15] to service re-routingin a service-oriented architecture. In [11], the authors examined self-adaptation within a micro-servicearchitecture for a media streaming platform in which they proposed leveraging the rolloutfunctionality available in the Kubernetes platformwhich can perform rolling upgrades of a givenmicro-service without service interruption.
4.3 Challenges
In CHARITY we seek to enable the self-adaption of software systems to significant fluctuations in theresource availability within the execution environment. Based on an analysis of the state of the artand considering the needs of CHARITY, we identify several challenges.

 Avoid design time intrusions.We seek to avoid prescriptive, opinionated approaches which step into the architecture anddesign of such systems requiring scaffolding and algorithms to be integrated. We adopt thisposition for several reasons. Firstly, most software is legacy software and seeking developersto modify this software retrospectively creates a significant barrier to adoption. Secondly,updates to the adaptation design and capabilities places an onus on developers to integratethese changes into their software resulting, over time, in version mismatches and requiringconstant vigilance to maintain backwards compatibility. Thirdly, not all the components andservices employed in a given software system are modifiable. They may be commercial orotherwise unavailable for modification and, even when the source is available, it may have

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 55 of 1

been written by a third party (e.g., open source) and difficult to modify without subsequentupgrade and maintenance concerns. Prevent platform instability.CHARITY seeks to support a micro-service architecture which can involve chains of servicesworking together. When performing an adaptation, we need to be careful that the integrity ofthe chain is maintained. Accommodate user-level adaptation.CHARITY also aims to support media streaming software services that operate at scale. At anygiven point in time, there will be a mix of users using a particular service that may necessitatedifferent priorities. For example, in a flight training simulation system, users co-operating in akey team operational training exercise may take priority over individual users experimentingwith the controls of the flight simulator. Alternatively, we may want to maintain a high Qualityof Experience (QoE) for existing users but lower the QoE for new users entering a resource-stressed environment. Supporting this model of operation will require that CHARITY supportsa multi-tenant architecture where applications can simultaneously operate in different modesand priorities. Transparency & TractabilityIt is imperative that system adaptations are predictable and visible to avoid instability or lossof confidence. Cattle Not PetsThe cloud-native metaphor of pets versus cattle [47] promotes that a running software serviceshould not be treated as a pet – unique, carefully managed and whose loss causes upheaval.Instead, it should be treated as cattle – easily and seamlessly replaceable with another fulfillingthe same role and managed in bulk.An infrastructure that supports the dynamic adaptation of software applications could requestthat candidate applications be themselves adaptable at runtime and expose APIs that can beused to have the application manage its runtime resource usage itself. This would be a morestraightforward proposition than seeking to adapt applications that have no inherentcapability to do so themselves dynamically. However, changing the state of services within anapplication in this fashion breaks one of the bedrock tenets of cloud native software design –services should be transparently disposable and replaceable. If we have altered the innerworkings of one ormore services within an application through adaptation APIs that it exposes,then what happens if that service terminates unexpectedly (and needs to be restarted) orneeds to be migrated to another server? Cloud native demands this versatility yet how doesthe replacement get to the state that the service it is replacing was in? This would requirestate tracking and synchronisation which incurs significant overhead and almost certainlywould require intrusive customization of the application to support this – not to mentioncustomization of the adaptation infrastructure itself that would be required to invokeapplication-specific APIs using whatever communication protocol the application supports.This led us to shy away from using application-specific APIs for dynamic application adaptivityand instead strive for a solution that would be reusable across third party applications andadhere to the tenets of cloud native computing. To support cattle not pets.
4.4 Adaptation Infrastructure
As discussed previously, variability points are used in Software Product Line (SPL) engineering to delaydecisions until such point as we are better informed as to how software needs to adapt to its use andenvironment. Run-time adaptation through manipulation of variability points at run-time is used inDynamic SPL (DSPL). In CHARITY we propose to implement a DSPL model which utilizes existingvariability points in a software application to facilitate provisioning of different service editions wherea service edition is an application instance with a distinct runtime configuration. This runtimeconfiguration would be selected in accordance with the observed environmental conditions.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 56 of 1

In this model, the function of any given service edition does not change during its lifetime (i.e., thesoftware itself is not expected to self-adapt) but rather different configurations of it are selectedaccording to the environmental circumstances. This model is depicted below in Figure 28 in which weshow three services – each with multiple editions – that exchange information to operate an overallsoftware application.

Figure 28: Service Editions used to satisfy different environment conditions.

In effect, we propose to use static goal evolution [7] in which we constrain the variability state spaceto explicitly configured variants and thus prevent the application from entering into unforeseen (anduntested) states. There are a range of challenges involved here:
1. How do we enable multiple editions of a single service to operate alongside each other.2. How do we decide which editions to use under given circumstances and wire these togetherinto a safe and coherent service chain.3. How dowe route traffic between services without them needing to bemade aware of multipleeditions.4. How do we monitor the environment.

As we will discuss in the following sections, we propose an evolution of the MAPE-K loop introducedpreviously for runtime adaptation in DSPL. In CHARITY we propose to position Monitoring andContainer Management platforms between the Adaptation Management and Application Layers asshown below in Figure 29.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 57 of 1

Figure 29: MAPE-K look modified to enable extraction of sensors and executors from the application layer.
Note that in Figure 29, the sensors shown in the Application Layer are facilitated but not obligatory.
The following sections outline how we plan to meet these in CHARITY according to the previouslyidentified research and technical challenges.
4.4.1 Configuration Containment
One of the fundamentally transformative benefits of Docker containers for software development hasbeen the ability to create separate self-contained environments for experimentation and production.On a single host, we can deploy multiple containers hosting applications that, if run collectively outsidethe container confines on a single node, would come into conflict with each other – for example,conflicting version requirements of common software packages; conflicting requests to use the sameports, environment variables or journal files. Containers allow us to run multiple copies of the sameapplication side by side without coming into conflict. This ability to contain the application’senvironment to just that application allow us to painlessly run multiple copies of the same applicationside-by-side with different configurations. Configurability through feature flags and configurationoptions at application launch is a widely used technique in software development to offer a variety ofdeployment variations to suit the needs of the given environment (whether business or operational)[4]. Docker containers enable us to leverage the power of this configurability in a productionenvironment.

Figure 30: Run differently configured copies of a single application simultaneously.
Given a particular set of environmental conditions (e.g., GPU availability, network latency, user requestprofile) then we may find that a change to the configuration of a given component to alter its mode of

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 58 of 1

operation (e.g., disable feature, reduce sampling rate) may produce a more stable application thatoperates more in tune with the environment in which it finds itself.
While some software is equipped with runtime dynamic configurability and zero downtime, most willsupport static configurability through environment variables, command-line parameters orconfiguration held in a file or repository of some form. Such configurability essentially exposes acollection of variability points which can be manipulated to affect the behaviour of the software -irrespective of whether the software was developed in-house, open-source or closed-source acquiredfrom a third party. By leveraging the environment isolation properties of containers, we can launchmultiple instances of a service in different configurations. As we shall see, coupled with the ability ofKubernetes to orchestrate the launch of groups of services, containers bestow a powerful ability toseamlessly replace whole subsets of a service-based application to deliver a coherent applicationvariant – involving multiple individual service variants working in concert - in a safe and predictablemanner.
4.4.2 Service Dependencies
In a distributed service-based architecture, some service relationships will have stricter constraintsthan others. Some relationships will be predicated on extremely low latency communications, use ofshared host resources like network space (localhost), storage volumes and shared memory. Someservices need to start together, scale together and stop together. We require service groupings toaccommodate these circumstances and such a concept can be manifested with Kubernetes Pods.
Pods enable us to group containers together into a single meta-container that is deployed on a singlehost. The Pod lifecycle controls all the containers within. Below in Figure 31 we depict the high-levelPod concept.

Figure 31: Co-dependent Containers are deployed as a unit in a single pod.

With Pods, we have a means of collecting tightly related services into containers within a singledeployment unit. This gives us a powerful and elegant mechanism to deploy, redeploy, reconfigure,and retire such service groupings as a unit.

4.4.3 Service Routing
Withmore focused and cohesive segmentation of responsibilities into separate services, service-basedarchitectures rely extensively on inter-service communication to collectively perform their work. InMicroservice-based architectures, the mechanics of enabling services to communicate with each otherrobustly requires careful and detailed design and planning. Apart from peer discovery, there aresignificant challenges involved in establishing and monitoring communication links. Transferring

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 59 of 1

control from one process to another – irrespective of the distance between them – requirescoordination in the event of link failure. Wemust facilitate failover betweenmultiple copies of servicesand indeed decide on the efficient distribution of traffic when multiple peers are available to acceptit. When deploying a new service edition (same service software with different configuration) we needa means to allow both editions to co-exist for some short duration of time and to seamlessly handovertraffic from the old service edition to the new one.
Our initial investigations and research focused on the use of a Service Mesh [5] to offer an overlay thatcould be used to manage routing, and route changes, of communication between services so that wecould switch between service editions. While this initially looked promising it did become clear that itwas not without its shortcomings. It would increase the complexity of the design through theintroduction of an additional infrastructure layer that would require deployment, configuration, andmaintenance. Additionally, it would require a custom synchronisation layer to co-ordinate proxies inthe service mesh such that switches between service editions occur together when multiplecontainers/pods are involved.
As we progressed our thinking and our familiarity with Kubernetes, an alternative approach suggesteditself in the form of Kubernetes Services. A Service can be used to expose a single IP address andseamlessly route traffic to multiple Pods – ideal for load balancing traffic between identical pods ortransparently handling a restarted pod that has been assigned a new IP address. Below in Figure 32we see a high-level depiction of a Kubernetes Service.

Figure 32: A Kubernbetes Service conceals pod churn from the clients.

4.4.4 Application Quality Modes
Consider an application comprised of three microservices as shown below. The services deliver aresponse or perform a particular action in accordance with a request. We refer to the sequence ofservices involved in delivering on this response as a Service Chain.

Figure 33: Simplified Application with Microservice Architecture.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 60 of 1

For an interactive XR streaming application, the QoE is typically measured according to the responseor action performed in response to the triggering request on several dimensions.

Figure 34: XR Application Quality of Experience is often multi-faceted.
The Round-Trip Time (motion-to-photon, glass-to-glass) captures how long it takes for the applicationto deliver updated imagery in response to the triggering user interaction. The Frame Rate captureshow many frames per second the application is delivering to the user device. Resolution captures howmany pixels per frame are being rendered. Just in Time (JIT) Correction is the term we will assign toprocessing carried out on the generated media stream to try and compensate for insufficient framerates, delays, or insufficient resolution. Such processing generally involves algorithmic guess work torepair incomplete media streams on the fly through pixel or frame rate upscaling. Features typicallyinvolve visual flourishes such as sophisticated weather effects, reflections and shadows but could alsoinclude some AI-driven augmentation such as object recognition and framing to assist the end user.
In an ideal world, we may want a sub-20ms RTT, 90 FPS, 4K resolution, no need for JIT correction andfull feature set enabled. In an ideal world we have unlimited resources. The application provider knowsthat resources are not unlimited and that networks get congested.We propose to offer the applicationprovider the facility to specify configurations of their application that would offer acceptable, but lessthan ideal, Quality of Experience specifications. The objective is to allow the application to remainoperational in resource contested environments. To explore this concept, we present the applicationprovider with the facility to specify three modes of target QoE – High, Medium, Low – representingthe different levels of QoE we want to be able to deliver. We will term these QModes. While theobjective of QModes is to capture different levels of physical resource consumption by the applicationrunning in a virtualized environment, what constitutes a given QMode only makes sense within thecontext of a particular application. QModes may be differentiated for example, by the set of renderedfeatures (e.g., accurate weather effects, reflections, shadows), by the number of simultaneously activeusers, the resolution and/or frame rate delivered to the HMD, or even the placement and operationof service components across the device-edge-cloud. For a given application deployed on our platform,it’s QMode values map to distinct deployment configurations of the application.
In the figure below we see three different configurations of an application and the introduction of alogical switch that can choose which deployment configuration to route traffic to. In reality, not allservices are affected by a given configuration change (changing the resolution of a user interface mayhave no effect on the operation of a backend database for example). Just because we change theapplication configuration, then it does not imply that all the constituent service operational profileschange.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 61 of 1

19 For example, SteamVR Motion Smoothing or Oculus Asynchronous Space and Time warping.
20 It is quite possible that three QModes would not be sufficient to capture the complexity of conditions and granularity ofconfiguration options available to a given application provider. We have restricted ourselves to three modes to simplifyconcept evaluation and development.

Figure 35: Logical QMode Switch and how it could be employed to divert traffic between different serviceconfigurations.
In the above model, we can see that a single service may behave identically in multiple chains.
A multi-user application will likely be operating in multiple QModes simultaneously. We view QModeas being tied to a particular traffic characteristic. Different users may be assigned different QModesaccording to their circumstances (e.g., SLA, device capabilities, local network congestion levels, etc.).
Conceptually, a QMode enables network routing in a similar fashion to a VLAN in that it allows us tosegment and route traffic according to a tag. The choice of QMode to perform at can depend on avariety of factors. Application providers may elect to differentiate based on class of device (is it capableof high resolution, does it support frame interpolation19, etc.), speed of network, availability of edgeresources, user contract, number of local active users, etc.20. To be able to make this choice, however,requires that we gather and monitor this information in a centralized monitoring framework.

Figure 36: Monitor for conditions that warrant changes to QMode.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 62 of 1

21 It may transpire, for example, that a well-resourced database equipped with advanced SSD disks cancompensate for an underperforming cache relying on overly stressed RAM. Such trade-offs and compensationsare generally particular to each distinct application. In addition, application providers generally dimension somelatitude into their resource requirement specifications to accommodate leg room and usage peaks that may notalways be used. An over-eager adaptation mechanism may seek to fix a problem that does not need fixing.

4.4.5 Monitoring & Analysis
Adaptation requires context. The drivers for adaptation can vary according to the business andresource environment but in general, applications must adapt to resource availability. An XRapplication distributed across device, edge and cloud resources can depend on a delicate,geographically dispersed, web of resources. Monitoring every leveraged resource individually, seekingto detect bottlenecks and deficiencies, can overwhelm our decision making. Without intimateknowledge of an application’s resourcing windows and inbuilt compensation mechanisms21, we mayelevate disparate resource stresses (such as link delays, GPU overload, database response times) tohigh priority problems that require countermeasures while, in fact, the application is still able tooperate as a whole and deliver an acceptable quality of experience to the end user. A more sensibleapproach would appear to be initiating action in response to a small number of high-level red flagsthat holistically capture underlying problems rather than monitoring a multitude of low-level warningindicators.
The ultimate purpose of any application is to perform its work and deliver acceptable performanceand experience to the end user. If the application is delivering an acceptable Quality of Experience(QoE), thenwe could deem the application to be performing adequately and not in need of adaptation.

Figure 37: Monitoring High level indicators reduces decision complexity.
In Figure 37, we see representative XR metrics we can monitor for conditions that capture the overallfitness for purpose of the application:

1. Round Trip Time: as stated before, the length of time between a user action and its reflectionon the visual experience2. Frame Rate: How many frames per second we are delivering to the user device3. Resolution: the pixel depth of the frames we are delivering4. AI Compensation: Rate of interpolation/extrapolation we need to do locally to ‘fix’ sub-standard resolution or frame rate being delivered from the visual renderer. This may arise if aremote visual renderer generates lower quality media streams to reduce bandwidth needsfrom the cloud while it is upscaled at the edge or on the device.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 63 of 1

By monitoring these metrics, we can assess the application’s fitness. Requesting the applicationprovider to specify meaningful thresholds and operating windows for these metrics is reasonable –unlike requesting them to specify a combination of hardware resource availability deviations thatcould expose a problem.

Figure 38: Monitoring the manifested user experience is more tractable and efficient.
While unacceptable levels of application fitness may highlight a problem, high-level indicators cannotinform us what the cause of it is. They inform us when to investigate a manifest problem rather thannecessitating constant low-level monitoring and analysis to ascertain if we can deduce a problem.Root-cause investigation requires examination of far more detailed and lower-level metrics (such asindividual service performance, particular link latencies or bandwidth shortcomings, and queueingbacklogs) as gathered by the CHARITY monitoring platform. The driver for this level of analysis is thatapplications may be adapted differently depending on the root cause of the problem. For example, adeficiency in the response time from a cloud-based service to an edge node may require differentadaptation than experiencing resource stresses on the edge node itself. We seek to enable applicationproviders to fully leverage the adaptation avenues they have available to themwithin their applicationdesign.
This requires us to be able to retrieve metrics relevant to the application under investigation – anapplication that may be operating across multiple nodes over the device-edge-cloud continuum.
In Figure 39, we see the role of monitoring in application adaptation.

Figure 39: Monitoring, Analysing & Planning based on observed sensor data.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 64 of 1

22 We have focused on integration with the Collins Flight Simulator Use Case and as such look to adapt applications thatfollow the model of dedicated resources per user. In many respects this is the more challenging scenario as changenecessitates increased upheaval within the platform. We cannot simply re-route to already deployed Pods – instead we mustalways initiate a rolling update.

We employ Prometheus and its Alert Manager to trigger examinations of lower-level metrics whenSLA-breaking conditions are observed with higher-level Fitness Measurements. The actual mechanicsof how QMode updates are relayed to the Application is a topic we will return to when discussingInvestigative Work later in this section.

4.4.6 Planning & Execution
When analysis of ongoing monitoring reveals the occurrence of conditions warranting a QModechange then an alert is raised and relayed to the Prometheus Alert Manager. The Alert Manager inturn publishes the alert.
The logical QMode Switch we referred to earlier routes to a particular application configuration basedon the current value for the QMode associated with the application. Applied at the global system level,this would have a sledgehammer effect. We need to be lighter handed and enable QMode changes toapply to a subset of user sessions. How this is accomplished depends on the architecture of theapplication. In the case of the Collins Use Case (UC3-2 Manned-unmanned Operation Trainer), theapplication operates dedicated services for each user and there is very little shared state. In thisscenario, enabling QMode changes for a single user entails a replacement of the Pods serving thatuser. We could envisage other applications with different architectures in which multiple users areserved by a single group of services. In this scenario, enabling QMode changes for a single user cannotbe easily accomplished with replacing the existing services with alternatively configured instances asthis would affect all users sharing those services. Instead, we must operate a group of services perQMode and have users who are currently assigned a common QMode to share a common group ofservices22.
4.4.6.1 User-Level routing
To support user/session level granularity then the switch needs awareness about the user associatedwith a given request.

Figure 40: QMode Routing.
The proposed solution lies in associating a QMode tag with each user session and having a particularapplication configuration to be employed for a given QMode tag. Adapting an applicationfundamentally entails instantiating a variant of the application, having it run side by side with theoriginal while it prepares itself to accept traffic, and then switching live traffic to the variant so that wecan retire the original. Below we depict a snapshot in time when it has been decided to swap the userto a lower-resource-consuming variation of the application and we are ready to switch the traffic over.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 65 of 1

Figure 41: Application about to switch over to application variation that consumes less resources.
Note in the scenario depicted above that not all services in the application are reconfigured. We cansee that M2 is unchanged.
4.4.6.2 QMode Switching
Switching essentially requires reconfiguring the services dealing with a user and re-routing the user’straffic through these newly configured services. In Figure 42 below we see the high-level sequence ofactions required.

Figure 42 - QMode Transitioning.

