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Abstract 

WP3 is the work package devoted to the research and development of strategies, mechanisms, and 
algorithms, for the efficient exploitation of available network and computational resources to enable 
sophisticated XR applications. Several aspects are investigated, like the intelligent management of data 
storage and access, and innovative strategies to adapt the Quality of Experience of the running 
application according to the available resources. Regarding the advancement of XR technologies, we 
investigated techniques to obtain more complex realistic VR simulation, technical solutions for 
rendering adaptation, novel algorithms for 3D point cloud compression and for the next-gen multi-
user AR gaming experience, and we proposed solutions for the editing and streaming of immersive 360 
video. 
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Executive Summary 

The research and development activities in the WP3 will drive the advancement of complex and highly 
demanding (in terms of computation and/or bandwidth resources) XR applications. The systems and 
the algorithms delivered by WP3 will be integrated (WP4) into the CHARITY platform and in some of 
the Use Cases (UCs) of the CHARITY project. These ad-hoc technologies and novel algorithms regard 
different aspects of advanced XR applications.  

A flexible monitoring framework which fills the needs of the different UCs of CHARITY is under 
development. This monitoring framework is based on the open-source Prometheus technology. 
According to the metrics identified, different types of exporters are under development to enable the 
different UCs to monitor their metrics of interest. The monitoring framework interacts with the 
orchestration system of the CHARITY platform. 

AI-based technologies are under development to be included in the CHARITY Edge Storage (CHES). The 
CHES is a data management system for the intelligent management of data storage and data access. 
This system takes into account the high degree of heterogeneity that characterises the computational 
resources considered in the CHARITY project and it is lightweight so that it can also be used on edge 
devices with limited capabilities such as a Raspberry Pi. Preliminary experimental results, in terms of 
achieving the planned KPI, are really encouraging. CHES will be released as an open-source software 
under GPL 3 license. 

XR applications are demanding in terms of computational and network resources, and the 
environmental circumstances may become sub-optimal during their running, for example, due to a 
reduction of bandwidth. In many of these cases, it is convenient to modify the behaviour of the running 
application so that the application itself adapts to the available resources instead of re-routing or 
deploying it. In CHARITY, a variant of the MAPE-K Loop [7] approach, based on micro-services, is 
proposed to perform an adaptation of XR applications at runtime. This novel solution has been 
carefully designed and some preliminary studies related to the flight simulator of the Collins Aerospace 
(UC3-2 Manned-Unmanned Operations Trainer Application) have been conducted.  

Virtual Reality applications often require high realism in rendering and physical simulation. The UC2-1 
VR Medical Training Application of CHARITY is one of these types of virtual reality applications. This VR 
UC is currently being optimized by exploiting multi-threading to make the rendering and the physics 
part even more efficient. Preliminary results are encouraging, for what concerns the physics 
simulation, while multi-threaded rendering in Unity has shown some limits of applicability.  

The immersive applications, to reach high-quality levels of experience, require ultra-low latency and 
large bandwidth resources. To improve immersiveness of applications, we begin to integrate into some 
selected UCs, an adaptive rendering algorithm to reduce the rendering computation, and hence, the 
overall latency of the application.  

Another important aspect of immersive applications is 360-degree video. The UC2-2 VR Tour Creator 
Application of CHARITY regards the advancement of a platform for the creation of virtual tours based 
on 360° video. In the next we describe the new features under and technological advancement under 
development of the Cyango Cloud Studio, that is the platform of UC2-2.  

Specific data services to satisfy the needs of XR applications like the UC1-3 Holo Assistant and the UC3-
1 Collaborative AR Gaming are also under development. Respectively, a point cloud codec allows the 
transmission from the cloud to the edge (the holographic display) of a huge amount of 3D points, and 
a geometry processing algorithm guarantees the continuous update between the real and the virtual 
gaming environment (called Mesh Merger).  The Mesh Merger is in the first stage of development, 
while a first working prototype of the PC encoder/decoder will be available in short time.  