1. We begin with client traffic being directed to existing services which reference configurationC1.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 66 of 1

2. We observe that resource deficiencies (or improvements) in the environment warrant areconfiguration of the service to change the resourcing footprint required. We identify aconfiguration option C2.
3. A new collection of services referencing configuration C2 is started and brought to readiness.
4. We redirect traffic from the original set of services (using C1) to the new set (using C2)
5. We shut down the original services and release their resources back to the environment.

4.5 Investigation& Experimentation
4.5.1 Service Mesh Routing
Previously reported investigations documented our initial experiments with the Istio Service Mesh.We had envisaged this service mesh taking responsibility for re-routing traffic between individualservices by leveraging Kubernetes Pod labelling. We would inform the service mesh of changes wewould like made to the current QMode so that the mesh would reroute traffic to services offering thetarget QMode. The Service Mesh approach is predicated on multiple variations of the same softwarebeing ready and available to accept traffic. Each variation is configured (at startup) to support adifferent QMode. When we need to change the QMode associated with a given user then we re-routetheir traffic to the appropriate variation using the service mesh.
To this end, we investigated several strategies:

1. Istio header-based routing2. Envoy header-to-metadata filter3. Custom Envoy filters4. External Routing Logic5. WASM Plugins
Details on our experiments and findings can be found in the previous release of this document. Weavoid repeating them here for the sake of brevity and clarity. We abandoned the service meshapproach in favour of a pure Kubernetes approach termed Rolling Updates. The key reasons for ourreassessment are as follows:

 Scalability: The scheme could suit an architecture in which single application service instanceshandle multiple users simultaneously. This means we do not have to deploy multiple instancesfor each individual user but only for the entire user base. However, in cases where each userof the system has dedicated service instances (e.g., rendering engine per user) then we arefaced with a very large number of redundant services running as the number of active usersgrows.
 Lifecycle Management: With the previous approach, we need to take ownership of startingup, managing, and retiring service variations as users come and go.
 Orchestrator Integration: to startup, move and shutdown services requires interaction withthe two-level CHARITY Orchestrator. While this is feasible, it did not appear straightforward.We would require a federated service mesh operating across cloud providers.
 Protocol support: when seeking to support a distributed application that uses heterogeneousprotocols and payloads to communicate between services then the mesh approach couldentail a significant degree of customization.
 Troubleshooting: more tooling requires more integration and increased instrumentation totroubleshoot.
 Performance: additional proxies require additional maintenance and monitoring along withadding additional delays to the transit of traffic.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 67 of 1

 Recovery: if we re-route traffic and encounter problems, then we need to quickly rollback toavoid painful service outage. Observing and managing this would entail additional oversightand remediation further increasing the complexity of the approach.
For the above reasons, along with the observation that a more straightforward approach presenteditself, we shelved the service mesh approach in favour of a pure Kubernetes solution.
4.5.2 Rolling Updates
Rolling updates are a key feature of Kubernetes that enable updating the version of an application orits configuration with zero downtime. This process is fundamental in cloud-native environments wherecontinuous delivery and high availability are crucial. Rolling updates work in Kubernetes work asfollows:

 Gradual Replacement: When a new version of an application/service group is ready to bedeployed, Kubernetes starts by creating new pods with the new version while simultaneouslyremoving the old-version pods. This is done incrementally, a few pods at a time, according tothe defined strategy in the deployment configuration.
 Health Checks: Kubernetes checks the health of new pods before proceeding to terminatemore of the old ones. If something goes wrong with the newly created pods, Kubernetes haltsthe rollout and prevents the termination of healthy old-version pods, ensuring serviceavailability.
 Configurable Update Policy:We can configure the update strategy in Kubernetes deployments.Two important parameters are maxUnavailable and maxSurge. maxUnavailablespecifies themaximum number of pods that can be unavailable during the update, and maxSurge specifiesthe maximum number of pods that can be created over the desired number of pods.
 Rollback: If the rolling update encounters an error or is not behaving as expected, Kubernetesallows us to roll back to the previous version of the application. This ensures that we canquickly revert to a known good state if the new version fails.
 Continuous Delivery: Rolling updates facilitate continuous delivery by allowing frequent andcontrolled updates without service interruption. They support agile development practices byenabling rapid iteration and feedback.

By using rolling updates, Kubernetes provides a robust method for application deployment, ensuringthat services remain available and responsive throughout the update process. It’s a powerful featurethat embodies the cloud-native principles of automated, reliable, and resilient infrastructuremanagement.
Rolling updates will be the vehicle for delivering adaptation effectors with Kubernetes managingcontainer lifecycles as shown below in Figure 43.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 68 of 1

Figure 43: In our modified MAPE-K loop, Kubernetes delivers container management and effectors.
4.5.2.1 Rolling Update in Action
To test out the rolling update feature, we migrated the Collins Use Case from using docker-composeto Kubernetes. The architecture uses a Pod-per-user model to simplify scaling and ensure cleanresource separation between users. The high-level model is depicted below in Figure 44.

Figure 44: Dedicated pods per user in the Collins Use Case.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 69 of 1

Changing the QMode for a user entails starting up a new pod with configuration delivering the targetQMode and then switching traffic over from the original pod to the new pod. To accomplish this, weuse a Kubernetes rolling update as depicted below in Figure 45.

Figure 45: Rolling update of pod in Kubernetes.
We conducted experiments with a live rolling update of a cloud pod to validate the viability of usingthis approach. The cloud pod is challenging as it requires seamless handover of incoming HTTP trafficand outward streaming of live media streams without interruption of the user session.
4.5.2.2 Configurability
A fundamental issue is how we can collectively reconfigure a group of services. In Figure 46 below wesee that such a procedure can grow complex quickly.

Figure 46: With many configuration routes, orchestrating change can be complex.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 70 of 1

We began with deploying services in containers and then managing the deployment of groups ofrelated containers using docker-compose. We leveraged the environment file capability of docker-compose to enable a single point of change in terms of configuration settings. This is depicted belowin Figure 47.

Figure 47: Centralising configuration change

In the journey to cloud-native, wemigrated from docker-compose to Kubernetes. There is a somewhatsimilar facility available in Kubernetes known as configmaps which were introduced to separateconfiguration data from code.

Figure 48: Kubernetes ConfigMaps can be used to reconfigure pods as required.

4.5.2.3 Supporting Diverse Configurability Channels
The Collins Flight Simulator use case provided a strong case study into how an existing application maybe adapted to suit a centralised configuration scheme. The application involves numerous third-partycomponents for whichmodification of the source code is not a realistic option. Figure 49 below depictsthe services to be collectively deployed on the cloud for each user and summarises how each servicecan be configured.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 71 of 1

Figure 49: Collins use case configuration landscape.

The services work closely together and changing the configuration in one service can have knock oneffects for others. For example, changing the resolution displayed by the Scenery Generator hasrepercussions for the configuration of the Virtual Frame Buffer which in turn has repercussions for theCapture & Transcode service. The configuration of all has be done in lockstep or else we risk placingthe services into an inconsistent state. For services that can only be configured through command lineflags, we introduced shell scripts to launch those services within containers and then made thoselaunch scripts configurable through environment variables. For services that require staticconfiguration files then we assemble a selection of pre-configured files and select the appropriate fileaccording to environment variable settings at runtime. The scheme described is presented below inFigure 50.

Figure 50: Example of how a single configuration set can be injected into Pod and effect change even inapplications that do not directly support configuration through environment variables.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 72 of 1

Kubernetesconfigmaps then become the Knowledgebase within our MAPE-K loop by providing acatalogue of QMode states that the application can be moved into as depicted below in Figure 51.

Figure 51: Kubernetes ConfigMaps form our application knowledgebase.

4.5.2.4 Adaptation Tactics
We examined a use case in depth – the Collins Aerospace Flight Simulator (UC3-2 Manned-UnmannedOperations Trainer Application) and sought to identify whether purely configurational changes couldbe executed which would deliver tactics that we could bring into play to deal with resource deficienciesobserved from resource monitoring (see Figure 52 below).

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 73 of 1

Figure 52: Configurability options to deliver adaptability tactics.

We can observe how the same tactic can be used in multiple scenarios. Tactics 1 and 2, for example,can be brought into play if we need to reduce bandwidth needs between the edge and cloud or freeup compute resources on the cloud.
It became clear during analysis that changing the configuration of one service regularly requireschanges to others to compensate or adapt to the new execution landscape. We cannot just lower theresolution generated on the cloud in isolation as the end user would experience a catastrophic dropin their Quality of Experience. We must simultaneously enable resolution upscaling on the edge oncompensate. We see this need to deal with collateral effects of changes to how a single serviceoperates repeated elsewhere.
Naturally, not all applications can lower their resolution on the cloud and have the necessaryallowances in their design to compensate through upscaling elsewhere. Indeed, we expect otherapplications to have opportunities not offered by the flight simulator use case.
4.5.2.5 Resolution Modification
The resolution we adopt for cloud rendering has significant effects on the physical cloud resourcesthat we require. Bigger resolutions require more pixels to be generated which requires more GPU,more memory and more bandwidth to transfer.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 74 of 1

4.5.2.6 Feature Enablement
Enabling or displaying GPU intensive features can have significant repercussions for resource usage.In looking at the Collins Use Case, we identified a range of rendering effects that could be toggled atstartup. Examples include:

 Generation of random buildings, roads, pylons and vegetation to increase scenery density
 The nature, density, and visibility range of clouds
 Sophistication of runway lighting
 Precipitation and smoke particle effects
 Overall shader quality (increased quality produces increased realism)

The enabling and disabling of advanced graphical effects had repercussions beyond the GPU resourcesneeded to render them. With increased rendering activity per frame, then the visual output becamemore dynamic. Precipitation and smoke, for example, increased the amount of visual change betweenframes which reduced the amount of compression that could be achieved with video codecs (whichrely on just capturing changes between frames). This resulted in increased bandwidth usage eventhough the resolution and frame rate remained the same.
4.5.2.7 Frame Rate
Increasing the frame rate produced on the cloud increases the bandwidth which needs to be madeavailable to transmit the video stream. Experimenting with various frame rates (10, 20 and 60) showedthe pressure that it exerts on network capacity as we will see later in this section.
4.5.2.8 Dynamically moving resource dependency between edge and cloud
What became clear during experimentation is that the most efficient place to produce high qualitymedia streams is at the source. Reducing the quality at source with the goal of recovering this loss atthe edge through upscaling is significantly more expensive in terms of overall GPU, CPU and memoryconsumption when viewed as a whole across the cloud and edge. The tradeoff is about bandwidth,Below we see a high-level summary of key metrics if we generate 1K resolution on the cloud

Figure 53: Generate high quality on the cloud.
Above we can see that we can generate the target stream with 20% of the available GPU computationresource and consume 2.6 MB/sec of bandwidth
If we instead generate low quality on the cloud and see to try and recover that quality on the Edgethen the high level metrics are presented below in Figure 54.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 75 of 1

23 We encountered a persistent problem with the display of the right-hand window with FlightGear that we have not yetsucceeded in solving. The results with multiple windows only represent two windows.

Figure 54: Generate low quality on the cloud and seek to recover quality at the edge. Significant bandwidthreductions but also significantly increased resource usage overall.
4.5.2.8.1 Effects of adaptation
We ran various experiments to observe the variations in resource consumption of the flight simulatorCloud Pods under different configurations and results are shown below in Table 18. The flight simulatorcan be run with just a single window (showing the scenery straight ahead) or multiple windows for leftand right views23. Low QModes signify operation with disabled advanced graphical features (smoke,shadows, etc.) while high QModes signify operations with all features enabled.
The bandwidth reflects the amount of data being sent from the transcoder to the streamer.

Table 18: Resource usage profiles across various QModes.
QMode GPUMemoryusage (MiB)

GPUutilization Frames PerSecond (FPS) Resolution Bandwidth(MB/sec)
Low single window 105 2% 10 848x480 0.1
Low single window 120 4% 20 848x480 0.16
Low single window 122 13% 60 848x480 0.38
High single window 208 3% 10 848x480 0.51
High single window 208 6% 20 848x480 0.75
High single window 208 18% 60 848x480 1.2
Low multiple window 270 8% 10 848x640 0.3
Low multiple window 284 16% 20 848x640 0.35
Low multiple window 316 37% 60 848x640 0.5
High multiplewindows 675 13% 10 848x640 1.35

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 76 of 1

High multiplewindows 675 29% 20 848x640 1.75
High multiplewindows 675 33% 60 848x640 2.4
High single window 268 6% 10 1920x1080 2.1
High single window 268 16% 20 1920x1080 2.6
High single window 268 19% 60 1920x1080 3.2

We can observe from the results that all attributes – resolution, frame rate and feature enablement- play a significant role in terms of compute and bandwidth resources and thus all should beconsidered when formulating QMode configurations.
4.5.3 Monitoring & Alerting
A fundamental aspect of adaptation is knowing when it is required. In line with the CHARITYarchitecture, we used Prometheus, custom exporters, Grafana and the Prometheus Alert Manager todeploy supporting infrastructure to monitor resource usage, raise alerts when appropriate, andinstigate an adaptation. This work was done in close conjunction with the Collins Use Case. Metricsare reported through custom exporters which can be deployed independently of the application orintegrated into an application. Our primary focus was on the former where we deployed customexporters for the Cloud pods in the Collins Use Case. This is summarized below in Figure 55.

Figure 55: Custom exporters deployed for cloud pod monitoring.

The integration of custom exporters enables monitoring while also giving us crucial insights intobehaviour using graphical dashboards with Grafana and the ability to configure custom alerts inresponse to key indicator changes as depicted below in Figure 56.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 77 of 1

Figure 56: Leveraging the CHARITY monitoring technology stack to monitor, analyse and react.

This brings us to a more complete MAPE-K loop where we can show Prometheus and alert managerplaying their roles as shown below in Figure 57.

Figure 57: Adapted MAPE-K loop showing roles fulfilled by Kubernetes & Prometheus.

As can be observed above in Figure 57, we show Host and Application sensors both being deliveredwith Prometheus Exporters. In the case of Host Sensors, we employ application-independentPrometheus exporters whose role is focused exclusively on monitoring host resource metrics (such asCPU, GPU, disk, network). Application Sensors are application dependent. They may be embeddedinto application code itself (to monitor the number of active users for example) or as standalone toolsthat monitor application behaviour through application APIs or log files and report onwards toPrometheus.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 78 of 1

4.5.4 Adaptation Execution
In Figure 58 below we present a high-level view of how the adaptation process currently executes.

Figure 58: Dynamic software adaptation driven by monitoring.
Kubernetes ingress and egress services are instrumental in maintaining a seamless connectivityexperience from the perspective of service clients. Initial experiments revealed the need forKubernetes readiness probes to delay the switch from active pod to replacement pod. Such probesensure that the replacement pod is fully bootstrapped, initialized, and ready to take over. Withoutthis step we experienced jarring breaks in service as the handover was happening before the newservices were ready to take over. In Figure 59 below, we present a rolling update in action where wemove a user from a fully featured, resource intensive experience to a reduced feature experience.

Figure 59: Dynamic Software Adaptation using rolling updates for the Collins use case.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 79 of 1

5 Enabling XR technologies
5.1 Enabling Advanced Computing Mechanisms: The Virtual Machine andGPU Challenges
This section describes the incorporation and the role of advanced computing mechanisms, namelyVirtual Machines (VMs) and Graphics Processing Units (GPUs), in the XR deployment and orchestrationprocess. The benefits of such mechanisms are many-fold. Virtual Machines emerged in the past as afirst step towards achieving hardware abstraction. Indeed, encapsulating the entire software stack ina VM facilitates consistent and reproducible environments, including for Extended Reality (XR)applications. Nevertheless, throughout various fields, Cloud-Native and microservice-orientedapproaches are gaining prominence, offering additional layers of flexibility and scalability. Cloud-native emphasizes deploying applications as smaller and more manageable micro-services (i.e., thecontainers) and uses orchestration tools like Kubernetes for their lifecycle orchestration. This modularapproach facilitates the development and deployment of XR applications, allowing for a more efficientand dynamic workflow. Indeed, the portability brought by Cloud Native architectures is particularlyrelevant in highly dynamic and distributed XR scenarios, as CHARITY considers. That being said, as inother domains, the usage of Virtual Machines is still a today’s reality. Whether dealing with intricatelegacy code or unsupported third-party libraries, their use remains essential. Hence, their usagecreates the challenge of seamlessly orchestrating both (i.e., VMs and containers). Namely, how toensure their coexistence, communication, and compatibility with the various tooling. In the oppositedirection, GPUs are progressively used for data-intensive processing tasks such as Machine Learningor physics rendering engines. Therefore, their support should also be considered taking into accounta comprehensive XR orchestration process. For instance, an XR orchestration solution should be ableto recognize the GPU requirements of specific components and strategically plan the deploymentprocess accordingly. The orchestration solution should also be capable of deploying infrastructureenvironments appropriately, including additional infrastructure settings. Similarly, adaptations inmonitoring and decision workflows are necessary for incorporating both VMs and GPUs requirementand to ensure an optimal component deployment. In CHARITY, the need for VMs and GPU support canbe seen in use cases such as the Holographic assistant or the VR Medical Training.
From the CHARITY orchestration perspective, VMs and GPUs introduce four conceptual changes. First,TOSCA definitions derived from AMF should be able to characterize such additional requirements. Forinstance, the need of a GPU-enabled node for running a given component. Then, Low-LevelOrchestrator should be able to understand and translate them into its internal CRD definition.Moreover, the cluster bootstrapping process, should also consider the correct installation of additionalcomponents, both for VMs and GPUs. Furthermore, specific VMs and GPU metrics should also beexposed for the remaining monitoring components of CHARITY which will be leveraged by the AI-based algorithms. Figure 60 depicts the overall interaction between different components.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 80 of 1

24 https://kubevirt.io .

Figure 60: VM and GPU orchestration support architecture.
The rest of this section is split into two key parts, one devoted to VMs and another to GPUs. For each,we analyse the state of the art, compare the existing solutions and detail the experimental work forevaluating their current support in Kubernetes.
5.1.1 Virtual Machine Support in Kubernetes Environments
Effectively managing a hybrid infrastructure involving container-based applications alongside VMremains an open challenge; Mavridis et al. [54] discuss an approach to overcome this problem andensure both can co-exist side-by-side within the same infrastructure and tooling. In broad terms, suchan approach consists of having them being orchestrated by the same platform and different types ofworkloads (VM or container-based) scheduled, hosted and managed in a unified way.
Lee, J. et al. [55] integrated the Kubevirt platform24 as part of their Management and Orchestration(MANO) proposal, where they translate Virtual Network Functions (VNF) into both containers or VMs

https://kubevirt.io

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 81 of 1

25 https://github.com/Mirantis/virtlet .
26 https://www.mirantis.com/blog/kubevirt-vs-virtlet-comparison-better .
27 https://github.com/kubevirt/containerized-data-importer .

as required. Other authors also suggest the usage of Virtlet25 for bringing VM support to Cloud Nativeenvironments and orchestration platforms [56] . Mavridis et al. [57] compare different containerroutines for addressing multi-tenant workloads, including using Kubevirt for running Unikernels andVirtual Machines on top of Kubernetes clusters. Despite being more resource-intensive, they achievedcomparable performances and low deployment times when utilizing Kubevirt and VMs compared toother container runtimes. Their analysis touches on the performance of various solutions, aconsideration that holds relevance for the demanding requirements of XR applications.
Indeed, Kubevirt and Virtlet are both open-source technologies for supporting the coexistence of VMsand containers on top of the same computing infrastructure. Whereas both serve the same purpose,they differ in their implementation26. Kubevirt works as an extension that uses Kubernetes CustomResources (CR) to define Virtual Machines. Whereas Virtlet is a Container Runtime Interface (CRI)implementation to run/interpret Virtual Machines in the same way as other Kubernetes resources(e.g., pods). When comparing both technologies, Virtlet provides a simpler and lighter approach,whereas Kubevirt provides more flexibility regarding the virtual machines' configuration and storage.Moreover, Virtlet, with its own CRI, builds on existing higher-level Kubernetes objects such asStatefulSets or Deployments, which makes it possible to think and map virtual machines to existingKubernetes resource abstractions. Furthermore, Virtlet supports Kubernetes networking and multipleCNI implementations (e.g., Calico, Weave, and Flannel). On the other hand, Kubervirt was designed asa hypervisor-agnostic solution which builds on top of existing hypervisors such as Kernel-based VirtualMachine (KVM), leveraging its own Custom Resources and controllers, which can enable additionalcustomization/configuration options. For instance, Kubevirt offers an option of using PVCs as disks viathe Containerized Data Importer (CDI)27, which is implemented by Kubernetes itself. Overall, bothintend to provide a Kubernetes native experience of managing Virtual Machine definitions either byusing kubectl or Kubernetes API. Regardless of the debate on whether it is preferable to have a newCRI versus the integration of existing and widely-used hypervisors, as of the time of writing, the laststable release of Virtlet was in 2019. Whereas, KubeVirt had several releases in 2023.
Hence, we choose KubeVirt as the technology to evaluate within the CHARITY project due to its activestate, broader adoption and support within the Kubernetes community.We plan to leverage KubeVirt'sflexibility and container-native experience within Kubernetes to seamlessly integrate virtual machineswith containerized workloads.
Figure 61 depicts an overview of the Kubevirt architecture and main components introduced onKubernetes.

https://github.com/Mirantis/virtlet
https://www.mirantis.com/blog/kubevirt-vs-virtlet-comparison-better/
https://github.com/kubevirt/containerized-data-importer

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 82 of 1

28 https://kubevirt.io/user-guide/architecture/

Figure 61: KubeVirt architecture28.
In Kubevirt, each VM instance is seen as a Kubernetes CR -- a Virtual Machine Instance (VMI) in thiscase, as depicted in Figure 61. KubeVirt uses a dedicated controller (i.e., virt-controller) for detectingand reacting to changes in the VM resources and interacting with Kubernetes API. It also uses adedicated component designated as virt-handler on each node to interface (via libvirtd) with each VMand the underlying hypervisor. Notice, that the setup of all of these components becomes a non-functional requirement, implying that the CHARITY orchestration solution should be able to install andconfigure them as required on the target computing clusters. Like Kubernetes pods, Kubevirt VMs canuse Kubernetes Services and Ingresses to expose application endpoints allowing the connection withother applications and/or users.

Figure 62: Example of Kubevirt VMI definition.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 83 of 1

29 https://kubevirt.io/quickstart_cloud/

Kubevirt focuses on Kubernetes integration and the means to provide the same tooling as any otherKubernetes resource while it relies on widely used hypervisors for the virtualization itself. Indeed, suchan architectural approach helps to mitigate the challenges of orchestrating both types of workloadswithout needing different workflows or separate management tools. The external hypervisor strategyof Kubevirt also facilitates the use of operating system-dependent applications and extendscompatibility to legacy applications that were previously virtualized and deemed impractical tocontainerize. Moreover, Kubevirt provides a live migration feature, which brings additional value tohighly dynamic environments, as considered in CHARITY, where it is possible to migrate VirtualMachines without disrupting services running within them.
In the following, we detail the experiments executed to assess Kubevirt functionalities and their usagewithin the CHARITY project.
Virtual Machine Deployments through KubeVirt
In the first experiment, we conducted a series of tests to deploy Virtual Machines within a Kubernetesenvironment, utilizing KubeVirt. These initial steps were performed to enhance our understanding ofKubeVirt's capabilities in managing the lifecycle of Virtual Machines. We also use these experimentsto assess the connectivity between containers and KubeVirt VirtualMachines, alongwith the necessaryrequirements for their integration into the orchestration solution.

Figure 63: KubeVirt experimental scenario.
Figure 63 shows the scheme of the experimental scenario reproduced within the CloudSigma testbed.It consists of a single-node Kubernetes Cluster deployed using kubeadm as the bootstrap provider.The installation of Kubevirt followed the steps outlined in the official documentation29.
Virtual Machine creation was performed using a Virtual Machine image coming from a private registry,the Containerized Data Importer (CDI) from Kubevirt and Persistent Volumes (PVs) from Kubernetes.CDI is a utility designed to enable PVs as data volumes of the Virtual Machines. For the sake of proofof concept, we used a standard Linux/DebianOS 12 image hosted in the GitLab registry of CHARITY anda sleep pod (for testing the communication). Next, we specified the VMI resource (i.e., virtual machinedefinition) by defining the Virtual Machine properties and image location. The VMwas started through

https://kubevirt.io/quickstart_cloud/

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 84 of 1

30 https://kubevirt.io/user-guide/operations/virtctl_client_tool/

Kubectl and Virtctl (i.e., KubeVirt’s CLI30) was used to check the VM instance status, confirming thesuccess of the VM deployment.
To validate the communication between pods and VMs, an Apache2 web server was installed withinthe deployed VM, featuring a simple web page. To assess the communication, first, we exposed theweb page by attaching a Kubernetes service -- a similar process for container service exposure. Later,we used a lightweight sleep container running within a pod and a curl command to test theircommunication through HTTP.
Both deployment and communication testing were successful. Yet, more than testing the successfulcommunication between the pod and the VM instance, this first experiment was pivotal inunderstanding how the process could be later realized and automatized from the orchestrator'sstandpoint. In CHARITY, XR developers, which rely on AMF and image registry to upload theirapplication components, can use the same approach for uploading VM machine images. Forcommunication, although additional evaluation is needed, by using Kubernetes service resources toexpose their communications, we can expect similar support in Virtual Machines. Indeed, KubeVirtdocumentation states their support for ClusterIP, NodePort and LoadBalancer types of services.
5.1.2 GPU support in Kubernetes environments
This section delves into the challenge of how GPUs can be used within Kubernetes and later integratedinto the CHARITY orchestration solution. From AI-based workloads to enabling High-performancecomputing (HPC) applications, GPUs in Kubernetes, in tandem with KubeVirt, extend the array ofpossible workloads. Whereas with VMs, we are mainly focused on enabling the otherwise not possibleVM-based workloads when considering GPUs, we mainly focus on bringing performance and efficientexploitation of hardware-specific resources. Bringing GPU to Kubernetes can be defined into two keychallenges: the additional changes, interfaces and components involved in the software stack; andhow the scheduling and sharing occur among GPUs [58][59][60]. In this section, we expand the firstone.
GPU-enabled infrastructure highly depends on the underlying vendor hardware (e.g., AMD, NVIDIA)and, thereby, their specific drivers. This way, like the underneath hypervisor components in VirtualMachines, GPU vendor-specific drivers become non-functional for such setups. Considering theexisting CHARITY testbed facilities, we choose to focus on NVIDIA GPU environments.

https://kubevirt.io/user-guide/operations/virtctl_client_tool/

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 85 of 1

31 https://developer.nvidia.com/blog/nvidia-gpu-operator-simplifying-gpu-management-in-kubernetes/
32 https://docs.nvidia.com/datacenter/cloud-native/container-toolkit/latest/index.html
33 https://github.com/NVIDIA/k8s-device-plugin
34 https://docs.nvidia.com/datacenter/cloud-native/gpu-operator/latest/platform-support.html

Figure 64: NVIDIA GPU components for Kubernets31.
Figure 64 shows the main components involved for NVIDIA GPUs, including the NVIDIA GPU driver,the NVIDIA container runtime, the Kubernetes device plugin, the Data Center GPU Manager (DCGM)monitoring agent, and GPU Feature Discovery. NVIDIA provides NVIDIA Container Toolkit32, whichcontains a container runtime library and utilities to expose GPU hardware capabilities to allow GPU-accelerated containers. At the cluster level, the NVIDIA device plugin33 provides the facilities forexposing, keeping track, and running GPU-enabled containers. Hence, Kubernetes CRI should becompatible with the NVIDIA Container Toolkit. Moreover, Node Feature Discovery is used for exposingGPU characteristics as a set of Kubernetes labels. This is especially relevant for scheduling algorithms,as they benefit from precise knowledge of the cluster capabilities, in this instance, those related toGPUs. This information becomes an integral part of their decision-making logic. Furthermore, NVIDIAalso provides a GPU operator to facilitate the installation of NVIDIA components into the cluster. SuchNVIDIA GPU Operator simplifies node configuration by autonomously managing most of the setupaspects, though it's important to note that not all NVIDIA GPUs are supported. In other words, theGPU model can be seen as a non-functional requirement according to the NVIDIA GPU Operatorcompatibility list34. Finally, there is the DCGM component to interface with Prometheus' monitoringcapabilities and gather specific GPU telemetry data.
To evaluate the GPU support, two scenarios were devised. The first scenario focuses solely on theusage of GPU containers in a Kubernetes cluster. The second one combines the usage of VirtualMachines and GPU to enable the most complex scenario of supporting GPU-enabled Virtual Machinesin Kubernetes. For the first experiment, we used a single-node Kubernetes cluster on top of a bare-metal server equipped with an NVIDIA GPU GeForce GTX 1660 SUPER. The setup of GPU-relatedcomponents and monitoring followed the official documentation aforementioned.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 86 of 1

35 https://www.tensorflow.org/api_docs

In this first experiment, we focused on evaluating the challenges of setting up containers within a GPU-enabled Kubernetes cluster. For comparison, we run a sample training Tensorflow-based application35
on CPU-only and GPU-enabled containers and compare their performance. Figure 65 illustrates thetime necessary to train each batch on CPU and GPU. Whereas, Figure 66 depicts the CPU and GPUusage of each one.

Figure 65: GPU vs CPU times from each training batch.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 87 of 1

Figure 66: CPU and GPU usage from Tensorflow.
The faster result times on the GPU application prove the functional behaviour of the setup and theefficient exploitation of GPU-enabled containers. Moreover, Prometheus and Grafana proved to be agood choice when it comes to the ability of monitoring the performance and behaviour of resourceusage, in particular the GPU-specific metrics. As discussed before, such metrics are pivotal for theorchestration solution.
For the second scenario, our objective was combine the previous experiments and have a KubeVirtVM instance with GPU. For that, we specified a KubeVirt VM with Windows 10 and GPU-passthrough.The Kubernetes cluster was installed as described in the previous experiment. For the VM definitionthree datavolumes were used: one for the OS installation ISO, another for the VirtIO drivers and thelast one for the storage of the VM itself. For the OS installation we set up a local docker registry whichwe used to store a Docker image containing theWindows ISO. The second volume contained the virtIOdrivers which are used by Kubevirt for interfacing with guest OS. illustrates the KubeVirt GPUPassthrough components. VirtIO drivers were later load as part of Windows installation (see Figure68). Finally, the third volume was configured as a PersistentVolume (PV) to host the VM disk.

Figure 67: KubeVirt + GPU Passthrough experimentation scenario.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 88 of 1

36 https://kubevirt.io/user-guide/virtual_machines/host-devices/

Figure 68 Windows 10 initial boot.
In Figure 69 the correct GPU detection using GPU-Z is shown. Such results proves the ability of KubeVirtsupport for GPUs. It is important to note that GPU-passthrough allocates the GPU hardware to a singleVM. From an orchestration standpoint, this means each VMwill bemapped to a single GPU. For sharingGPU resources across multiple VMs, it should be used the vGPU feature of KubeVirt instead36.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 89 of 1

Figure 69 TechPowerUp GPU-Z detecting the GPU.

5.2 Migrating from on-premise to on-cloud
For Collins Aerospace, the vision of CHARITY to enable highly efficient network slices spanning thedomains of Cloud providers, Edge infrastructure and local resources inspired a radical re-imagining ofwhat could be achieved in terms of real-time, interactive XR streaming on the cloud. The traditionalapproach to flight simulators has been to deploy sufficient compute and storage resources alongside2D fixed screens to deliver on the stringent quality demands of a certification-grade simulator. Scalingup or down is essentially constrained to vertical scaling in which we usemore powerful or less powerfulhardware as the deployment dictates. In Figure 70 below, we depict three sample deploymentconfigurations

Figure 70: Some deployment models for the existing flight simulator.
As presented in Figure 71, the traditional approach is somewhat monolithic in terms of deploymentflexibility. Multiple flight simulators co-located on the same site have no interaction or resourcesharing and each operates independently on its own dedicated hardware.

Figure 71: Existing deployment options revolve around a monolithic approach.
The current deployment model presents a variety of challenges as outlined below in Table 19 .

Table 19: Challenges presented by the traditional deployment model.
Challenges

Each user requires their own full rig – dimensionsite hardware up front for max number ofsimultaneous users
MS Windows focused

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 90 of 1

No sharing of resources between rigs Strict latency demands
Software updates are problematic – especiallytiles database which is very large Specialized scenery generator coupled withflight dynamics
Hardware updates are problematic Difficult to scale
Sense of immersion with low-end rig is poor Licensing complicates experimentation on thirdparty edge/cloud
No centralized monitoring (across users)

At the outset, these considerations drove our decision to rethink the flight simulator architecture, towork in a distributed manner with the ability to leverage the CHARITY platform. We envisaged clearbenefits that a redesign should bring as outlined below in Table 20.
Table 20: Target benefits from redesign.

Benefits
Greatly reduced local hardware footprint User & session management, simulator federation
Edge and cloud resources shared betweensimulators Monitoring framework integration
Tiles database and rendering engines canbe updated on the cloud Improved versatility through Microservices withDocker containers
Hardware upgrades simplified Caching with lookahead rendering to manage delays
Improved sense of immersion Pluggable scenery generator -> flightgear
Improved Scalability Headless remote rendering for remote computationand local display
Pluggable upscaling Customizable latency compensation tactics available

5.2.1 The Latency Challenge
Operating a commercial Flight Simulator requires speed and consistency. The turnaround budgets aretight. In deploying to the cloud, we take an already demanding problem that is currently addressedusing dedicated local hardware and network resources and exacerbate it by distributing resourcesacross large distances as summarized below in Figure 72.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 91 of 1

Figure 72: Motion To Photon budgets become even more demanding with XR and the cloud.
In 2018, Collins conducted internal experiments assessing the viability of cloud hosted flight simulation[23]. The findings revealed significant challenges that needed to be overcome with respect to networklatency and jitter:

 Network Latency is a significant obstacle “Transport delays vary widely based on networktopology, provider, virtual private network, user-to-cloud distance, and other factors”. Sporadic variations in rendering times can result in stalls “cloud-based computing model willrequire stringent provisioning of shared resources to provide the kind of performance anddeterminism guarantees users expect”.
The experiments were predicated on the display of scenery on two dimensional monitors – not XRheadsets which have far more demanding latency budgets. It was clear from the early stages of theCHARITY project that we were facing significant challenges that could be alleviated but not solvedentirely by the CHARITY platform alone. The physics of distance needed to be tackled.
5.2.2 Tackling XR Latency
A key observation about latency budgets in XR is that there are different types – rotational andtranslational as shown below in Figure 73. The charts on the right portray how latency demands aredependent on the nature of the user activity [25] and we superimposed the position that scenerygeneration for a flight simulator would occupy.

Figure 73: The latency budget available depends on the activity.
Updates caused by the user rotating their head need to be very fast (< 20ms) to prevent nausea for asignificant proportion of the population. However, in [24] the authors note that translation motiondelays of 100-200ms are “non-trivial to notice”. For the flight simulator scenario, we have a user thatsits within a virtual cabin and is able to look out the window at synthetically generated scenery. If theuser turns their head then the local view inside the cabin needs to update quickly. The outside viewonly changes with themovement of the simulated aircraft itself (which alters course slowly in responseto user actions). We propose to leverage this dichotomy to move the generation of synthetic sceneryseen through the cabin windows to the cloud while keeping the rendering of the cabin itself local.
5.2.2.1 Prediction to extend the latency budget
If we detach the world outside a simulated aircraft cabin from the world inside then an additionalopportunity presents itself to further extend our latency budget. As pointed out previously, the out-the-window view updates in accordance with movement of the aircraft. Aircraft possess nothing likethe rapid freedom of movement of a human pilot. Its position within the seconds ahead should bepredictable with a high degree of accuracy. This presents the opportunity to render what we needahead of time on the cloud and cache it locally to enable what Google have referred to as NegativeLatency [27] – a variation of which they employed in the Google Stadia platform.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 92 of 1

Figure 74: Movement of an aircraft can be predicted to enable pre-rendering of scenes.
By caching at the edge, our goal is to detach the cloud from the stringent motion-to-photon loop toreduce the latency and jitter that would otherwise be experienced with cloud rendering in the real-time chain.
5.2.2.1.1 Experiments
We employed an LTSM (Long Short-Term Memory) approach for trajectory prediction.

Figure 75: Long Term Short-Term Memory model of operation.

LSTM processes sequential data by controlling the flow of information through a combination of gates(input, forget, and output gates) and a cell state:
Input Gate: Significance: The input gate controls how much of the current input should beincorporated into the cell state. It helps in determining what information from the currentinput is important and should be remembered. Operation: The input gate computes a sigmoid activation, which acts as a filter to gate theinput and decide what information is relevant for the current time step. It determines howmuch to update the cell state with new information.Forget Gate (f): Significance: The forget gate regulates what information from the previous cell stateshould be retained and what should be discarded. It helps the LSTM in forgettingunnecessary or outdated information.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 93 of 1

 Operation: The forget gate computes a sigmoid activation, which decides what portion ofthe previous cell state should be retained. It controls what information should be carriedforward from the past and what should be discarded.Output Gate (o): Significance: The output gate controls how much of the current cell state should beexposed as the hidden state for the current time step. It influences what the LSTM cell willoutput as a prediction or what information will be passed to the next LSTM cell or theoutput layer. Operation: The output gate computes a sigmoid activation and a tanh activation. Thesigmoid activation determines howmuch of the cell state should be exposed, and the tanhactivation scales the cell state to produce the new hidden state. The new hidden statecaptures the relevant information from the cell state for the current time step.
We trained a model using a small number of recorded flight trajectories and tested with an unseentrajectory. The position of an aircraft is captured by a set of values for latitude, longitude, heading,altitude, pitch and roll. Of these figures, we would expect a fast moving commercial aircraft toexperience most change on the geographical coordinates – latitude and longitude – and this has beenborne out with our predictions which demonstrate prediction errors on these vectors. Our results canbe viewed below in Figure 76.