In this deliverable, the research and the technical work related of the activities mentioned above is 
described and some experimental results are reported. 
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1 Introduction 

WP3 is devoted to the development of strategies, mechanisms, and algorithms that support both parts 
of the CHARITY Framework (described in the Deliverable D1.3 and D4.1) and the Use Cases (UCs) 
(described in D1.2 and D1.3). The UCs support is provided by developing specific data services that are 
used by some of the XR applications shown in the ambit of the CHARITY project. Even if these data 
services are targeted to the use cases of CHARITY, it is envisioned by the partners of the consortium 
that such services can be used/adopted by other XR applications with similar needs, beyond the ones 
involved in the project itself. For example, the 3D point cloud encoder/decoder can be used by any XR 
application which needs to transfer a huge amount of 3D data points.  

The R&D work conducted is presented in the following way: first, a brief introduction of the different 
activities is given, together with their mapping with the Tasks of the WP3. The relationships between 
the activities conducted and the rest of the project (other WPs/tasks) are also described. After this 
introduction, the R&D activities are described in detail in the subsequent sections. The activities 
description is organized by topic and does not follow the task subdivision. 

1.1 Activities in a nutshell 

The activities described in the next sections are: 

• Monitoring framework 

• CHARITY Edge Storage (CHES) 

• Resource-aware Adaptation Mechanisms 

• Transforming the flight simulator UC to a cloud-native XR application 

• Rendering and physics simulation optimization for realistic VR applications 

• Adaptive rendering for high QoE 

• Point Cloud Encoding/Decoding 

• Virtual tours through 360 video streaming platform 

• Mesh Merger 

The monitoring of the available network and computational resources plays a fundamental role for 
their assignment according to specific requests, i.e. for the orchestration, and for the applications 
performance management. Regarding performance, sometime, the applications should adapt their 
behaviour during their execution to guarantee a target QoE or reduce it in case of loss of resources. 
The monitoring is based on the open-source Prometheus framework. Such technology is configured 
and integrated to satisfy the CHARITY requirements. The monitoring activity is conducted in the ambit 
of the Task 3.1, the task committed to the efficient exploitation of computing resources, and in the 
ambit of the Task 3.3, that is about the dynamic adaptation mechanisms of the applications. The 
approach followed for monitoring and the architecture of the monitoring system is detailed in Section 
2. 

The CHARITY Edge Storage (CHES) is a solution for the optimized edge storage services to the CHARITY 
framework and its hosted applications. The goals of the CHES are ambitious; it should work on 
hardware with limited resources (e.g. a Raspberry Pi), and, at the same time, should provide reliable, 
robust, and fast access to the information. It is based on Lightweight Kubernetes (K3s), MinIO and 
Prometheus technologies. The CHES is developed in the ambit of the Task 3.2. The current status of 
the development is detailed in Section 3. 

The Resource-aware Adaptation Mechanisms are designed following the MAPE K-Loop [7] approach. 
It consists in adapting the running applications according to the available resources by acting on 
applications’ keypoints (e.g. changing the frame rate, changing the resolution). Such adaptation can be 
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achieved by dynamically modifying the configuration of the application. In CHARITY, a variant of the 
standard MAPE K-Loop approach is proposed; a Mesh Service is used for the re-routing of micro-
services to perform the application adaptation. This idea is explained in Section 4. This is the main 
activity of Task 3.3.  

In CHARITY, we are also modifying the architecture of some UCs such that these XR applications 
become cloud-native. The case of UC3-1 Manned-unmanned Operations Training Application is 
particularly complex and requires a lot of effort. Such technical effort has been described in Section 
5.1.  

Many VR applications require both high-quality rendering and accurate physical simulation to provide 
a realistic virtual environment. One of the UC of CHARITY, UC2-1, regards VR simulation for medical 
training. The idea is to improve the performance of this VR medical simulation platform by employing 
multi-threading to speed up rendering and physics simulation (as detailed in Sections 5.2 and 5.3). The 
multi-threading exploitation of rendering and physics for the realistic simulation of virtual 
environments is part of the activities for the efficient exploitation of computational resources (Task 
3.1). 

VR immersive applications, to be comfortable, satisfying, and convincing, require low latency and high 
bandwidth. In CHARITY, we aim to integrate in two UCs, the UC2-1 VR Medical Training Simulator and 
the UC3-1 Manned-unmanned Operations Training Application, an adaptive rendering algorithm to 
reduce the computational burden and, consequently, the motion-to-photon latency. This activity is 
described in Section 5.4 .  

The Point Cloud Encoder/Decoder is the main component of the UC1-3 Holo Assistant. The Holo 
Assistant must efficiently transmit a huge amount of 3D data from the cloud to the edge (the 
holographic display). This UC is described in detail in D1.2. The current status of the development of 
this innovative PC encoder/decoder is given in Section 5.5. This activity is conducted in the ambit of 
the Task 3.4, devoted to the development of an adaptive rendering algorithm and data 
compression/decompression for high demanding rendering applications. 

Another activity of the Task 3.4 is the development of a virtual tour platform (UC2-2 VR Tour Creator 
Application) to create interactive VR experiences. This platform, called Cyango2, supports 360 videos, 
panoramas, 3D models, standard images and videos and basic 3D meshes. The progress of the Cyango 
platform is described in Section 5.4. 

The Mesh Merger is a data service built on a geometry processing algorithm which runs on the server 
to enable the UC3-1 Collaborative Game. This algorithm integrates the different pieces of geometry of 
the environment so that the game players can interact with a virtual environment that is continuously 
updated with the real one.  For example, if a chair inside a room is moved during the game, and one 
gamer acquires this change through her smartphone, the Mesh Merger integrates this environment 
change in the virtual environment. The Mesh Merger data service is described in section 5.5. This 
activity is also conducted in the context of Task 3.4. 

1.2 Relationships between the CHARITY Framework and the WP3 Tasks 

An overview of the CHARITY architecture with the WPs / Tasks is given in Figure 1. It is composed of 
three planes: i) the Domain Specific XR Service Monitoring and Reaction Plane, ii) the XR Service E2E 
Conducting Plane, and the iii) XR Service Deployment Plane.  

 

2 https://www.cyango.com 
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Figure 1: CHARITY Architecture and project WPs/Tasks mapping. 

The XR Service Deployment Plane consists of the infrastructure where the XR services run. It thus hosts 
the different Virtual Network Functions (VNFs) that compose the different XR services. The main 
responsibility of this plane is to manage the computational, network, and storage resources of the 
infrastructure. Two of the main components of the XR Service Deployment Plane are the XR Device 
Controller and the XR Service Enabler Controller. The XR Device Controller is in charge to control the 
XR devices. This allows to separate the data plane from the control plane. Similarly, the XR Service 
Enabler Controller is in charge of control specific XR services instead of devices. The XR Device 
Controller and the XR Service Enabler Controller are developed as part of the research activities of the 
WP3. 

The Domain-specific Monitoring and Reaction Plane is responsible for monitoring the service inside a 
technological or administrative domain. It keeps track of the resource usage and of the XR services 
running in the domain, it makes decisions according to the monitored data, and carried out the 
actuation which are specific to each running XR service, without resorting to the E2E conducting plane.  

The XR Service E2E Conducting Plane is responsible for creating the different sub-slices inside each 
domain and for monitoring the E2E KPIs of the XR services. It is also responsible for the lifecycle 
management of the XR services, and it can shift services between the different domains when 
necessary. 

A detailed description of the different components of the CHARITY architecture can be found in the 
Deliverable D1.3.  

The WP3 tasks are connected to the CHARITY architecture as described in the following (see Figure 1, 
Table 1 and Table 2):  

• Task 3.1 Efficient exploitation of CPUs, GPUs and FPGAs on edge devices. This task is focused 
on providing efficient solutions for exploiting computational resources to support the project 
needs. The main activities are related to the monitoring and the resource indexing, as well as 
technological and algorithmic solutions for enabling the exploitation of the different and 
heterogeneous computational resources belonging to CHARITY. The monitoring framework is 
strictly connected with the Task 2.1 and 2.2 and also with the Task 3.3.  
 