Figure 76: Predicted trajectory versus observed trajectory.
Our goal within the scope of CHARITY was to demonstrate the feasibility of the concept and we feelthis has been accomplished. We believe future refinement that considers additional sensor data suchas aircraft velocity and windspeed offer significant room for improvements.
5.2.2.2 The Frame Rate Challenge
As witnessed by the steadily increasing refresh rates of XR headwear, high frame rates are seen as anessential component of an acceptable XR user experience. Regardless of what is deemed to be anacceptable rate of frames per second – 30, 60, 90, 120 – we assume that the originator of the mediastream must generate that rate. If we want to attain 90FPS with flight scenery, then must we render90FPS in the cloud and ship back to the nearest cache? As withmodern televisions, frame interpolationhas become standard functionality in XR headsets. The manufacturers of such headset want to avoidinconsistent or below-par frame rates emanating from media sources to result in compromisedexperience for the user who may attribute blame to the headset itself. XR headsets need a consistentframe rate. If they do not get it, then they use predictions cached locally on the headset to backfill any

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 94 of 1

missing frames. We observe functionality termed Asynchronous Timewarp and Spacewarp [26] in theOculus headsets and Motion Smoothing in SteamVR headsets.
Instead of the XR experience imposingmore stringent quality demands than conventional 2Dmonitors,we propose to explore using the stabilization technology built into XR headsets to our advantage. Itgives us the option of generating a lower frame rate on the cloud when resourcing pressures precludeus from either rendering the required frame rate due to computational resource stresses or fromdelivering the required frame rate to the edge due to bandwidth stresses.
5.2.2.2.1 Experiments
We first set out to investigate doing frame rate upscaling on the Edge. This offers ameans independentof headset choice to ease experimentation while additionally enabling us to investigate the latestdevelopments in frame interpolation that may not have made their way into commercial headsets.
Frame interpolation algorithms estimate the content of intermediate frames that would fill the gapsbetween existing frames. These intermediate frames are generated by interpolating pixel valuesbetween the original frames. The key is to create new frames that smooth out the motion betweenthe existing frames. To create the intermediate frames, pixel values are blended or interpolatedbetween two consecutive frames based on their motion.
During our investigation we experimented with several approaches:

 Bicubic Interpolation: Produces smooth results. It considers a 4x4 neighbourhood of pixelsaround the non-integer coordinate and uses cubic polynomials to estimate the interpolatedvalue. Lucas-Kanade Optical Flow: estimates the motion or displacement of image features betweentwo consecutive frames in a video sequence. Lucas-Kanade optical flow estimates the motionvectors (displacements) of image features between two frames. These motion vectors can beused to understand how objects or points in the scene move from one frame to the next.Once the motion vectors are obtained, they can be used to guide the generation ofintermediate frames. Given two consecutive frames and the estimated motion vectors, wecan interpolate pixel values between these frames to create intermediate frames. Theinterpolation process involves warping and blending pixel values based on the estimatedmotion. RIFE (Real-Time Intermediate Flow Estimation): This is a deep learning image interpolationtechnique which derives intermediate frames using Convolution Neural Networks (CNNs).RIFE estimates bidirectional optical flow fields between the input frames. By estimating opticalflow in both directions, RIFE can generate more accurate and visually pleasing intermediateframes. Furthermore, RIFE aims to ensure temporal consistency between the interpolatedframes and the original frames, resulting in smooth motion and reduced artifacts. As the namesuggests, RIFE is designed for real-time applications, making it suitable for video frameinterpolation in scenarios like video playback and video editing.
RIFE was the approach we adopted. It operates in real-time (less than 0.5 seconds to upscale 10 framesto 40 frames) across a range of resolutions and consumes acceptable GPU resources in testing so far.We are still in the process of quantifying the precise performance under different conditions.
The Pixel Resolution Challenge
As consumer XR headsets evolve to target 4K or 8K resolutions, there is a growing imperative on thepart of media stream producers to render higher and higher resolution imagery. This has significantimpact for bandwidth as 4k resolution requires an order of magnitude more bandwidth than HighDefinition (approx. 15Mbps versus 1.5Mbps). As with frame rate, we assume that the originator of themedia streammust generate the required resolution. Modern TVs and games consoles need to delivera high-resolution viewing experience even when the source of frames is of low resolution. Toaccomplish this, they employ upscaling algorithms to ‘fill out’ the missing pixels. We propose tointegrate a resolution upscaling component into our streaming pipeline to cater for scenarios in which

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 95 of 1

37 Secondary factors such as GPU memory usage and ease of integration were also considered.

we cannot render high resolution imagery on the cloud for reasons of resource availability (computeor network bandwidth). Lower resolution frames will be received at the Edge and upscaled asappropriate.
5.2.2.2.2 Investigation & Experiments
Traditional resolution upscaling entails copying and repeating pixels from a lower resolution image toproduce a higher resolution version. Filtering is applied to smooth the image and round out unwantedjagged edges that may become visible due to the stretching. The result is an image that could fit on alarger display but can often appear muted or blurry.AI upscaling takes a different approach. Given a low-resolution image, an AI model predicts a high-resolution image that would downscale to look like the original, low-resolution image. To predict theupscaled images with high accuracy, a neural network model must be trained on large numbers ofimages. The deployed AI model can then take low-resolution video and produce impressive sharpnessand enhanced details beyond the capabilities of traditional upscaling – the edges look sharper; hairlooks more authentic and detail in general is crisper.When evaluating upscaling approaches in CHARITY, we considered both traditional and AI approaches.Our assessment of suitability was primarily based on speed and quality37. To objectively assess thequality of one approach over another we used VMAF which we will now briefly introduce beforecontinuing to the various upscaling techniques we investigated.
VMAF (Video Multimethod Assessment Fusion).
VMAF is a perceptual video quality assessment algorithm developed by Netflix. It is designed toestimate the quality of videos as perceived by human viewers. It has been widely adopted in the videostreaming and broadcasting industry as a standard for measuring video quality, especially for contentsdistributed over the internet.VMAF uses a machine learning approach to train its models. It leverages a dataset of videos withknown quality scores, which have been rated by human subjects through subjective testing. Themodels are trained to learn the relationship between the extracted features and the human-ratedquality scores. The essential pipeline is shown below in Figure 77.

Figure 77: The VMAF Pipeline.
VMAF starts by extracting a variety of features from the reference video and the upscaled video. Thesefeatures can include spatial and temporal information, luminance, contrast, and other visualcharacteristics. After extracting features and applying the perceptual quality models, VMAF combinesthe individual quality scores from these models using a fusion algorithm. This fusion step considersthe strengths and weaknesses of each model and produces a final quality score that is more robustand reliable. The final VMAF score is a single value that represents the perceived quality of theupscaled video compared to the reference video.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 96 of 1

38 Using an Intel i9 processor.

Approaches Evaluated.
Following a review of the state of the art, we narrowed our considerations to the approaches below.This was based on the availability of open source code that could be readily tested and adapted to ourneeds along with compelling published results in terms of speed and quality.

Bicubic Interpolation
This is amathematical technique used to estimate the colour values of new pixels in an upscaled image.It considers a larger neighbourhood of pixels surrounding the target pixel than bilinear interpolationand has higher accuracy as a result. For each pixel in the target (upscaled) image, it considers a 4x4grid of neighbouring pixels from the original image. It uses a weighted averaging technique to estimatethe colour value of the target pixel. These weights are derived from cubic functions and are used toblend the colours of the neighbouring pixels.
Execution time is very fast at 0.007 seconds per frame38which comfortably delivers real time upscaling.The difficulty with this approach is that it essentially does not do any reasoning or add any new datato the image so this technique produced quite blurred images.

EDSR (Enhanced Deep Super Resolution)
EDSR [42] is a deep neural network architecture that uses convolutional neural networks (CNNs) toperform image super-resolution. It has been designed to produce high-quality upscaled images witha focus on accuracy and detail preservation. It takes a low-resolution image as input, which is typicallya down sampled version of a higher-resolution image. This low-resolution image is passed through thenetwork to generate an upscaled image.
EDSR typically consists of a deep stack of convolutional layers. These layers are responsible for learningthe complex features and representations from the input image. The core of the EDSR architecture isthe residual blocks. Residual learning is a key component of EDSR, which involves skippingconnections (shortcuts) that allow gradients to flow directly through the network. This helps in trainingvery deep networks efficiently. Each residual block extracts and enhances features from the inputimage. These features capture important information about the image, including edges, textures, andother visual elements.

ESPCN (Efficient Sub-Pixel Convolutional Neural Network)
ESPCN [43] is a compact convolutional neural network architecture designed for real-time imageupscaling and super-resolution. It focuses on efficiently increasing the resolution of images whileminimizing computational requirements. The key innovation in ESPCN is the use of sub-pixelconvolution layers to upscale low-resolution feature maps into high-resolution images.
The network starts with a series of convolutional layers that extract features from the low-resolutioninput image. These layers learn to capture essential information about edges, textures, and otherimage features. The distinctive feature of ESPCN is its use of sub-pixel convolution layers. These layersare responsible for the upscaling process. Instead of using traditional upscaling techniques, sub-pixelconvolution layers learn to transform low-resolution featuremaps directly into high-resolution images.
The sub-pixel convolution layers rearrange the feature maps spatially, effectively increasing theresolution. Each feature map is divided into non-overlapping sub-pixels and placed next to each otherto form the high-resolution image.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 97 of 1

FSRCNN (Fast Super-Resolution Convolutional Neural Network)
FSRCNN [[41]] was introduced as an efficient and faster alternative to traditional methods for single-image super-resolution. It focuses on providing high-quality results while minimizing computationalcosts, and positions itself as suitable for real-time applications such as video upscaling and imageenhancement on resource-constrained devices. It takes a low-resolution image as its input which hastypically been down-sampled from a higher-resolution image.
The network starts with a series of convolutional layers that extract relevant features from the low-resolution input image. These convolutional layers help capture important information about edges,textures, and other image features. It typically incorporates a set of convolutional layers that reducethe dimensionality of feature maps to simplify processing, followed by another set of layers thatincrease the dimensionality. These layers help reshape the features for the super-resolution process.
A key innovation in FSRCNN Is its use of learnable filters and convolutional layers to increase theresolution of feature maps. These filters are designed to upscale the image and are applied in alearnable manner. This is different from traditional methods like interpolation or deconvolution.

LAPSRN (Laplacian Pyramid Super-Resolution Network)
Like FSRCNN, LAPSRN [44] is also based on deep learning but employs a different architecture andapproach. The difficulty with this approach is that it requires training on domain imagery. While itexhibits impressive performance, its quality was poor due to the lack of training we carried out. Wewere keen to seek an approach that was more reusable and avoid this type of customization thatwould only deliver good results for our own application.

SRGAN (Super-Resolution Generative Adversarial Network)
SRGAN [45] is a deep learning architecture that is used for image super-resolution. It is known for itsability to generate highly detailed and realistic high-resolution images from low-resolution inputs.SRGAN is based on the principles of generative adversarial networks (GANs) and is specifically designedfor the task of single-image super-resolution.
Generator (G): The generator network in SRGAN is responsible for taking a low-resolution imageas input and producing a high-resolution image as output. It achieves this through a seriesof convolutional layers, activation functions, and other operations. The generator aims tolearn the mapping from low to high resolution.
Discriminator (D): The discriminator network in SRGAN is used to evaluate the realism of the generatedhigh-resolution images. It attempts to distinguish between real high-resolution images and generatedhigh-resolution images. The discriminator is also a neural network that operates on images.
Generative Adversarial Network (GAN): SRGAN uses the GAN framework, which consists of agenerator and a discriminator. The generator tries to generate images that are indistinguishable fromreal high-resolution images, while the discriminator tries to get better at distinguishing between realand generated images. The two networks are trained in an adversarial manner, where the generatoraims to fool the discriminator into accepting its generated images as real.

ESRGAN (Enhanced Super-Resolution Generative Adversarial Network)
ESRGAN [46] is an extension and improvement upon SRGAN. It is more complex than SRGAN and buildsupon the SRGAN architecture by introducing additional enhancements and refinements. It is typicallytrained on more diverse and larger datasets, which can lead to improved generalization and the abilityto handle a wider range of image types. ESRGAN generally uses deeper networks compared to SRGAN,allowing it to capture more complex image features and textures.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 98 of 1

39 https://cupy.dev.

ESRGAN is generally considered more advanced and capable of generating even more realistic anddetailed high-resolution images from low-resolution inputs.

Experiments.
Below in Table 21 we see the results we gathered while evaluating different approaches. In caseswhere the performance or quality was too poor, we discontinued and advanced onto the nextalternative.

Table 21: Performance of upscaling techniques investigated
Hardware Method ExecutionTime (perframe)

Input Image Upscale Resolution FPS VAMFScore CPU DataTransfer

NVIDIAGeForceRTX3090

FSRCNN 0.01 sec 640*480 2560*1920 22
EDSR 2.27 sec 640*480 2560*1920 12
LapSRN 0.007 sec 640*480 2560*1920 20
ESPCN 0.93 sec 640*480 2560*1920 24
SRGAN 0.33 sec 640*480 2560*1920 3
ESRGAN 0.05 sec 320*240 1280*960 20 70 200,704 bytes

0.09 sec 480*360 1920*1440 10 85 488,621 bytes
0.15 sec 640*480 2560*1920 6 89 757,760 bytes

NVIDIARTXA4000
ESRGAN 0.11 sec 320*240 1280*960 10 70 200,704 bytes

0.23 sec 480*360 1920*1440 4 85 488,621 bytes
0.31 sec 640*480 2560*1920 3 89 757,760 bytes

The hidden cost of GPU to Host transfer
The ESRGAN approach was the most suitable we found in terms of speed, quality and reusability.However, we discovered an unexpected bottleneck when integrating the approach into our overallpipeline. We were getting blistering speed per frame on the GPU (in the region of 0.004 seconds per640x480px frame) but there was an enormous overhead in the transfer of data from GPU to CPU tosave the upscaled frame. We tried a wide range of tactics to reduce this cost. A significant challenge isthe GPU memory consumption of the ESRGAN approach. We were observing consumption exceeding20GB which made the approach untenable. With tuning, we found we could pin the memoryconsumption to approximately 9GB which was still very high but workable. Upon experimenting withsubmitting batches of frames for upscaling however, we quickly exhausted available memory so hadto abandon this approach. We tried using queues and multiprocessing on the CPU and again ran outof memory. We tried using GPU arrays (cupy39) but this did not prove fruitful. We tried compressionon the GPU before transferring to the CPU but the three-dimensional tensor output from the ESRGANapproach was not amenable to this. The only approach was to reduce the amount of data we neededto transfer from the GPU and this entailed reducing the resolution we could achieve with upscaling.Currently, the approach is only feasible for upscaling from input images of 320x240 to 1280x960px.

Ongoing work and future prospects
In seeking to deploy an application independent approach to upscaling, we limited our range of optionssomewhat. If we opted for an application-specific approach which was trained specifically on our

https://cupy.dev/

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 99 of 1

40 This approach produces two-dimensional output that can be compressed and produce far superior speeds as the GPU tohost transfer issue is greatly reduced. Without imagery-specific training however, the quality is poor.
41 https://www.nvidia.com/en-gb/geforce/technologies/dlss/.

application imagery, then we would expect better results (particularly from the LapSRN algorithm40
and the FRSCNN approach).
One avenue we seek to explore is a two-phase upscaling approach. We would initially upscale usingESRGAN on the GPU and then upscale again using bicubic on the CPU. This would release pressure onthe GPU and enable us to multithread the bicubic upscaling on the CPU. The initial upscaling effortwould add detail and sharpness that would be absent from a pure bicubic approach.
We remain cognizant of the fact that our approach of upscaling imagery is limited by our inability tointrude on the source rendering pipeline in the open-source image generator we employed. We haveno access to depth buffers for example that would otherwise have allowed us to experiment withapproaches such as NVIDIA DLSS41. From the outset, in the spirit of the CHARITY project, we sought topush through with an approach that would be reusable for any third-party graphical application andshied away from application-specific solutions. While hardware advances continue and willundoubtedly deliver improved performance, we may have reached the limits of what is currentlyfeasible with the time and resources available.

5.2.3 Towards Cloud Native
We began our journey with a monolithic platform that was not amenable to distributed deploymentand execution. We proceeded to redesign the platform and move towards a cloud native architecture.As can be seen below in Figure 78, we decomposed the platform into self-contained microservices.

Figure 78: Flight Simulator redesigned as cloud native.
The new architecture better reflects modern application design and gives us the opportunity toleverage core features of the CHARITY platform that would have been difficult and far more restrictedwith the original design such as the CHARITY service mesh for application adaptation, monitoring andalerting, dynamic deployment and orchestration. Crucially, it brings options and mechanisms toexplore distributed deployment across the edge and cloud.
5.3 Dissection of the Unity3D Physics engine
ORAMA’s commercial gamified multi-user VR medical training platform (UC2-1) is built using the

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 100 of 1

MAGES SDK on top of the Unity3D game engine. Exploiting Unity3D’s network layer, the MAGES SDKhandles and synchronises in-game interactions, deformable object transformations and physicssimulation by broadcasting transformation values over the network.  Under the hood, as part of theMAGES SDK, the custom Geometric Algebra interpolation engine is utilised for efficient networktransmission and local interpolation of in-between positions/rotations for each end-device (HMD).The architectural design of ORAMA’s training applications involves a single application component,installed and run on untethered HMDs, that employ local processes for storage, rendering, and physicsdeformations.
An experimental architecture, based on MAGES SDK, allows the transition to an Edge-Cloudapplication, upscaling to collaborative cloud VR training applications specially formulated foruntethered HMDs. The goal of this R&D version of ORAMA’s training application is to optimize thestatus of the cooperative mode in terms of lower latency, higher performance on average networkconditions, and, ultimately, higher number of CCUs. This new approach, realized through computationoffloading of the entire ORAMA’s application in edge-cloud resources, requires interactions and dataexchanges between the different modules placed on device, and services on Edge-Cloud.
ORAMA is currently designing and developing the required technologies and solutions to support itsadvanced media applications by exploiting methods and techniques for the dissection of the Unityphysics simulation engine as a separate VM microservice that will run on the Edge-Cloud. Methodsand techniques regarding multi-threaded rendering and physics in Unity are also being investigated.
5.3.1 Dissection of Physics Simulation Engine
Currently, a typical Unity3D game engine pipeline involves simultaneous execution of CPU physics-related calculations along with GPU calculations related to the rendering of the scene.
In this section, we provide an overview of how a dissection of the physics and the scene-renderingpipeline can be achieved. Although a distributed application architecture usually decreases runningtimes, an unoptimized dissection may lead to increased latency, since there are numerous inter-callsbetween the physics engine and the renderer. In the case of a desktop-VR local network system setup,the dissection is feasible and almost straightforward. However, in the case of a mobile-VR edge-cloudsetup the physics engine dissection is rather challenging. ORAMA investigatedmethods and techniquesto support the dissection and allow the physics simulation engine to be run as a separate edge-cloud,as a containerized microservice.
5.3.2 Methodology – Notation
The dissected Unity3D pipeline involves two, bidirectionally communicating, components:

 The Graphics Client (Graphics rendering), and The Physics Server (Physics simulations & Game Logic).
The Graphics Client includes the entire Unity3D pipeline, along with its own, local, physics engine,which remains mostly inactive, only used for the initial connection to the Physics Server. Main goal ofthe dissected Unity3D pipeline is to allow any Game Object on the scene to be fully simulated by thedissected Physics Server and not by the Graphics Client’s local physics engine.For the reader’s convenience, we define below some terms used throughout the dissection overview.