• Task 3.2 Efficient storage and caching for AR, VR and Holographic applications. In the ambit 
of this task several components for the realization of a distributed edge storage framework 
spread across heterogeneous edge and cloud nodes, with intelligent data management, high 
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quality performance (QoE), and high-security levels are under development. These 
components, parts of the XR Service Deployment Plane, are: the CHarity Edge Storage (CHES) 
which is a distributed hybrid storage component and the CHES Registry component that 
realizes a localized Docker registry in order to support the faster application deploying and 
limit the network flooding caused by large image downloads during deployment. In addition, 
two mechanisms will be investigated, the chaRity OnLine prOactive cachIng (ROLOI) 
mechanism which is an online proactive caching scheme based on deep neural network 
models, and the PRoActive ComponenT Image plaCement in edge computing Environments 
(PRACTICE) which ensures that application images are delivered within a given amount of time 
to any resource composing the federation of edge devices. 
 

• Task 3.3 Network and infrastructure awareness for efficient exploitation of resources: is to 
explore the Dynamic Software Production Line (DSPL) paradigm to adapt XR services 
dynamically and automatically to network and environment changes. Task 3.3 will also design 
and develop specific Monitoring, Analytics, Decision and Actuation Engines for both domain 
and cross-domain levels. This work is related to the realization of the XR Service Specific 
Analytics Engine, the XR Service Specific Decision Engine, and the XR Service Specific Actuation 
Engine components, which are parts of the Domain-specific Monitoring and Reaction Plane as 
well as of the XR Service E2E Conducting Plane.  
 

• Task 3.4 Adaptive rendering and contextualized data compression / decompression: The 
R&D activities conducted in this task are related to the development of the algorithms that will 
integrated in data services for XR applications such as the Point Cloud Encoder/Decoder (PC 
E/D), used by the UC 1-3 Holo Assistant, or the Mesh Merger, developed to support the UC3-
1 Collaborative Gaming.  

 

To make this document self-containing and more readable, we report below two tables adapted from 
D4.1. Table 1 contains the name of the component of the CHARITY Framework together with the name 
of the tasks related to its development.  and Table 2, which contains the name of the 
algorithms/mechanisms that is at the base of some specific plane/component, and the task within it is 
studied and developed.   

Table 1: CHARITY Component List 

Component Name Architectural Layer Tasks 

Monitoring Agents Monitoring & Reaction Plane T3.1, T3.3 

XR Service Specific Analytics Engine Monitoring & Reaction Plane T2.1, T2.2, T3.3 

XR Service Specific Decision Engine Monitoring & Reaction Plane T2.1, T2.2, T3.3 

XR Service Specific Actuation Engine Monitoring & Reaction Plane T2.1, T2.2, T3.3 

Running XR Services Repository Monitoring & Reaction Plane T2.1, WP3, WP4 

Plane Services Registry & Discovery Monitoring & Reaction Plane T2.1, WP3, WP4 

E2E Service Specific DE/AE/ACT XR Service E2E Conducting Plane T2.1, T2.2, T3.3 

XR Service Enabler Repository XR Service E2E Conducting Plane T2.4, WP3 

Running XR Services Repository XR Service E2E Conducting Plane T2.1, WP3, WP4 

Resource Planning XR Service E2E Conducting Plane T3.1 

Resource Indexing XR Service E2E Conducting Plane T3.1 

XR Device Controller XR Service Deployment Plane WP3 

XR Service Enabler Controller XR Service Deployment Plane WP3 
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Table 2: CHARITY proposed mechanisms and algorithms 

Component Name Component Description Architectural Layer Tasks 

Prometheus and 
Monitoring agents 

Resource monitoring tool 
Agent to facilitate VNF monitoring 

Monitoring Agents / 
Monitoring & Reaction 
Plane 

T2.2, 
T3.1, 
T3.3 

Adaptative Network 
Traffic Mechanism 

Mechanism to dynamically route 
network traffic accordingly to 
infrastructure conditions 

DE/AE/ACT 

Monitoring & Reaction 
Plane / E2E Conducting 
Plane 

T3.3 

XR Service Enabler 
Repository 

Repositories for container images, 
VM images and metadata 

  

XR Service Enabler 
Repository / XR Service 
E2E Conducting Plane 

T2.4, 
WP3 

CHES (CHARITY Edge 
Storage) 

A distributed hybrid storage 
component spread across 
heterogeneous edge and cloud nodes 
with intelligent decisions on data 
placement, data caching and 
considerations on performance (QoE) 
and security 

XR Service Deployment 
Plane 

T3.2 

ROLOI (chaRity 
OnLine prOactive 
cachIng) 

Online proactive caching scheme 
based on deep neural network 
models to predict time-series content 
requests and update edge caching 
accordingly 

XR Service Deployment 
Plane  

T3.2 

PRACTICE (PRoActive 
ComponenT Image 
plaCement in edge 
computing 
Environments) 

A component that ensures that 
application images are delivered 
within a given amount of time to any 
resource composing the federation of 
edge devices 

XR Service Deployment 
Plane 

T3.2 

3D Point cloud 
encoder/decoder  

Data service component to 
compress/decompress point cloud 
for efficient transmission 

XR Service Deployment 
Plane 

T3.4 

Decentralised 
storage / network 
performance 

Measuring the performance of DHT-
based decentralised storage 
platforms such as IPFS and pub-sub 
based federation networks.  

XR Service Deployment 
Plane  

T3.2 

 

For the complete list of components and algorithms/mechanisms, refer to the Appendix A, B, and C of 
the Deliverable D4.1. The corresponding tables of D4.1 report also provide additional information for 
each component/algorithm, like the name of the partners involved in the development. 

Note that Table 2 reports the algorithms/mechanisms that can be mapped on the CHARITY 
architecture. The Mesh Merger, depending on its final implementation, could be integrated into the 
game server of the UC3-1 or become an additional component. 
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2 Monitoring 

2.1 Monitoring approach 

2.1.1 Monitoring agent 

Prometheus, Grafana and Thanos are the open-source tools at the base of the CHARITY’s monitoring 
platform: monitoring, alerting, data storage and visualization. However, a monitoring element is 
needed to achieve a multi-cloud platform focused on prevention and reactivity.  This monitoring agent 
converts individual static configurations into a dynamic platform and needs to be reporting quickly to 
the XR Data Collector and communicating with the orchestrator. The following table provides an 
overview of these communications. 

Table 3: Monitoring agent communications 

Source Destiny Description 

Orchestrator Monitoring agent Change configuration, alerting 

Monitoring agent Prometheus server Change configuration, alerting 

Monitoring agent Thanos Change configuration 

Orchestrator Monitoring agent Monitor new element 

Monitoring agent Prometheus server Monitor new element 

Monitoring agent Thanos Collect data from new element 

Orchestrator Monitoring agent Stop monitoring an element but 
don't delete Thanos stored data 

Monitoring agent Prometheus server Stop monitoring an element  

Orchestrator Monitoring agent Stop monitoring an element and 
delete Thanos stored data 

Monitoring agent Thanos Stop monitoring an element  

XR Data Collector Monitoring agent Request Data 

Monitoring agent XR Data Collector Send data 

The monitoring agent communicates through HTTP to receive configuration update orders based on 
service migration and to send stored performance data to the Reaction Plane to predict the immediate 
needs of CHARITY elements and use case elements.  The types of orders will be encoded by an integer 
numeric value and will include the parameters necessary to carry out that request: IP of the Kubernetes 
service that represents the element, element id, metric and/or metric value. Based on the data, the 
monitoring agent will generate the necessary commands according to the language set by the target 
elements and launch the request to the specific element. 

2.1.2 Monitoring architecture 

The monitoring architecture, presented in Deliverable D2.1 (Figure 2), responds to the preliminary 
requirements of XR applications to be developed on a multi-cloud platform, reduce complexity, 
focusing on prevention and reactivity in ecosystems with heterogeneity of technologies. To translate 
these formal needs into functional values, it is necessary to identify the elements of the architecture 
of each UC, the links between them, and the needs of each of the developing partners. 
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Figure 2: Monitoring Architecture defined in D2.1 

The analysis of each UC and the KPIs collected in deliverable D1.3 allowed to define the set of values 
to be monitored according to the needs of the UC owners. These metrics and their formats will be 
consulted and processed in the different CHARITY architecture planes. Hence, it is necessary to 
establish common values from the outset to advance in the development of other CHARITY elements 
that depend on the monitoring system, as seen in Table 4. 