 Graphics Object: A Game Object component, with no physics-related scripts and data residingwithin the Host. Physics Object: A Game Object component, responsible for storing all physics parameters. Ithas attached a Rigid Body script, a Collider script, or a combination of the two. Remote Game Object: A Fully Dissected Game Object, that exists on both the GraphicsClient and Physics Server. This is not a tangible component or Object, simply a term thatencompasses both Graphics and Physics Objects.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 101 of 1

5.3.3 Methodology - Overview
5.3.3.1 Communication of the two Components
Themain two components, i.e., the Graphics Client and the Physics Server, communicate using PhotonUnity Networking, a solution for providing Multiplayer support in simulations and Games made withUnity. All Remote Game Objects are known at build time for both the Physics and Graphics Server,making it possible to synchronize across Host and Physics Server via Photon.
5.3.3.2 Splitting a Game Object into a Graphics and a Physics Object
All Graphics Objects have no Physics Related Components attached to them (Colliders, Rigidbodies)and the Physics Server has no Rendering camera (thus, no Graphics processing takes place).
During gameplay, the transformations of the Graphics Client’s Graphics Object are synchronized withthe respective Physics Object present in the Physics Server. The Game Object’s transformations caneither be controlled entirely by the Physics Server, or by the Graphics Client. In the latter case, thePhysics simulation continues, and the controlled Physics Object interacts with the rest of the PhysicsObjects as expected.
5.3.4 Implementation
5.3.4.1 Initial Setup
With the successful initiation of the Physics Server, the Physics Client creates a session and waits forusers to join. After the Host’s successful initialization, the user chooses which session they would liketo join, and use the User Interface to join.
5.3.4.2 Game Object creation after Initialization
The Game Logic resides in both the Physics Server and Graphics Client, so any Game Object that existsin all Graphics Clients also exists in the Physics Server.
5.3.4.3 Simulation and Gameplay
Depending on the developer’s choice, the transformations of a Game Object can be either controlledby the Graphics Client or the Physics Server. In both cases, the Physics simulation is always running.When a Graphics Object is translated by the Host, the corresponding Physics Object is also translatedusing Physics calculations and not direct transformation changes so that the simulation is accurate andensuring that no undesirable object clipping occurs. All transformations and synchronization is handledby Photon Networking, which sends only the necessary data to ensure minimal network usage withoptimal QoE.
5.3.5 Lab Testing
We conducted Lab Tests using simulated users to assess network usage and Quality of Experience ona Local network set up.
The experimentation was conducted as follows:

 1 Physics Server running in the Unity Editor
 12 Graphics Builds running at the same time.

o 10 Bot Builds (User Input is simulated via software)

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 102 of 1

o 2 Player Builds (Real Players)
 Photon Relay Server located in the Photon Cloud, accessed via Internet.

Table 22: Average network usage metrics.
Per Client Upload Download
Idling Player 1.9 KB/s 13.4 KB/s
1 Player moving Around 3 KB/s 14 KB/s
Physics Server Upload Download
Idling Player 400 B/s 13.3 KB/s
1 Player moving Around 450 B/s 15.2 KB/s

The very low network usage observed is due to the usage of a Dual Quaternion Interpolator used inthe MAGES SDK Photon Implementation. This allows the objects’ transformation to be updated lessfrequently over the network with the same QoE as if they were updated every frame.
5.3.6 QoE Subjective remarks
During gameplay, whenever the network quality falls below a threshold, there were two issues thatwere especially noticeable. First, when directly interacting with objects in VR, the network latencycauses the objects to feel “squishy”, since the user’s hand that pushes the object would initiallypenetrate inside the object and after some milliseconds the object would react to the push and moveaway. Secondly, when there is a high amount of packet loss, some objects tend to “flicker” betweentwo positions. This issue is not very common as it is not experienced every time network conditionsdeteriorate. The first issue, however, is rather common, but not distracting from the gameplay in asevere way.
5.3.7 Conclusions - Future Work
The work in this section has shown that the dissection of the Unity3D pipeline is feasible, yetdependent on the network characteristics between the Host and the Physics server. The conductedtests helped the derivation of the network latency and packet loss thresholds, below which we canachieve a pleasant QoE to the VR medical training application. These thresholds should not beexceeded by the provided testbed network.
Although docker containers outperform VMs in the case of space and processing overhead, they arerather immature in graphics acceleration processes. In this case, the use of VMs is far moreadvantageous since they have highly optimized graphics drivers and kvm passthrough support.Additionally, docker containers have limited graphics drivers support, since only experimental versions(for all vendors) for Linux are currently available. As such, we opt for VMs when graphic accelerationis required, while dockers are used when only CPU resources are utilised as it it the case of the PhysicsEngine in Lspart2.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 103 of 1

.
5.4 Investigating Multi-threaded rendering in the Unity3D game engine
Multi-threading exploits a CPU’s capability of processing many threads concurrently across manycores. A multi-threading program always starts in one main thread, which subsequently creates newthreads that run in parallel. Upon completion, these threads usually synchronise their results with themain thread.
The generation of more concurrent threads than the available CPU cores, leads to a concurrent sharingof CPU resources among the threads, which causes frequent, resource-intensive, context switching.As such, the multi-threading approach always suits cases with a few long-life tasks. Game Enginepipelines mostly deal with many short-life unrelated tasks that execute at once. Multi-threading insuch systems often results with a large number of short-life threads that challenge the CPU’s andoperating system’s processing capacity, due to frequent creation and destruction of threads for short-lived tasks. The employment of a pool of threads, often mitigates this issue, increasing performanceand avoiding latency in execution. However, even this solution does not always prevent a large numberof concurrent active threads.
Multi-threaded programming faces high risks for race conditions which often produce significantchallenges. A race condition occurs when the output of one task depends on the timing of anotherprocess outside of its control. This issue may be a source of crashes, deadlocks, incorrect output, andgenerally non-deterministic behaviour that produce non accurate rendering or simulations. As thecause of these problems depends on timing, the recreation of the issue could happen on rareoccasions, making debugging a cumbersome process. Debugging tools, such as breakpoints andlogging, often change the timing of individual threads, causing the problem to falsely disappear.
In the frame of taking advantage of the edge-cloud resources parallel processing, methods andtechniques for parallel/multi-threading Rendering and Physics in Unity3D was explored. Unity3Dsupports multi-threaded math calculations and, in this regard, we will seek to exploit parallelizationtechniques for various sub-tasks, such as the skinning algorithms. Furthermore, Unity3D supports alimited form of multi-threaded rendering by utilising specific graphics API implementations or throughthe utilisation of Graphics Jobs System.
5.4.1 Single-threaded Rendering
Unity3D mainly features a single client occupying the main thread with the execution of the high-levelrendering commands. The client also owns the real graphics device GfxDevice and performs the actualrendering through the underlying graphics API (GCMD) on the main thread.
5.4.2 Unity3D Multi-threading Built-in System
Multithreaded rendering in Unity, provided its graphics API permits it, is implemented as a singleclient, single worker thread. This works by taking advantage of the abstract GfxDevice interface inUnity3D. The different graphics API implementations, such as Vulkan, Metal and GLES, inherit fromthe GfxDevice.
When this system is enabled, rendering calculations are performed on a separate thread, called theRenderThread, while the rest of calculations are performed on the main game thread, namely theMainThread.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 104 of 1

Figure 79: Unity3D multi-threading Built-in System.
5.4.3 Graphics Jobs System
The Unity3D Jobs system is not the traditional kind of multi-threading system as it manages multi-threaded code by creating jobs instead of threads. In that frame, a game is split into small units of workwhere each is responsible for one specific task. These units of work are called jobs. The Graphics Jobsystemmanages a group of worker threads across multiple cores. It usually has one worker thread perlogical CPU core, to avoid context switching. Some coresmay also be reserved for the operating systemor other dedicated applications. As the job system enqueues the generated jobs in the job queue, theWorker threads take items from the job queue and execute them.
A job may receive parameters and operate on data in a similar way to a method call. As such they canbe self-contained, or they can depend on other jobs to complete before they can run. Once scheduled,it cannot be interrupted. In complex systems, such as those required for game development, it isunlikely that a job is self-contained. All jobs are usually dependent on other jobs as they prepare datafor them. The Graphics Job system supports dependencies across jobs, as it is responsible for managingthem, ensuring job execution in the appropriate order. The Unity3D C# Job System is able to detect allrace conditions, protecting the programmer from potential bugs.
Writing multithreaded code can provide high-performance benefits, such as significant gains in framerate. Using the Burst compiler with C# jobs gives you improved quality, which also results in substantialreduction of battery consumption on mobile devices.
Graphics Job System integrates Unity’s native job system. As such, User-written code and Unity3Dengine code share the same Worker threads, avoiding the creation of more threads than CPU cores,which would cause contention for CPU resources.
Using the Job system, multiple native command generation threads take advantage of the graphicsAPIs that support recording graphics commands (GCMD) in a native format on multiple threads. It isimplemented as multiple clients, no worker thread. This removes the performance impact of writingand reading commands in a custom format before submitting them to the API.

Figure 80: Graphics Jobs System
Note: Currently, Graphics Jobs do not have a RenderThread to schedule jobs, causing a small amountof overhead on the main thread for scheduling.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 105 of 1

5.4.4 Vulkan Graphics API
By enabling Graphics Jobs and the use of the Vulkan graphics API for Windows on Unity3D, we testedthe potential increase of performance of Unity3D for our VR offloaded solution. In most cases, thepositive performance impact was minimal:

Table 23: Potential increase of performance of Unity3D using Vulkan graphics API for Windows
Direct3D-11 Vulkan

Average Frame rate 45.47 fps 46.16 fps

As an additional remark, Vulkan on Unity3D proved to be more unstable than Direct3D11; in somecases, performance dropped significantly to ~30 fps when Vulcan was enabled.
5.4.5 Conclusions
In our research we noticed that, regardingmulti-threaded rendering for 3D applications, one renderingthread is used, while many other work threads can parallelize other jobs such as physics, logic, AI, etc.To the best of our knowledge, there is no other multi-threaded rendering solution or any otheralternative solution within Unity.
5.5 Adaptive rendering algorithms for low latency immersive applications
Virtual Reality (VR) applications have gained importance and interest over the last few years in variousfields, like in manufacturing, training, entertainment, and so on. Moreover, modern wirelesslightweight powerful HeadMounted Display (HMD), reach a high level of maturity and provides amoreimmersive experience. Despite these, a high level in quality of experience is still challenging whenusing standalone HMDs. as well as modern cloud/edge rendering pipelines considering therequirements for ultra-low latency (<20 ms) and high-bandwidth for a comfortable, satisfying, andconvincing immersive experience [30].
Several solutions have been developed by the VR research community to achieve this goal. A lot ofeffort has been spent to reduce the computational burden related to the rendering. In fact, renderingfor immersive devices requires at least the rendering from two different viewpoints, or more in somecases to generate a 360-degree panoramic image/video to stream accordingly to the position andorientation of the gaze of the user. The computation of the rendering can be alleviated in differentways. Some approaches exploit the fact that the best visual acuity is around the fovea, and exploit eyetracking to optimize the rendering, obtaining the so-called foveated rendering. Many other solutionsexploit how the Human Visual Systems (HVS) works to reduce the quality of the rendering ensuringthe same visual perceptual quality. For example, the work in [31], modifies the standard primitiverasterization considering some perceptual effects, allowing a more efficient rasterization pipeline forHMDs. Some other approaches take into account that distant objects do not require to be renderedwith different disparities to be perceived correctly. For example, the work of [32], assumes thatdisparities are reduced for distant objects, and it uses a mix of stereoscopic and standard rendering togenerate the images to be displayed. The experiments conducted demonstrate that this simplesolution can give a satisfying experience in many cases. Other approaches work by super-sampling thetemporal line, so they create/interpolate new frames in-between other ones to reduce the totalnumber of images to generate. The state-of-the-art of this type is ExtraNet [33], a deep learningnetwork capable to double the speed of the frame generation by extrapolating the new frame for theprevious ones. The new frame is generated by minimizing the visual artefacts that typically happen inview-dependent parts of the images (e.g. specular reflection).
Recently, with the main goal of obtaining a high fidelity VR experience for standalone mobile devices,solutions that take advantage of computing the rendering at the edge are explored [34]. In this case,

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 106 of 1

the total end-to-end latency is dependent on the time to transmit sensor data from HMD to the edgecomputing node, the time for physics computations, the rendering/encoding time of the views on theedge node, the transmission time of the rendered images/video from the edge computing node toHMD, and the time to decode and display the view on the HMD. The encoding and decoding phasesare optional and depend on the specific application. In this setting, different strategies can be used tooptimize the rendering, caching, and streaming of the different views.
FlashBack [35], is a VR system which pre-renders all possible views on a 3D grid of suitable size anddelivers frames according to the position and orientation of the viewers. Obviously, this is not optimalfrom a caching point of view. The work of [36], adopts a parallel rendering and streaming mechanism,that reuses rendering parts, that remain the same during the interaction, allowing a reduced streaminglatency. Long-Short Term Memory (LSTM) ([37], [38]) model and Recurrent Neural Networks (RNN)([39], [40]) are used to predict the head/body movements, that allow the optimization of the viewgeneration, reducing the overall computational and improving performance.
In CHARITY, we investigated the integration of the above methods to some Use Cases, to obtain anadaptive rendering solution, to support high-quality low-latency VR applications. In that respect, westudied the above methods in relation with the CHARITY use case applications that utilize a remotecomputation pipeline for VR: UC2-1 VR Medical Training Simulator (ORAMA) and UC3-2 Manned-Unmanned Operations Trainer VR Simulation (CAI), and concluded that UC3-2 architecture is moresuitable to integrate frame extrapolation/interpolation and super-resolution based methods. Thesealgorithms have been tested extensively in the context of the UC3-2, as reported in Section 5.2.
5.6 Point Cloud Encoding / Decoding
5.6.1 UC1-3 Holographic Assistant
The CHARITY UC1-3 Holographic Assistant (Figure 81) adopts the physical principles "diffraction andinterference of light" to enable real 3D holography, based on sophisticated custom optical componentsand algorithms. This lays the foundation for showing a butler-like avatar in 3D space on a holographic3D display with true depth and true eye focus - for your eyes it is like natural viewing. The butler shallreact to natural language and assists by providing information gathered from the cloud or the internet.Beside the 3D holographic presentation, this use case enables a lot of challenging services and newtechnology to be developed and implemented in the CHARITY cloud.
The use case is focusing on a cloud-based application rendering a virtual holographic 3D assistantincluding additional information and transferring / streaming the content to a local client system in aformat compatible to interference-based holography. On the client system, the content is computedinto a real-time 3D hologram and is presented on a holographic 3D display from SeeReal Technologies(SRT). By using eye-tracking, the observer always sees the correct perspective of the holographicassistant 3D scene. The hologram enables natural viewing for correct eye focusing and convergenceto experience true depth and natural viewing. So, the well-known accommodation convergenceconflict known from classic 3D stereo does not apply here.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 107 of 1

Figure 81: The Holo Assistant User Case.
The preferred data format for the management of the visual data is a Point Cloud (PC) based formatwhich provides the following advantages:

 Multiple views can be encoded acting as a cache on client side - if many views are available,there is no missing data when data coming from the cloud is delayed Multiple points on one "line of sight" allow for looking around an object within one and thesame data set, but also enable transparency effects Compared to typical point cloud, here is targeted to include only certain views or a certainview range, thus the point cloud scene must not be viewed correctly from all sides
The use case thus requires the following modules to be developed:

 Point cloud (PC) generation module (which is dependent on the rendering engine) PC compression Data transfer of compressed PC data PC decompression
We underline that the R&D activity in CHARITY regards the aspects just mentioned, and no otheraspects involved in the fruition of the holographic content, such as the interaction modalities betweenthe user and the avatar or the design of the user interface.
5.6.2 Point cloud encoder/decoder (PC E/D) – first design considerations
The overall process that we have to take into account for the development of the PC E/D is thefollowing:

PC generation: We need to generate a point cloud from a generic 3D scene created with agame engine like Unity 3D. This point cloud contains all the 3D scene points to be seen fromdifferent views - at least two for the two eyes of the observer looking at the holographic 3Ddisplay. The generation could be based for instance on rendering multiple views of the Unity3D scene, but the point cloud can be generated also in other ways. An advantage of this

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 108 of 1

method is that it relies on a very generic approach, easy to be applied to any 3D content andany 3D engine.
PC compression: the 3D point cloud needs to be compressed. Algorithms and heuristics likedetecting changes from frame to frame can be applied in order to reduce the amount of datato transfer. Network quality adaption is also done here, reacting to indicators and controlmechanisms from the CHARITY monitoring. For example, the resolution of the 3D point cloudcould be adapted dynamically and/or the number of encoded views could be reduced.
PC transfer and decompression: the data is transferred over the network. Some feedbackabout network quality is provided by the receiving client to the cloud. The receiving clientdecompresses the received point cloud data and applies it to the existing data model - i.e.applies scene point changes for the case that only changes in the 3D point cloud have beentransmitted. In the last step, depending from the actual observer’s eye location at theholographic 3D display, the views needed to generate the hologram are extracted from thelocal 3D point cloud and the hologram is computed and presented to the observer.

To start, we need to define a data format suitable for data compression / decompression algorithm.One good option is to use a volumetric format, i.e. a voxel, and store in each cell of the voxel a 3Dpoints plus additional information such as:
 Location in space → defined by position in the grid Color + optional alpha + material tag to define transparency behaviour material tag could be something like: fog/smoke, clear glass, distorting glass, coloured glass Viewability - definition from where the point or a certain list of points can be seen → certaineye boxes in space are needed to be defined If no eye boxes are defined, we assume this is not a reduced PC and could not be seen from allsides, in this case no viewability attributes are provided.

For the overall PC we need:
 Eye boxes / ranges for which this PC is valid → in 3D space we define the PC cuboid's locationand size + multiple eye boxes Resolution in X/Y/Z → number of voxels / definition of the 3D grid Information about globally contained attributes → alpha and / or material tags, viewabilityinformation.

Figure 82 explains what is meant with eye boxes and 3D point viewability. Certain 3D points would beseen only from certain eye boxes while most points are visible from all eye boxes.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 109 of 1

Figure 82: Relationship between the eye boxes and visibility of the 3D points.
Regarding the existing standards for point clouds, we analysed the recently published MPEG PointCloud Compression (MPEG PCC) standard [21].
From the viewpoint of official standardization, good progress was made by the MPEG Point CloudCompression project (MPEG PCC). It was initiated in about 2014. A call for proposals in 2017 resultedin a first draft of the standard at the end of 2018. Until today the standard is under development andthere is an actively maintained reference implementation. Basically, the standard proposes two typesof 3D point cloud compression - video based (V-PCC ISO/IEC 23090-5) and geometry based (G-PCCISO/IEC 23090-9).