Table 4: Metric definition 

 

METRICS DEFINITION OUTPUT NAME OUTPUT UNITS FORMAT EXAMPLE

Latency

Time it takes for a request to reach the 

destination and return, including the operation 

time of the destination to respond to the request 

latency miliseconds -ms three decimals 125,123

RTT

Round trip time. Time it takes for a request to 

reach the destination and return. It doesn't 

include the operation time of the destination to 

respond to the request 

rtt miliseconds -ms three decimals 125,123

Bandwidth
Maximum capacity that can be transmitted over a 

link 
bw Mbps three decimals 1000.000

CPU Percentage of used CPU cpu percentage positive integer 50

GPU Percentage of used GPU gpu percentage positive integer 50

Memory Percentage of used memory memory percentage positive integer 50

Resolution
Number of pixels a screen is capable of 

displaying 
resolution megapixel three decimals 4,096

Color bit depth
Number of bits needed to represent the color of 

a pixel 
colorbitdepth bits per pixel positive integer 24

Frame-rate Frequency at which a device displays images framerate frames per second - fps positive integer 240

Petitions per 

second
Number of requests per second petitionspersecond requests per second positive integer 1000
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A preliminary collection of the monitoring requirements of the use cases, from the performance of 
each of the elements to the performance of the links between the different elements. To open 
communications with each UC and find out their preliminary needs, ad-hoc surveys were created. 
These surveys contained a table of metrics that affected the case and a series of questions with which 
to delve into the types of data they need and the technologies of the elements they are developing 
(see an example in Figure 3).  

The results of these surveys allowed to convert the requirements into a list of values to be monitored, 
with already defined formats. This allows also to design the exporters that will expose the data 
collected by the Prometheus server, the core of the monitoring system. The Prometheus server pulls 
metrics from elements monitored through the HTTP endpoint each one uses to communicate. To 
expose these metrics, the elements use exporters, which collect the monitoring information, convert 
it to the format used by Prometheus and expose it to the outside.  

The extensive use of Prometheus implies the existence of a community that maintains numerous 
exporters developed by third parties, which are already identified in the tables in the following sections 
focused on each use case. However, XR applications involve the appearance of new elements that 
require the development of custom exporters, for which Prometheus offers detailed documentation 
and compatibility with the most common programming languages. Therefore, the collection of 
information, made through a questionnaire (as in Figure 3), needs to be made prior to the development 
of the monitoring system is a key step for the following phases, since it allows efforts to be focused on 
understanding the elements, their languages and the need or not to develop custom exporters, that 
can be similar between different use cases. 

 

Figure 3: Questionnaire for Collins Aerospace 

Prometheus allows the use of four metric formats, two of them for individual values and the other two 
for storing a set of values during a certain period. Counter is an integer value that is incremented by 
one or reset to zero, while gauge allows the numeric value to increment and decrement. Histogram 
allows to collect values between certain margins over a period of time to later perform statistical 
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analysis. The use of summary is similar to that of histogram, with the difference that it does not require 
a bucket definition, so it allows obtaining frequencies of more adjusted values than those of a 
histogram. In the questionnaires made to the UCs, these four possibilities were offered for the values 
to be monitored and they were asked to choose the formats according to the needs of each of their 
elements. In the following tables they will be defined as Counter -C-, Gauge -G-, Histogram -H- and 
Summary -S-. 

The information discussed in this section serves as background for the following sections, which 
include the tables with the monitoring needs of both use cases and CHARITY own architecture, 
compiling metrics, formats and the existence of exporters already developed that expose the data. 

2.2 UC1-1 - UC1-2: HOLO 3D - Holographic concert and holographic meeting 

The preliminary level of development of the use cases is different for each of the applications, so not 
all of their microservices are already defined or implemented. In the case of the holographic systems 
for concerts and meetings devised by Holo3D, we find key metrics related to image quality, as well as 
the performance of communications to eliminate delays and offer a real-time experience. 

Table 5: UC1-1 and UC1-2 - elements and metrics 

 

 

2.3 UC1-3: SRT - Holographic assistant 

The elements of the SRT holographic assistant are developed on Windows servers, which already have 
existing exporters to expose data in Prometheus format. The only custom exporter to create is the one 
that involves the end user of the application. The creation of this type of exporter is common to all use 
cases, since Prometheus cannot monitor screens, virtual reality headsets or cockpits. Its monitoring 
will be carried out on another element of the architecture of the use case that communicates with 
these final elements. 

USE CASE ELEMENT Links Latency RTT
Band-

width
CPU GPU Memory

Reso-

lution

Color 

bit 

depth

Frame 

rate

HTTP 

Endpoint 

Exposer

Exporter
Endpoint 

Status

Musician (PC with 

camera, microphone)

Charity edge HG HG HG - - - H G G CUSTOM - To develop

Client (person 

watching the 

hologram on a 

holographic display)

Charity edge HG HG HG - - - H G G CUSTOM - To develop

Windows server X HG HG HG G - G - - - EXPORTER
Windows 

server
Ready

Speaker (PC with 

camera and 

microphone)

Charity edge HG HG HG - - - H G G CUSTOM - To develop

Client (person 

watching the 

hologram on a 

holographic display)

Charity edge HG HG HG - - - H G G CUSTOM - To develop

Windows server X HG HG HG G - G - - - EXPORTER
Windows 

server
Ready
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Table 6: UC1-3 - elements and metrics 

 

 

2.4 UC2-1: ORAMA - Medical training 

Surgical learning through extended reality implies high synchronization between all the participants in 
the session to accurately simulate the collaborative work that takes place in an operating room 
between the end users of the application and the responses of the virtual elements to collisions with 
users. 

Table 7: UC2-1 - elements and metrics 

 

2.5 UC2-2: DOTES - Virtual tours 

Virtual tour applications are widely popular; however, they are still far from providing a realistic 
immersive user experience as they don’t focus on the limitations that the network imposes on 
application performance. To achieve the quality of the image and interaction with the scenarios that 
DOTES plans with its application, it’s essential that the communication speeds of the network and the 
processing of the elements adjust to their maximum performance. 

USE CASE ELEMENT Links Latency RTT
Band-

width
CPU GPU Memory

Reso-

lution

Color 

bit 

depth

Frame 

rate

HTTP 

Endpoint 

Exposer

Exporter
Endpoint 

Status

PC with holographic 

3D device and 

Eyetracker

Charity edge HG HG HG - - - H G G CUSTOM - To develop

Windows server X HG HG HG G - G - - - EXPORTER
Windows 

server
Ready

SRT_SW_CLIENT SRT_SW_CONTENT HG HG HG G - G H G G EXPORTER
Windows 

server
Ready

SRT_SW_CONTENT
SRT_SW_BEHAVIOUR,

SRT_SW_PCGEN
HG HG HG G G G - - - EXPORTER

Windows 

server
Ready

SRT_SW_PCGEN CHARITY_SW_PCENC HG HG HG G G G - - - EXPORTER
Windows 

server
Ready

CHARITY_SW_PCENC SRT_SW_CLIENT HG HG HG G G G - - - EXPORTER
Windows 

server
Ready

SRT_SW_BEHAVIOUR Google API HG HG HG G - G - - - EXPORTER
Windows 

server
Ready

USE CASE ELEMENT Links Latency RTT
Band-

width
CPU GPU Memory

Reso-

lution

Color 

bit 

depth

Frame 

rate

HTTP 

Endpoint 

Exposer

Exporter
Endpoint 

Status

VR equipment vendors 

(PC, and/or Head-

mounted display, 

other controllers)