Figure 83: Example data sets used for comparing V-PCC (image taken from paper in Ref MPCC-1).
The V-PCC variant uses classic image-based processing (color + depth + occupancy maps). By applyingcommon image-based compression methods (HEVC in the reference implementation), quite goodcompression rates can be achieved. The method is based on projection of the 3D source scene or pointcloud on multiple 2Dmaps from different perspectives. These projections or patches are then mappedinto the frame - the "atlas" - to be encoded / decoded by means of video compression. Here multiplemaps are generated, attribute maps (can be RGB color but also something else), depth maps(representing the distance from the according perspective) and an occupancy map (representing validpixels). Within a (lossless encoded) meta data channel, information about how to reconstruct thesepatches back into the 3D point cloud are provided within the multiplexed data stream. Within theprocess of generating the patches and atlas, some improvements on the data are done, i.e. detectionand removal of duplicate 3D points or improvement of quality on the regions between patches(seams). As a result, very good compression rates are achieved. TheMPEG PCC research group definedsome reference data sets (see Figure 83), where the rates and quality of different algorithm versionsand parameter variants could be measured and compared. For example, a scene with 100kpoints @30fps corresponds to 360Mbit/s uncompressed data rate. With V-PCC a compression toabout 1 MBit/s can be achieved using version TMC2v8.0 while achieving good quality.
The G-PCC variant is based on compressing the 3D points directly one by one. Here the 3D pointsstructure (point locations) is encoded lossless by using an octree approach (divide a cube into 8 cubesiteratively until we are at point level – noting down if there is something inside the cube or not –represented with 8 bit per cube). For encoding point attributes (i.e. RGB color), three compressionmethods have been developed. These methods basically make use of similarity / redundancy betweencolors down the octree graph. The algorithm also allows for different level of details - usable e.g. toadapt for variations in available data rate or to adapt for current detail requirement in renderingprocess. Currently the algorithm does not use temporal compression approaches, that would enablelower data rates in situations where the 3D scene does not change much from frame to frame – as

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 110 of 1

compared to MPEG video compression where this approach is employed and is extremely effective.However, some work in this direction may be done for the next version of the standard.
Preliminary analysis
For G-PCC some of the above data sets have been compared. For example, in a scene with 100k pointsat 10 fps, corresponding to 110 MBit/s uncompressed data rate, a compressed rate down to about 24MBit/s could be achieved with good quality.
Further tests are required, but from this preliminary analysis, we can conclude that the V-PCC encodingtime is too much high for our target requirements, while G-PCC approach would be better. Anyway,G-PCC has no support for taking into account visibility of the 3D points.
Hence, the key factors for the effective development are:

 to exploit the visibility information to reduce the amount of data required by the edge device;the viewpoint information can be used also to make the generation of views more efficient to find/to develop compression scheme alternative to G-PCC and V-PCC standards to achievethe target requirements.
5.6.3 PC generation module
Before a point cloud can be compressed, it needs to be generated. Typically, one creates a point cloudfrom a static 3D scene/3D model, which then can be watched from different angles at different levelof details. In this case the point cloud is often directly generated from triangles or 3D-mesh.
In the context of the UC1-3 Holographic Assistant a different approach was chosen. The main goal isto convert the visual output of any 3D-application with any content including animations, complexmaterials and lighting into a video based, streamable 3D point cloud. The advantage is that such apoint cloud enables to generate the required views from certain directions locally at the end userdevice, while the actual 3D-content is managed and rendered somewhere else, e.g. in the cloud. Thishas following advantages: first the certain views required by the output device, e.g. a holographic 3Ddisplay, are generated with very low delay independent from actual network performance. Secondly,the end user device could be something like a thin client, thus it needs only to output the requiredviews and does not need to render high fidelity 3D-content. This is comparable to actual 2D basedgame streaming services commercially available.
Thus, in our particular case, the point cloud is generated from GPU renderings of the 3D scene in Unity3D from different viewpoints (one RGB and depth image per view, see Figure 84 and Figure 85) andthen merged into a single or multiple point clouds. Compared to typical point cloud data sets wherethe data provides information from all watching directions, full details are in this case visible only fromcertain angular ranges (see Figure 86). These limited valid viewing ranges or zones are generated fromthe different provided views mentioned above. This concept has the advantage to dramaticallyreducing overall amount of required 3D points in the point cloud to enable more efficient compressionand frame by frame-based transfer of point cloud-based video. Frame by frame-based point clouddata will also enable the opportunity to make use of differences between point cloud frames, so forquite static 3D scenes with limited changes from frame to frame, a lower number of changing 3Dpoints is to be expected so this can be used for efficient compression and transfer of video-based pointcloud data.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 111 of 1

Figure 84: Example of three slightly different views (depth + RGB data). These views can be merged together toform the point cloud.

Figure 85: Rendered final result after reconstructing into an image.

Figure 86: Example of a merged point cloud visualized from a different, invalid, perspective.
This approach has been preferred over the voxel-based one of the initial design, because is generaland simple, and avoid to manage octrees that is more difficult to parallelize due to lack of memorycoherence. Obviously, this approach becomes costly if a large number of views are required, but a fewnumber of views from slightly different viewpoints, we used 8 views in our experiments, are typicallysufficient for a good quality of experience.
5.6.4 PC E/D component
The point cloud resulting from merging depth maps from slightly different views, can be moreefficiently represented as a 2D depth map with colour information and additional points whenever ajump in depth occurs: (see Figure 87).

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 112 of 1

Figure 87: (Left) Depth+RGB, central view (Right) Hidden points revealed through the others views.
For these reasons, a more suitable data structure is a 2D grid where each element is the start of alinked list (usually containing zero or one element). A similar structure is a hash map with linked liststo resolve conflicts, but in our case an ‘identity’ hash already guarantees very few collisions, optimalmemory coherence and O(1) access time.
To extract this merged mesh from the several depth maps+RGB generated from different viewpoints,we can start from one of the views (V0) depth map, then for each pixel of the following views (V1) weun-project in world space and re-project in V0 space, compare the depth to determine if the point isalready present and if not add it to the merged point cloud (see Figure 88).

Figure 88: Depth map can be used to find the hidden points using projection between different views. In greenand red the points revealed by this operation.
The most resource-intensive operation is the matrix multiplication required to convert betweendifferent views' coordinate systems. We tested this strategy, and we can process 25 views 800x600 inCPU in 30ms, including rendering and transfer of the views depth maps from GPU to CPU for a simpledataset. Another advantage of this data structure is its potential for parallelization by dividing theimage into horizontal or vertical strips, depending on the displacement direction. In this prototype,we adopted the CPU parallelization strategy due to its ease of deployment.
In order to increase the resolution, we can move the bulk of these computations in GPU: instead ofsaving depth map and RGB, we project each point in a common final voxel space saving x y and z asadditional attributes. While data size increases, we save matrix multiplication per pixel in CPU.
The linked list could be relatively easily implemented on the GPU, recycling order-independenttransparency algorithms, resulting in improved computational speed and reduced data transfer fromGPU memory to the CPU: we use the first depth-map as a texture and the following renderings candirectly compare each pixel with the corresponding (projected and in the first view space) pixel in thetexture and write the ‘hidden’ pixels only if the depth does not match.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 113 of 1

Finally, the few ‘hidden’ pixels can be directly written to an array or compacted in a second pass, tominimize the amount of data transferred back to the CPU.
The final data to be compressed consists of a depth+rgb map, where depth is quantized accordingly tothe precision needed by the hologram projector, and a small array of xyz+rgb points.
The RGB+depth data is encoded as two images, with the RGB image converted to YUV and the depthdata color-coded. These two image sequences are video encoded using the H.264 video codec, muxedinto an RTP stream. This approach allows for different parameters to be used for depth and colors, astheir effects on visual fidelity are distinct. We chose lossless encoding for the depth stream, as evensmall errors result in noticeable artifacts, especially around depth discontinuities.
The additional hidden points and eventual parameters (resolution changes, for example) are entropycompressed and transferred using the SEI message mechanism of the H.264 codec. We opted for LZ4library as the best compromise between compression ratio and speed. For experiments conducted onthe possible geometry entropy encoders, see the next Section (Section 5.6.5).
A result of encoding, transmitting, and decoding 8 views is shown in Figure 89.

Figure 89: Example of a point cloud decoded from 8 views with small offset.
Performances
On a test dataset of about 50 frames, selecting lossless video compression we manage 20fps on acommon PC running both client and server using 4 cores. The most time consuming part is the pointcloud extraction and in particular the per pixel matrix multiplication required to compare the differentviews, amounting to about 50% of the execution time. Further optimization in term of parallelization(for example socket transmission is not currently parallelized with point cloud extraction and videocompression) or more importantly GPU matrix multiplication and point cloud extraction would easilybring the fps above 30 or allow for additional views.
The compression ratio is dataset dependent: H264 performs an excellent job at exploiting temporalcoherence. The hidden points transmitted separately (not video encoded) depends on the depthcomplexity of the scene.
Limitations
Compression artifacts in the depth channel are extremely apparent around the edges of 3D shapes, soit is not advisable to lower the CRF quality setting parameter. This problem could be alleviated usingpost processing filtering on the decoded video stream.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 114 of 1

5.6.5 Geometry encoding - evaluations
Data compression trades CPU computation and latency for reduced network bandwidth usage: theeffectiveness of a compression algorithm depends both on compression ratio which determines thebandwidth reduction and on compression and decompression speed. However, long computationaltime might negate the bandwidth advantage.
Compression and decompression speed of an algorithm have always played a crucial role indetermining its success, where good compression performances are especially difficult to obtain.Historically, in Computer Graphics, geometry compression algorithm competition has been focusedmainly if not almost exclusively on compression ratio, and consequently widely used compressionalgorithm has become available only very recently when good performances combined with fastdecompression have become possible, (Draco [15], Corto [18], Potree [19]) especially on the Webwhere the limited performance of JavaScript prevented a solution for a long time, while at the sametime, bandwidth limitations made the problem more pressing.
We performed an evaluation of the performances of the available open-source libraries on a samplepoint cloud containing 20K points with colour information, weighting 570KB in raw binary format. Alltests were performed using the same attribute and position quantization and a single threadprocessing. Results are reported in Table 24.

Table 24: Evaluation geometry compression algorithm
Algorithm Compression time in seconds Compressed size

Quantization < 0.001s 140KB
gzip -1 0.004s 100KB
gzip: -7 0.018s 90KB
Corto 0.005s 71KB
Dracol 0.030s 71KB (missing colours!)
Tmc13 0.138s 53K

All geometry compression algorithms perform some form of quantization on the vertex position andattributes. Due to the limited size of the dataset, drastic quantization can be performed on thepositions (from 32 bits to 11 bits per coordinate) at a negligible cost in quality. Larger datasets can beeasily cut into blocks so the numbers from this experiment remain significant.
As a comparison we tested a zip library (actually zlib), a general-purpose compression algorithm. Thelow compression ratio is mainly due to the fact that it cannot exploit the geometric coherence of thepoint cloud. Due to the relatively low compression ratio, there is a small difference in compressionratio when changing the dictionary length of the algorithm. On the other hand, large dictionariesbecome a large penalty in decompression time (4 times here) mostly due to the fact that the dictionarywill not fit in the L2 cache generating many cache misses. Other entropy compression algorithms (LZ4for example) have been tested, with much faster compression timings but worse compression ratio.
Corto [18] adopts a very simple Morton-code based geometry compression with a difference encoderfor the attributes (colours in this case).
Tunstall [20] (which is basically a reverse Huffman) is used as an entropy coder due to its extremespeed in decompression while still being fast enough in compression and having compression ratiosimilar to Huffman. Corto is able to encode five million vertices per second, while decoding at around25M vertices per second. Adopting Huffman insteadwould probably reverse the speeds. Other entropycoders could be used and offer different trade-off between speed and compression ratio.
Draco [15] adopts a similar approach based on differences combined with arithmetic entropy coding.Surprisingly the compression ratio is worse while colour information has not been encoded (commandline software does not support it). Unsurprisingly, due to more sophisticate entropy coding, the

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 115 of 1

42 https://gitlab.charity-project.eu/ponchio/cloudstream.

compression timing is 5 times worse. Draco offers much better trade-off for meshes.
Tmc13 [21] offers the best compression ratio (1:10), at the cost of a long processing time 0.14s, 142Ktriangles per second. This software offers a very large set of parameters to be tuned, coupled with alack of a decent documentation or guidance. We tested a (very) large number of configurations withmixed results. We are confident that marginally better results can be obtained, the picture is not goingto change substantially.
For each compression algorithm, speed and compression ratio defines a bandwidth above which itmakes no sense to compress as it would take more time to compress/decompress the data than tosend raw, quantized (11 per coordinate 8 per colour channel, for small datasets, in total 58 bits) data.
Tmc13 becomes useful when the network bandwidth is smaller than (58/8)*142K/s ~ 1MB/s, whileCorto keeps being competitive up to 58*5M/8 = 36M/s. For bandwidth lower than ~1.3MB/s highercompression ratio of Tmc13 allows to better make use the limited bandwidth.
Since it is relatively easy to perform point data compression in parallel, adding computational powerallows Tmc13 to remain competitive with higher available bandwidth.
The compression algorithm could be very easily swapped for a different one at any time in thestreaming depending on bandwidth or CPU limitations, and the most promising algorithms to adoptfor geometric compression, according to these preliminary investigations are Corto, Tmc13. Also thesimple quantization and LZ4 are competitive.
5.6.6 Conclusions
The current prototype, called “Cloudstream”, is implemented as a C++ library prototype. This libraryconsists of a server component that converts a set of RGB+depth data into a streamable dataset madeavailable through a socket, and a client component that connects to the socket and provides a pointcloud (RGB + XYZ) for rendering. It provides functionality for monitoring performance in terms offramerate, compression ratio, and timing for various tasks. The library also allows for throttlingcomputational effort and data transfer at the expense of resolution and quality. The library is availableon CHARITY GitLab42. The dependencies are OpenCV, libav, and libz4, and it has been tested both onLinux and Windows. This library has been integrated and tested in the UC Holographic Assistant.
SRT developed and tested also an alternative, similar approach. The main difference consists in theprocessing and transmission of the hidden points. Instead of the linked list, only the first conflicts ofthe same pixels are saved to another texture which is then encoded in a second video stream. Theperformances of both algorithms are similar (around 5 fps) due to the bottleneck of the CPU matrixtransform of the library.
The CPU version of the library is general, easily integrable in different rendering environments, andfurther optimization can be implemented, as previously discussed, to increase the final number of fps.The GPU version needs to be specific for the rendering engine used, and this is not ready at themoment of writing. Anyway, we can estimate, according to tests conducted, that the usage of GPUbrings the final performance around 30 fps for a video of resolution 1280 x 752.
5.7 Virtual Experiences Builder Platform
Cyango Cloud Studio is the name of the software platforms related to the UC2-2 VR Tour CreatorApplication in CHARITY. Cyango Cloud Studio is an easy-to-use and resourceful tool that will helpExplain, Show, Teach and Sell directly inside 360º Videos.
The 360º Video Editing Software provides access to technology to anyone who wants to createmarketable immersive digital experiences at an affordable price. Cyango Cloud Studio can be used to

https://gitlab.charity-project.eu/ponchio/cloudstream

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 116 of 1

43 https://aframe.io
44 https://github.com/pmndrs/react-three-fiber

showcase a story that help enhancing the business, product or brand of a company through a dynamicand unique experience.
One of the main goal inside CHARITY is to deal with the micro services of the platform to provide abetter performance and better user experience. One of the biggest achievements is the total migrationof all the services of the platform to CHARITY, making it 100% cloud native. There are many problemsaddressed in CHARITY, mainly related to the livestreaming, editing in real time of media content, andtranscoding / converting files uploaded by the users to create multiple adaptive levels.
Besides this we have been focusing and developing many features in the back-office while keepingharmony with the user interface and user experience according to the feedback we gathered via userfocus groups, meetings, calls and demos at events showing our software.
5.7.1 Milestones
We defined many milestones on our roadmap. Below we describe shortly the most relevant ones:
5.7.1.1 Refactoring of the 3D Web engine framework
We did a total refactoring of the 3D Web engine framework. We used Aframe43 in the past, but wedecided to migrate to a more modern and compatible framework with React.js, which is called React-Three-Fiber44. This change of framework required an extensive code re-factoring, as its logic wasdifferent from Aframe, although both used Three.js engine.
This assured better scalability, allowing a more streamlined way of coding, and it is compatible withour team’s knowledge.
5.7.1.2 Friendly to use
We also completely re-designed and improved the UI/UX of the platform. All the cloud features wehad implemented needed to be in sync with the UI/UX, for example the video conversion and assetsmanagement needed to have many UI/UX features to actually work. This also allows the software tobe actually user-friendly therefore marketable. The figures below (Figure 90 and Figure 91) show somescreenshots of the whole platform after the re-design.

Figure 90: New design of Cloud Studio (screenshot 1).

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 117 of 1

45 https://github.com/ffmpegwasm/ffmpeg.wasm

Figure 91: New design of Cloud Studio (screenshot 2).
5.7.1.3 Video Editor
We also made important research about how to achieve an important feature the users requested,which is the online video editor, that allows the user to edit the video and audio.
We explored a possible video editor tool solution based on the FFMPEG+WASM45, a pureweb assemblyport of FFMPEG which could allow editing video, audio and stream inside the browser. Unfortunately,we found some critical technology obstacles so that this solution would not be feasible on the clientside. Hence, we have decided to create a solution that works on the edge-cloud. We call thiscomponent the cyango-worker, which is mainly focused on heavy tasks like video and audioconversion, image conversion, and 3Dmodels conversion. To be able to do heavy tasks asynchronouslywithout blocking user’s work on the frontend, we had to implement a Kafka cluster to act as a messagebroker between cyango-backend component and cyango-workers.

Figure 92: Video timeline editor.
We also designed a screen of how this video editor tool would be like in Cyango Cloud Studio, shown

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 118 of 1

46 https://www.storagereview.com/review/synology-diskstation-ds918-review

in Figure 92.
5.7.1.4 360 VR Livestreaming
The implemented 360 VR livestreaming feature is still under optimization.
Regarding the performance, a series of livestreaming tests using a high quality 360 camera and a serverof the company has been conducted. These tests allow to understand what factors are preventing agood user experience.
The setup used in such tests were: 360 camera streaming in Lisbon, Portugal and the consumer userlocated in Évora, Portugal. The 360 camera was streaming to a service inside a docker container hostedin our Synology NAS 918+46 . This container is built on:

 Nginx 1.17.5 (compiled from source)
 Nginx-rtmp-module 1.2.1 (compiled from source)
 FFmpeg 4.2.1 (compiled from source)

and allows to stream to a RTMP url using a server public IP address, and then the front-end appconsumes the url called https://live.cyango.com . This url points to the docker container in a server ofthe DOTES. This docker container receives a video stream from the 360° camera via RTMP and thenuses ffmpeg to convert the video in real-time to the HLS format so we can consume it on the front-end.
The network parameters of each endpoint are the following:

Figure 93: Camera end network settings.

https://live.cyango.com

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 119 of 1

47 https://developer.apple.com/documentation/http_live_streaming/enabling_low-latency_http_live_streaming_hls

Figure 94: End user network settings.
We did some tests with different parameters as detailed below. These tests were conducted tounderstand the performance of the algorithm and protocols used in Cyango Cloud Studio.
Test 1
In the first test the camera was streaming video at 4k 3840x2160 with a bit rate of 10MB/s. In this firsttest we experienced an high number of video stops during playing, approximately 10 times per 20seconds of streaming. An accurate perceptual measure of this problem is under evaluation but thestreaming quality has shown to be clearly insufficient.

Figure 95: Screenshot of the livestream test
Test 2
In this test we lowered the camera settings to 1440P 2560x1440 with a bit rate of 10MB/s, and stillexperienced video stops similar to test 1.
Test 3
We lowered the camera settings to 1080P 1920X1080 with a bit rate of 10MB/s, and still experiencingthe same as test 1 and test 2.
Test 4
In this test we used the camera settings as 960P 1920x960 with a bit rate of 5MB/s. And in this test thevideo plays without stops, but we noticed about a 3 minutes delay. We could confirm this delay,because we had a phone call between the two DOTES collaborators confirming the delay.
Test 5
In this test we lowered the camera settings to 720P 1440x720 and a bit rate of 5MB/s. In this case thevideo plays without stops and with a delay of about 45 seconds, using the same process as test 4.
From these preliminary tests, we conclude that the server we used is the major factor of the delay,because it does not have good hardware resources to quickly transcode the video coming from thestream to HLS. In the next, we exploit resources made available by CHARITY partners to makeadditional tests. Also, some tweaks could be done on the algorithm approach. In the next testsiteration, wewill research about Low latency HLS47 to assess the latency reduction using this protocol.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 120 of 1

48 https://airensoft.gitbook.io/ovenmediaengine .
49 https://coconut-xr.com .

As the development was progressing, we implemented a new micro-service on the edge-cloud ofCHARITY which we call cyango-media-server. This component is based on Oven-Media technology48and allows to stream from a 360 camera via RTMP url, that in the edge is then converted to HLSprotocol which is readable on the frontend.
5.7.1.5 Workers
One of the complex features we implemented was the component called cyango-worker. Thiscomponent lives on the cloud of CHARITY and is responsible for heavy tasks like the video editor, videoand audio transcoding, and image conversion.
This component is always actively listening to kafka messages from the Kafka message brokerimplemented in CHARITY. One of the cases why we need a message broker like Kafka is because theuser can upload many videos, and the cyango-workers receive the orders asynchronously to starttranscoding or converting the videos, and when finished the cyango-worker starts doing the next taskwaiting in the kafka message bus. The cyango-worker containers can also be scaled in terms of replicasaccording to the demand. If there are many users sending many videos in a short period of time, thesystem must be capable of adapting the resources. This is also related to the work done in a paper weco-authored within CHARITY scope of work about Intelligent Multi-Domain Edge Orchestration [61].
5.7.1.6 WebXR compatibility
We also achieved major steps on the compatibility with WebXR. Traditional DOM elements on thebrowser are not compatible with. We had to replicate many basic UI/UX elements we had on mobileand desktop to WebXR. For example, creating buttons, images, image carousels, popups, hotspots,video players, audio player, are just a few of the components we had to do to make our applicationwork onWebXR. This allows us to test the 360 livestreaming for example andmeasure its performance.This transition allows our platform to become ready for the spatial computing era. Spatial interactionslike hand tracking and poses, grab 3D meshes, anchors, and teleport, and interact with 3D UI canvas.With the help of an open-source repository49 and engaging and contributing to this repositorycommunity we had success in implementing cross-platform UI elements that work in WebXR andtraditional DOM.

Figure 96: WebXR environment on Cyango.

https://airensoft.gitbook.io/ovenmediaengine
https://coconut-xr.com

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 121 of 1

5.7.1.7 Analytics and Monitoring
We also implemented the analytics and monitoring system for our platform, most preciselyimplemented on cyango-backend, cyango-story and cyango-cloud-editor components.
This system allows to measure how much time the users spent using the platform, measure theperformance of the app on the client side, and other important analytics that allow a betterunderstanding of the performance and help us on deciding what is the best direction of the app.

Figure 97: Dashboard of analytics inside the platform.
We also implemented the monitoring part of the 360 livestream that sends metrics about theconnection performance and latency params to a Prometheus component that lives on CHARITY cloud.
Until now we did an official test of around 2 hours livestreaming from a 360 camera with 2k resolutionvideo and a 20 mbps of bitrate, but we haven’t had a good quality of experience. We need to improveand research more on how to achieve a good experience.As depicted in Figure 98 and Figure 99 below,the measurements about the total round trip time and available incoming bitrate. Thesemeasurements can vary depending of the video resolution and bitrate that is being streamed. In thiscase the video had a resolution of 5k and an approximate bitrate of 2 mbps.

Figure 98: Total round trip time of a 360 livestream test done within 2 hours.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 122 of 1

Figure 99: Available incoming bitrate of a 360 livestream test done within 2 hours.

5.8 Immersive services and cross-video streaming experiments
Immersive services, such as VR, AR, and XR applications, have stringent latency and high bandwidthrequirements, often limited to standalone and costly installations [50]. Despite this, they are expectedto dominate next-generation networks due to their popularity and anticipated traffic volumes, makingXR applications mainstream by 2030. For this purpose, Standards Development Organizations (SDOs)are actively addressing enabling technologies for VR, AR, and XR applications to ensureinteroperability. IEEE P2048, ETSI, 3GPP,MPEG,W3C, and IETF are among the organizations developingstandards and frameworks for various aspects of immersive experiences, such as streaming, datarepresentation, and communication protocols. Effectively, in the realm of Holographic-TypeCommunication, HTC is recognized for its role in the Network 2030 initiative of ITU-T, focusing onmulti-sense networks and haptic communication services. MPEG is contributing to immersive datarepresentation through itsMPEG-A series, introducing formats like OMAF for 360 videos and standardsfor volumetric video under the MPEG-I project. For Augmented Reality, ETSI has defined theAugmented Reality Framework, offering a functional reference architecture for AR components,systems, and services. The architecture includes layers for hardware, software, and data, specifyingcomponent placement and potential offloading to the cloud or edge.
Regarding immersive services' Quality of Service (QoS) requirements, Table 23 summarizes latency,bandwidth, and reliability needs for each use case. Figure 100 illustrates these requirements from acloud perspective, mapping interactivity against bandwidth for various immersive services. It shall behighlighted that the use cases shown in Table 23 and Figure 100 strongly relate to the CHARITY usecases. Effectively, CHARITY's "real-time holographic applications" fall under the HTC telepresence usecase. CHARITY's "immersive virtual training" falls under both remote services and social tourism usecases, whereas CHARITY's "mixed reality interactive applications" fall under both the remote servicesand cloud gaming use cases.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 123 of 1

Figure 100: XR use cases and their requirements [50].
Table 23: Requirements of XR services [50].

Use Case QoS Requirements
Latency Data Rate Reliability

HTC telepresence 320 ms 2Gbps to 2 Tbps 99,999%
Remote services less than 5 ms 15 Mbps to 2 Tbps 99,999%
Social tourism 320 ms 15 Mbps to 2 Gbps 99,999%
Cloud gaming 30 to 150 ms 15 Mbps to 500 Mbps 99,999%

We conducted experiments to assess the impact of various metrics on Glass-to-Glass (G2G) latency inimmersive services, using the example of a remote control system with VR headsets managing deviceslike robots. In the conducted experiments, the GTG latency is determined by activating a LED adjacentto the 360 camera at time t1. A light sensor connected to the HMD captures the light at time t2. Bothtime points are logged on a Single Board Computer (SBC). The GTG latency is calculated as thedifference between these two time points, namely (t2 - t1).
End-users can smoothly control industrial equipment through hand motions and HMD controllers,facilitated by 360-degree video from remote devices. Both video streaming and device control demandlow latency and high reliability. Analyzing the streaming aspect, we focus on the communicationbetween VR HMDs and remote devices, utilizing real-time protocols like RTP or WebRTC. While RTP isdesigned for broadcast scenarios, our VR-based remote control scenario demands directcommunication for minimal end-to-end latency, distinguishing it from traditional use cases like liveconcerts [51].
In Figure 101 the GTG latency performance between Oculus Quest and the 360-degree camera isdepicted. Two cameras were employed in the experiments: i) Vuze XR and ii) Insta 360 Pro, bothstreaming at 30 FPS using the RTMP protocol. The results, as shown in Figure 101, indicate that Insta360 Pro outperforms Vuze XR by approximately 700ms. This difference can be attributed to twofactors. First, for live streaming, Vuze XR requires a connection to a smartphone via WiFi Direct,

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 124 of 1

introducing additional delays. Second, Insta 360 Pro benefits from its built-in RTMP server, significantlyreducing GTG latency. In Figure 102: Performance evaluation of RTMP in case of Insta 360 Pro [51].the RTMP protocol performance of Insta 360 Pro is plotted against GTG latency as a function of DisplayRefresh Rate (DRR). The trend shows a decreasing GTG with increasing DRR, but with diminishingreturns. For example, increasing DRR from 144 to 244 results in only a 3ms GTG reduction, alongsideincreased energy consumption. Current HMD displays typically max out at 120Hz refresh rate. Toassess the impact of Streaming Frame Rate (SFR) on GTG latency, Figure 103: Performance evaluationof RTMP for varying DRR values [51]. Figure 103 and Figure 104 present evaluations. Figure 103illustrates that, for various streaming rates, increasing DRR from 50 to 244Hz leads to a modest 40msGTG reduction. Figure 104 demonstrates a more significant GTG reduction with increased SFR, such asa 100ms decrease when going from 20 FPS to 30 FPS. However, diminishing returns occur with higherSFR values due to increased bandwidth and computational demands, causing bottlenecks in bothnetwork and computation resources at rates like 120 FPS or 240 FPS.
Figure 105 provides a detailed GTG latency analysis, emphasizing the influence of both camera refreshrate and Streaming Frame Rate (SFR) on immersive data processing. A 30 FPS camera refresh ratecontributes at least 66ms to the processing time at the sender, excluding additional processing delayslike stitching and encoding. Edge processing introduces a minimum of 33ms. Delayed packet arrivalaffects decoding times at both the edge cloud and end device. While increasing SFR significantlyreduces GTG latency, it demands intensive computation to handle the higher throughput. However,in holography, escalating SFR may compromise the streaming experience due to the need forsubstantial network resources, potentially causing packet loss and delayed arrivals, ultimatelyimpacting GTG latency.

Figure 101: GTG latency for two types of 360 cameras [51].

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 125 of 1

Figure 102: Performance evaluation of RTMP in case of Insta 360 Pro [51].

Figure 103: Performance evaluation of RTMP for varying DRR values [51].

Figure 104: Performance evaluation of RTMP for varying FPS values [51].

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 126 of 1

Figure 105: Detailed analysis of the GTG. The size of each box does not reflect the processing time of therespective task [51].
In another experiment focusing on remote driving assistance for autonomous vehicles, we exploredthe efficiency of using a 360° stream augmented with vehicle-related information, delivered via anHMD wearable device by a remote human operator (RHO) [52]. The setup involved a Labpano PilotOne 360° camera, an Intel® Xeon® server, and a Latitude 7490 receiver device. We assessed variousstreaming protocols and modes, comparing G2G latency for 4K 360° live streams. Results indicatedsub-second G2G latency, crucial for the RHO to react promptly. Three streaming scenarios (RTMP-PUSH, RTMP-PULL, RTSP-PULL) were evaluated at different bitrates (6Mbps, 15Mbps, 30Mbps). Higherbitrates resulted in larger stream sizes and improved quality but increased latency. The evaluationfocused on G2G latency at different stages: camera screen, network transmission to RHO's display,and source to RHO. The DASH technique was considered for bitrate adaptation, but its latency wasrelatively high. A stream selection approach based on parameters like location and video quality wasproposed for better system performance.
The VR experience, built using A-Frame, allowed RHOs to view the stream through VR via desktops orHMDs. Relevant vehicle information was displayed, enabling the RHO to send commands for highwayengagement [52]. Results showcased latency comparisons at different bitrates for each streamingscenario, emphasizing the impact on network latency. Notably, RTSP had higher latency than RTMP,and higher bitrates increased G2G latency due to network delays. Effectively, Figure 106 illustrates theaverage G2G latencies and standard deviations across various scenarios at encoding rates of 6Mbps,15Mbps, and 30Mbps. At 6Mbps (Figure 106 (a)), the acquisition, encoding, and display times at thecamera's display are consistent (ranging from 144ms to 164ms) across all scenarios. Notably, the RTSPprotocol exhibits significantly higher network latency compared to RTMP push and pull, with a minordifference between the two RTMP modes. For 15Mbps (Figure 106 (b)), acquisition and encodinglatencies are comparable to those at 6Mbps. However, network latency is markedly higher for RTSPand RTMP pull modes, while RTMP push mode maintains similar network latency at both 6Mbps and15Mbps, resulting in the optimal G2G latency to the RHO's display. At 30Mbps (Figure 106 (c)), thereis a noticeable increase in G2G latency for all streaming modes, primarily attributed to network delaysdespite the camera's hardware capability to handle different bitrates simultaneously.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 127 of 1

Figure 106: GTG latency of different protocols when streaming at different bitrates [52].
In a third experiment, we explore the realm of VR-based remote control for Unmanned Aerial Vehicles(UAVs), aiming to deliver a fully immersive user experience. Two distinct architectures take centerstage: the global architecture and the detailed architecture, depicted in Figure 107 and Figure 108respectively. Each component is meticulously showcased, elucidating its interactions with othersystem elements. The global system architecture, depicted in Figure 107, provides a comprehensiveoverview of the system's components. In contrast, the detailed architecture in Figure 108 delves intomeasured delays, offering a complete testbed that chronicles the interactions of components in achronological order. Envisioned as a real-life implementation, the architecture incorporates micro-services based components at the edge server. Containerization is employed for components to ensureboth portability and scalability. The overarching goal is to empower end-users with the capability tocontrol remote UAVs using a 360-degree stream and sensed data from the UAV's location. At theremote location, the UAV is equipped with a 360-degree camera that live streams to the user's Head-Mounted Display (HMD). Upon receiving the camera stream, users can manipulate the remote UAVusing body movements and HMD controllers [53]. The primary objective of this experiment is toconduct a detailed analysis of different latencies under varied conditions, encompassing i) mobilenetworks such as LTE, 5G, andWiFi, ii) user reactions, and iii) video qualities. In this study, beyond G2Glatency, other critical latencies are considered. Human reaction latency characterizes the delay a userexperiences in perceiving a visual event and reacting to it. Command transmission latency representsthe time it takes for a user command to reach and be executed by the UAV. Figure 109 visuallyillustrates the various analyzed delays, providing a comprehensive view of the experiment's findings.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 128 of 1

Figure 107: The high-level architecture of the system envisioned for VR-based remote control of UAVs [53].

Figure 108: The hardware and software components of the system envisioned for VR-based remote control ofUAVs and the measurement of the different considered delays [53].

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 129 of 1

Figure 109: The different delays analyzed to evaluate the system envisioned for VR-based remote control ofUAVs [53].
Hereunder presents an analysis of the results obtained through experiments on the system. Hereby,the HMD used WiFi for edge services (to remotely control the UAV), and the UAV connected to theedge server through WiFi, LTE, or 5G. The 360◦ camera streamed at 30 FPS using the H264 codec.Figure 110 depicts the GRE (Glass to Reaction to Execution) latency for varying streaming bit rates,access networks (WiFi, LTE, 5G), and two video qualities (HD or 4K). Two scenarios were considered:with and without human reaction latency. Figure 110 (a) displayed G2G latency, revealing an increasewith higher Constant Bit Rate (CBR) encoding, particularly pronounced in 4G, especially for 4K videos.5G demonstrated better results than 4G, nearly matching G2G latency with a dedicated WiFiconnection. Figure 110 (b) and (c) presented GRE latency and Sensor Reaction Latency (SRL),respectively. Both increased with higher streaming bitrates, mirroring G2G latency trends. The averageGRE was 900ms, representing end-to-end round-trip latency. Figure 110 (d) and (e) illustrated humanreaction latency and command transmission latency. Human reaction latency converged to around220ms, independent of network delays. Command transmission latency for 5G was similar to WiFi(103ms vs. 88ms), while 4G exhibited a higher average delay (138ms) due to network latency andbandwidth limitations compared to WiFi and 5G. Each graph's data points were averages from 40experiment iterations by different individuals to minimize the impact of individual human reactionlatency.
Furthermore, we utilized View-Port Peak Signal to Noise Ratio (VP-PSNR) and Video MultimethodAssessment Fusion (VMAF), a Full Reference metric by Netflix, for video quality evaluation (as shownin Figure 111). VMAF, employing machine learning, predicts subjective video quality on a 0 to 100scale. VP-PSNR gauges encoding-induced distortion in video transmission. For this purpose, wefollowed the following steps:

 Recorded a 360° Equirectangular Projection (ERP) video at 4K (3840x1920) and 30FPS using a
360° camera.

 Generated a reference-view video using FFmpeg360 at a fixed orientation (pitch 0°, yaw 0°,
roll 90°).

 Streamed the reference video over the internet, recorded it at the receiving HMD (0°, 0°,
90°), creating the user-view video.

 Compared visual quality using PSNR and VMAF filters on the reference-view and user-view
videos.

 Repeated steps 3 and 4 for various streaming rates, including HD reference videos.
Figure 111 depicts the obtained results which can be summarized as follows:

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 130 of 1

 VP-PSNR and VMAF increased with higher streaming rates for both HD and 4K videos.
 4K videos exhibited more distortion at low rates due to higher data volume.
 Overall, received streams had satisfactory quality, with the lowest VMAF values at 2Mbps

being 40 and 50 for 4K and HD, respectively, and reaching 78 and 90 at 8Mbps.
 VP-PSNR values remained satisfactory at all considered streaming rates.

Figure 110: Measured latency [53].

Figure 111: Video quality evaluation in terms of VP-PSNR and VMAF [53].

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 131 of 1

5.9 Mesh Merger
In UC3.1 Collaborative Gaming Application, the goal is to provide a highly immersive multiplayeraugmented reality game prototype using ORBK's specialised multiplayer engine. The engine will beable to synchronise all game objects and user states across end devices, allowing for a seamless gamingexperience.
The proposed solution will use a client-server architecture, where the client devices will be responsiblefor rendering the game and handling user input, while the server will manage the game statesynchronisation and run the game system simulation.
Initially, UC3-1 Collaborative Gaming Application required Mesh Collider Builder service. Based on thepoint cloud data gathered on the mobile devices through RGB cameras, it is supposed to create a setof well-defined polygons to allow a clean and precise interaction with the environment. During theresearch process we found out that in many cases, 3D points reconstructed through RGB camerascannot reach high quality to obtain such clean geometry (as shown in Figure 112).
Main issues when scanning using this method are:

 Noise/phantom data: point generated in random locations not connected to the environmentfeatures. No point generated at flat surfaces: flat surfaces was treated as empty space. This happensalso for other featureless surfaces. Low precision of feature points localisation.

Figure 112: Environment scanning using RGB method on Android device.
To address the aforementioned challenges and to anticipate the growing prevalence of 3D sensors infuture mobile devices, we are transitioning our focus to smart devices equipped with such technology.Currently, LiDAR sensors are available on select Apple devices, including iPhones Pro and iPads Pro.Consequently, we have chosen to conduct tests using LiDAR in conjunction with ARKit, a frameworktailored for Apple devices.
The advantage of incorporating ARKit lies in its supplementary features, notably the Mesh ColliderBuilder (refer to Figure 93). Preliminary assessments of our reconstruction tests have yielded promising

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 132 of 1

results. The scanned data exhibits high quality, while the automatically generated mesh colliders byARKit showcase commendable geometric attributes, including seamless continuity (absence of gaps)and simplicity characterised by a reduced triangle count (see Figure 113).

Figure 113: Environment scanning using LiDAR with instant mesh collider building.
Since ARKit provides proper mesh collider generation functionality, it has been decided to switch thefocus onmergingmesh colliders coming from different acquisition devices. The idea is to merge meshcolliders that are scanned and built in the same game session (and physical location) by the gamers.This functionality will significantly enrich the immersion of all participants of the game.
Each participant equipped with a smart device with LiDAR scans a fragment of the environment, ARKitbuilds amesh collider from the scanned data and all mesh colliders are sent to theMeshMerger service(see Figure 114) developed in the ambit of the Task 3.4. This service merges all mesh colliders into onecommon mesh collider.

Figure 114: Merging mesh colliders.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 133 of 1

50 https://github.com/MIT-SPARK/TEASER-plusplus
51 https://www.openvdb.org/

5.9.1 Mesh Merger core
The core of the Mesh Merger relies on C++ based application that consist of two major components:

 Mesh Alignment: The individual mesh colliders are in their local frame of references. To builda complete environment, it is necessary to bring together those fragments into a commonframe of reference (the World frame) based on a mesh alignment algorithm. For ourimplementation, we employ an open-source algorithm called "TEASER++"50.This algorithm isspecifically chosen due to its robustness and efficiency, making it well-suited for real-timeapplications. We have made adaptations and modifications to tailor it to our application. Theaverage alignment time for a pair of scans varies between 0.65- 0.85ms. Therefore for anenvironment represented by three scans as the one shown in Figure 115, for example, thetotal time for alignment is approximately between 1.35-1.60s
 Mesh Fusion: Despite the robust accuracy of mesh alignment, registration artifacts can stillarise due to data measurement errors. These artifacts can lead to misalignments between theindividual meshes. To mitigate such errors, the Mesh Merger employs a surface conversiontool that converts the alignedmeshes into a signed distance representation (SDF). The mergedmesh is then extracted from this SDF representation. To ensure computational efficiencyduring the conversion process, the Mesh Merger utilizes the OpenVDB51 open-source library.OpenVDB provides a framework for efficient voxel-based data structures and operations. Byadapting OpenVDB and implementing it within the Mesh Merger, we can perform theconversion. with minimal computational overhead. On average, the entire mesh fusionprocess takes approximately 1.1-1.3 seconds, providing a quick and responsive experience.Additionally, the density of the output surface can be controlled based on the specificapplication requirements, further reducing the overall processing time. By leveragingOpenVDB and optimizing the implementation, the Mesh Merger achieves both accuracy andcomputational efficiency, enabling the creation of a merged mesh, i.e. the mesh collider ofthe environment, that is accurate while maintaining a fast-processing time. The result of alignand merge the meshes of Figure 115 is shown in Figure 116.

Note that this prototype works with no prior information about the mesh to merge, this makes thetasks challenging. The current main limitation is a lack of robustness to align mesh with poor geometricfeatures, i.e. planar surfaces. This problem can be alleviated by exploiting prior information, like anestimation of the relative position between the users’ smartphone.

https://github.com/MIT-SPARK/TEASER-plusplus

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 134 of 1

Figure 115: Individual meshes to align and fuse.

Figure 116: Final result.
5.9.2 Mesh Merger Service
The Mesh Merger component, developed by CNR, underwent extensive testing. ORBK designed ascanner application capable of transmitting fragments of scanned environmental meshes to the MeshMerger. In the first stage of its development, the Mesh Merger was constructed as a web service (seeFigure 117) to facilitate quick and straightforward verification of scanning and merging outcomes.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 135 of 1

Figure 117: Mesh Merger testing website.
Now, the Mesh Merger Service is in the process of being enhanced with a REST API interface. TheGame Server application will leverage this interface to transmit mesh fragments and retrieve fullymerged meshes, streamlining the integration of merged meshes into the gaming environment (Figure118).

Figure 118: Game Server communicates with Mesh Merger Service via REST API.
In recent updates, a REST API paradigm has been implemented to establish communication betweenthe Game Server application developed by ORBK and the Mesh Merger Service. The implementationis based on Node.js and follows REST-API principles of API calls. It is possible to request mesh alignmentjobs and to query the status of a particular job providing its job id. The status of a job returns the URLsof the meshes being processed, the status of the algorithm, and the processing time. The actual dataformat for scans exchange is binary PLY which provides the advantage of having smaller size of thesingle colliders and so reduction in download time compared to JSON ASCII format used earlier. An

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 136 of 1

average download time for a singlemesh collider using this format is approximately 0.80s. This reducesthe overall latency and brings down the overall time to build the entire mesh collider.
At the moment of writing the Mesh Merger does not handle storage, so it retrieves the mesh collidersto align from another server, where the Game Server store them. To avoid this overhead in datastreaming, in the following the Game Server could directly handle such storage, or it could ask to theusers’ devices to transmit the mesh colliders directly to the Mesh Merger, which cache them beforethe alignment requests. Before this, the next steps (according to the D4.2) are the finalization of theintegration between the Game Server and the Mesh Merger, containerizing it and preparing theblueprint for the deployment by the Application Management Framework of the CHARITY platform.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 137 of 1

6 Conclusions
The description of the research and development work conducted in theWP3 and the results reportedin this Deliverable, demonstrate the big effort put in developing innovative solutions for XRapplications, both from a scientific and a technological point of view. We do not only propose anddesign new technical solutions, but we also develop novel algorithms. Regarding the prototypes, evenif in the past months some implementation activities are experiencing some delays, the first versionof the prototypes have been implemented. Additionally, the integration work is in line with the oneplanned in the Deliverable D4.2. According to the just mentioned integration plan, the final version ofthe integrated prototypes are expected the first months of the next year.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 138 of 1

References
[1] Baresi, Luciano, and Danilo Filgueira Mendonça. "Towards a serverless platform for edgecomputing." 2019 IEEE International Conference on Fog Computing (ICFC). IEEE, 2019.
[2] Gkoufas, Yiannis, and David Yu Yuan. "Dataset Lifecycle Framework and its applications inBioinformatics." arXiv e-prints (2021): arXiv-2103.
[3] Koutsovasilis, Panos, et al. "A Holistic Approach to Data Access for Cloud-Native Analytics andMachine Learning." 2021 IEEE 14th International Conference on Cloud Computing (CLOUD). IEEE,2021.
[4] Jens Meinicke, Chu-Pan Wong, Bogdan Vasilescu, and Christian Kästner. 2020. Exploringdifferences and commonalities between feature flags and configuration options. Proceedings ofthe ACM/IEEE 42nd International Conference on Software Engineering: Software Engineering inPractice (ICSE-SEIP '20). Association for Computing Machinery, New York, NY, USA, 233–242
[5] W. Li, Y. Lemieux, J. Gao, Z. Zhao and Y. Han, "Service Mesh: Challenges, State of the Art, andFuture Research Opportunities," 2019 IEEE International Conference on Service-Oriented SystemEngineering (SOSE), 2019, pp. 122-1225.
[6] Svahnberg, M., Gurp, J., Bosch, J. On the Notion of Variability in Software Product Lines. BlekingeInstitute of Technology Research Report No 02/01. (2001)
[7] Bashari, M., Bagheri, E., Weichang Du, W. Dynamic Software Product Line Engineering: AReference Framework. International Journal of Software Engineering and KnowledgeEngineering, Vol. 27, No. 2 (2017) 191–234
[8] Raatikainen, M., Tiihonen, J., Männistö, T. Software product lines and variability modeling: Atertiary study,J Systems and Software, Volume 149, Pages 485-510 (2019)
[9] Berger, T., Steghöfer, JP., Ziadi, T. et al. The state of adoption and the challenges of systematicvariability management in industry. Empir Software Eng 25, 1755–1797 (2020).
[10] Reisner, E., Song, C., Ma, K., Foster, J., Porter, A. Using symbolic evaluation to understandbehavior in configurable software systems. Proceedings of the 32nd ACM/IEEE InternationalConference on Software Engineering (2010)
[11] Mendonca, N., Jamshidi, P., Garlan, D., Pahl, C., Developing Self-Adaptive Microservice Systems:Challenges and Directions. IEEE Software, vol. 38, no. 02, pp. 70-79, 2021.
[12] J. O. Kephart and D. M. Chess, "The vision of autonomic computing. Computer, vol. 36, no. 1, pp.41-50, Jan. 2003
[13] J. Floch1 et al. Playing MUSIC - Building context-aware and self-adaptive mobile applications.Software: Practice and Experience. 43. 359-388. (2013)
[14] G. Alfrez, V. Pelechano, R. Mazo, C. Salinesi and D. Diaz, Dynamic adaptation of servicecompositions with variability models, J. Syst. Softw. 91 (2014) 24–47.
[15] R. Andrade, M. Ribeiro, H. Rebêlo, P. Borba, V. Gasiunas and L. Satabin, Assessing idioms for aflexible feature binding time, Comput. J. 59(1) (2015) 1–32.
[16] Google 2017. Draco: 3D data compression. https://google.github.io/draco/. Accessed: 2022-05-11.
[17] Max Limper, Stefan Wagner, Christian Stein, Yvonne Jung, and André Stork.2013. Fast Deliveryof 3D Web Content: A Case Study. In Proceedings of the 18th International Conference on 3DWeb Technology (San Sebastian, Spain) (Web3D ’13). Association for ComputingMachinery, NewYork, NY, USA, 11–17. https://doi.org/10.1145/2466533.2466536
[18] Federico Ponchio and Matteo Dellepiane. 2016. Multiresolution and fast decompression foroptimal web-based rendering. Graphical Models 88 (2016), 1 – 11.

https://google.github.io/draco/.
https://doi.org/10.1145/2466533.2466536

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 139 of 1

https://doi.org/10.1016/j.gmod.2016.09.002
[19] Markus Schütz. 2016. Potree: Rendering Large Point Clouds inWeb Browsers. Ph. D. Dissertation.
[20] Tunstall, Brian Parker (September 1967). Synthesis of noiseless compression codes. GeorgiaInstitute of Technology.
[21] H. Liu, H. Yuan, Q. Liu, J. Hou and J. Liu, "A Comprehensive Study and Comparison of CoreTechnologies for MPEG 3-D Point Cloud Compression," in IEEE Transactions on Broadcasting, vol.66, no. 3, pp. 701-717, Sept. 2020, doi: 10.1109/TBC.2019.2957652.
[22] https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar, accessed 20-06-2022.
[23] Jeanette Ling, Rockwell Collins. Understanding Cloud-Based Visual System Architectures.Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 2018.
[24] Teemu Kämäräinen, Matti Siekkinen, Jukka Eerikäinen, and Antti Ylä-Jääski. CloudVR: CloudAccelerated Interactive Mobile Virtual Reality. Proceedings of the 26th ACM internationalconference on Multimedia (MM '18). Association for Computing Machinery, New York, NY, USA,1181–1189.
[25] Mark Claypool, Kajal Claypool. Latency and Player Actions in Online Games. Communications ofthe ACM, November 2006, Vol. 49 No. 11, Pages 40-45
[26] Waveren, J., The Asynchronous TimeWarp for Virtual Reality on Consumer Hardware, 22nd ACMConference on Virtual Reality Software and Technology, 2016
[27] Nicholson, N. “Exploring ‘Negative Latency’”, December 2019,https://nolannicholson.com/2019/12/16/exploring-negative-latency.html
[28] Makris A, Kontopoulos I, Psomakelis E, Xyalis SN, Theodoropoulos T, Tserpes K. PerformanceAnalysis of Storage Systems in Edge Computing Infrastructures. Applied Sciences. 2022;12(17):8923. https://doi.org/10.3390/app12178923
[29] Antonios Makris, Evangelos Psomakelis, Theodoros Theodoropoulos, and Konstantinos Tserpes.2022. Towards a Distributed Storage Framework for Edge Computing Infrastructures. InProceedings of the 2nd Workshop on Flexible Resource and Application Management on theEdge (FRAME '22). Association for Computing Machinery, New York, NY, USA, 9–14.https://doi.org/10.1145/3526059.3533617
[30] X.Hou,Y.Lu,andS.Dey,“WirelessVR/ARwithedge/cloudcomputing,” in Proc. Int. Conf. Comput.Commun. Netw., 2017, pp. 1–8.
[31] Sebastian Friston, Tobias Ritschel, and Anthony Steed. 2019. Perceptual rasterization for head-mounted display image synthesis. ACM Trans. Graph. 38, 4, Article 97 (August 2019), 14 pages.https://doi.org/10.1145/3306346.3323033
[32] L. Fink, N. Hensel, D. Markov-Vetter, C. Weber, O. Staadt and M. Stamminger, "Hybrid Mono-Stereo Rendering in Virtual Reality," 2019 IEEE Conference on Virtual Reality and 3D UserInterfaces (VR), 2019, pp. 88-96, doi: 10.1109/VR.2019.8798283.
[33] Jie Guo, Xihao Fu, Liqiang Lin, Hengjun Ma, Yanwen Guo, Shiqiu Liu, and Ling-Qi Yan. 2021.ExtraNet: Real-time Extrapolated Rendering for Low-latency Temporal Super-sampling. ACMTrans. Graph. 40, 6, Article 278 (December 2021), 16 pages.https://doi.org/10.1145/3478513.3480531
[34] X. Hou and S. Dey, "Motion Prediction and Pre-Rendering at the Edge to Enable Ultra-Low LatencyMobile 6DoF Experiences," in IEEE Open Journal of the Communications Society, vol. 1, pp. 1674-1690, 2020, doi: 10.1109/OJCOMS.2020.3032608.
[35] K. Boos, D. Chu, and E. Cuervo, “Flashback: Immersive virtual reality on mobile devices viarendering memoization,” in Proc. Int. Conf. Mobile Syst. Appl. Services, 2016, pp. 291–304.
[36] L. Liu et al., “Cutting the cord: Designing a high-quality untethered VR system with low latency

https://doi.org/10.1016/j.gmod.2016.09.002
https://docs.microsoft.com/en-us/azure/architecture/patterns/sidecar
https://nolannicholson.com/2019/12/16/exploring-negative-latency.html
https://doi.org/10.3390/app12178923
https://doi.org/10.1145/3526059.3533617
https://doi.org/10.1145/3478513.3480531

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 140 of 1

remote rendering,” in Proc. Int. Conf.Mobile Syst. Appl. Services, 2018, pp. 68–80.
[37] A. Alahi, K. Goel, V. Ramanathan, A. Robicquet, L. Fei-Fei, and S. Savarese, “Social LSTM: Humantrajectory prediction in crowded spaces,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2016, pp.961–971.
[38] A. Gupta, J. Johnson, L. Fei-Fei, S. Savarese, and A. Alahi, “Social GAN: Socially acceptabletrajectories with generative adversarial networks,” in Proc. Conf. Comput. Vis. Pattern Recognit.,2018, pp. 2255–2264.
[39] J. Martinez, M. J. Black, and J. Romero, “On human motion prediction using recurrent neuralnetworks,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2017, pp. 4674-4683.
[40] J. Butepage, M. J. Black, D. Kragic, and H. Kjellstrom, “Deep representation learning for humanmotion prediction and classification,” in Proc. Conf. Comput. Vis. Pattern Recognit., 2017, pp.1591–1599.
[41] Dong, Chao, Chen Change Loy, and Xiaoou Tang. "Accelerating the super-resolution convolutionalneural network." Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, TheNetherlands, October 11-14, 2016, Proceedings, Part II 14. Springer International Publishing,2016.
[42] Lim, Bee, et al. "Enhanced deep residual networks for single image super-resolution."Proceedings of the IEEE conference on computer vision and pattern recognition workshops.2017.
[43] Shi, Wenzhe, et al. "Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network." Proceedings of the IEEE conference on computer vision andpattern recognition. 2016.
[44] Lai, Wei-Sheng, et al. "Deep laplacian pyramid networks for fast and accurate super-resolution."Proceedings of the IEEE conference on computer vision and pattern recognition. 2017.
[45] Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generativeadversarial network." Proceedings of the IEEE conference on computer vision and patternrecognition. 2017.
[46] Wang, Xintao, et al. "Esrgan: Enhanced super-resolution generative adversarial networks."Proceedings of the European conference on computer vision (ECCV) workshops. 2018.
[47] Bias, Randy. "The History of Pets vs Cattle and How to Use the Analogy Properly." CloudScalingblog, September 2016.
[48] Makris, A., Psomakelis, E., Korontanis, I., Theodoropoulos, T., Protopsaltis, A., Pateraki, M., ... &Tserpes, K. (2023, October). “Streamlining XR Application Deployment with a Localized DockerRegistry at the Edge”. In European Conference on Service-Oriented and Cloud Computing (pp.188-202). Cham: Springer Nature Switzerland.
[49] Psomakelis, E., Makris, A., Tserpes, K., & Pateraki, M. (2023). “A lightweight storage frameworkfor edge computing infrastructures/EdgePersist”. Software Impacts, 17, 100549.
[50] T. Taleb, Z. Nadir, H. Flinck, and J. Song, “Extremely-interactive and low latency services in 5Gand beyond mobile systems,” in IEEE Communications Standards Magazine, Vol. 5, No. 2, Jun.2021, pp. 114-119.
[51] Z. Nadir, T. Taleb, H. Flinck, O. Bouachir, and M. Bagaa, “Immersive Services over 5G and BeyondMobile Systems,” in IEEE Network Magazine, Vol. 35, No. 6, Nov. 2021, pp. 299 – 306.
[52] O. El-Marai, T. Taleb, and J. Song, “AR-based Remote Command and Control Service: Self-drivingVehicles Use Case,” in IEEE network magazine., Vol. 37, No. 3, Jun. 2023, pp. 170-177.
[53] T. Taleb, N. Sehad, Z. Nadir, and J. Song, “VR-based Immersive Service Management in B5GMobile Systems: A UAV Command and Control Use Case,” in IEEE IoT Journal, Vol. 10, No. 6, Mar.

D3.2: Energy, data and computational-efficient mechanisms supporting dynamically adaptive …

Copyright © 2021 - 2022 CHARITY Consortium Parties Page 141 of 1

2023, pp. 5349 – 5363.
[54] Mavridis, Ilias, and Helen Karatza. "Combining containers and virtual machines to enhanceisolation and extend functionality on cloud computing." Future Generation Computer Systems94 (2019): 674-696.
[55] Lee, J., & Kim, Y. (2021, October). A design of MANO system for cloud native infrastructure. In2021 International Conference on Information and Communication Technology Convergence(ICTC) (pp. 1336-1339). IEEE.
[56] Fornés-Leal, A., Lacalle, I., Vaño, R., Palau, C. E., Boronat, F., Ganzha, M., & Paprzycki, M. (2022).Evolution of MANO Towards the Cloud-Native Paradigm for the Edge Computing. In AdvancedComputing and Intelligent Technologies: Proceedings of ICACIT 2022 (pp. 1-16). Singapore:Springer Nature Singapore.
[57] Mavridis, I., & Karatza, H. (2023). Orchestrated sandboxed containers, unikernels, and virtualmachines for isolation‐enhanced multitenant workloads and serverless computing in cloud.Concurrency and Computation: Practice and Experience, 35(11), e6365.
[58] Rejiba, Z., & Chamanara, J. (2022). Custom scheduling in Kubernetes: a survey on commonproblems and solution approaches. ACM Computing Surveys, 55(7), 1-37.
[59] Naranjo, D. M., Risco, S., de Alfonso, C., Pérez, A., Blanquer, I., & Moltó, G. (2020). Acceleratedserverless computing based on GPU virtualization. Journal of Parallel and Distributed Computing,139, 32-42.
[60] El Haj Ahmed, G., Gil‐Castiñeira, F., & Costa‐Montenegro, E. (2021). KubCG: A dynamicKubernetes scheduler for heterogeneous clusters. Software: Practice and Experience, 51(2), 213-234.
[61] T. Z. Benmerar et al., "Intelligent Multi-Domain Edge Orchestration for Highly DistributedImmersive Services: An Immersive Virtual Touring Use Case," 2023 IEEE International Conferenceon Edge Computing and Communications (EDGE), Chicago, IL, USA, 2023, pp. 381-392, doi:10.1109/EDGE60047.2023.00061.

[end of document]