Charity edge HG HG HG - - - H G G CUSTOM - To develop

Signalling Service LSpart_1 HG HG HG G G G - - - CUSTOM - To develop

LSpart_1 LSpart_2 HG HG HG G G G - - - EXPORTER
Windows 

server
Ready

LSpart_2
LSpart_1

HG HG HG G G G - - - EXPORTER
Windows 

server
Ready

Relay server LSpart_1 HG HG HG G - G - - - EXPORTER
Windows 

server
Ready

Lspart_1 - Controller 

interface ?
HG HG HG EXPORTER

Windows 

server
Ready
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Table 8: UC2-2 - elements and metrics 

 

2.6 UC3-1: ORBK - Mixed reality 

The extended reality application devised by ORBK focuses on the user's interaction with the virtualized 
scenario, the virtual objects introduced and that all this happens with the minimum delay between all 
the users of that application session. The mesh collider that is being developed in the CHARITY project 
is key to the performance between real image and virtualized elements, and to achieve the KPIs of the 
next generation XR applications, a proactive adaptive architecture like CHARITY is needed. 

Table 9: UC3-1 - elements and metrics 

 

2.7 UC3-2: Collins Aerospace (CAI) - Flight simulator 

To date, the simulation of high-speed scenarios has been limiting in terms of collaborative applications 
due to the difficulties of synchronization between users and the performance of the different 
microservices in charge of predicting the images to be displayed in the participants. In the case of 
Collins Aerospace, an edge architecture is proposed to reduce interaction times and control over the 
requests received by each element to show the highest image quality to always maintain 
synchronization between its users. 

USE CASE ELEMENT Links Latency RTT
Band-

width
CPU GPU Memory

Reso-

lution

Color 

bit 

depth

Frame 

rate

HTTP 

Endpoint 

Exposer

Exporter
Endpoint 

Status

Cyango Story - front-

end
Charity edge HG HG HG - G - H G G CUSTOM - To develop

Cyango Cloud Editor - 

front-end
Charity edge HG HG HG - G - H G G CUSTOM - To develop

Charity media 

converter
Cyango API HG HG HG G G G - - - CUSTOM - To develop

Cyango API 3D engine HG HG HG G - G - - - CUSTOM - To develop

File Hosting 3D engine HG HG HG G - G - - - CUSTOM - To develop

3D engine
Cyango front-

end
HG HG HG G G G - - - CUSTOM - To develop

Image Engine HG HG HG G CUSTOM - To develop

Video Engine (replace 

by charity media 

converter)

HG HG HG G CUSTOM - To develop

Livestream service HG HG HG G CUSTOM - To develop

Database - Mongo DB HG HG HG - EXPORTER mongoDB Ready

Transcribe Service HG HG HG - CUSTOM - To develop

USE CASE ELEMENT Links Latency RTT
Band-

width
CPU GPU Memory

Reso-

lution

Color 

bit 

depth

Frame 

rate

HTTP 

Endpoint 

Exposer

Exporter
Endpoint 

Status

Game client Game Server HG HG HG - - - H G G CUSTOM - To develop

Game Server

Game client, 

Mesh collider, 

Game Servers 

Status DB 

HG HG HG G - G - - - CUSTOM - To develop

Game Servers Status 

DB 
Game Server HG HG HG G - G - - - EXPORTER

Cloud 

Watch
Ready

Charity Mesh 

collider
Game Server HG HG HG G G G - - - CUSTOM - To develop

Mesh Merging 

Service by CNR
Game Server HG HG HG - G - - - - CUSTOM - To develop
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Table 10: UC3-2 - elements and metrics 

 

2.8 Relationship with the CHARITY Architecture 

The adaptive scheme devised by CHARITY implies the migration of elements to offer maximum 
performance in services and applications, something that does not only affect the deployed 
applications but also the elements of the CHARITY architecture that work with them and resources 
available in the different cloud domains. The monitoring is a key part between dynamically adaptive 
network-aware services and efficient exploitation of resources being in continuous communication 
with the Monitoring & Reaction Plane. This plane is in charge of making proactive decisions, avoid 
delays and improve the quality of the next generation XR applications. CHARITY architecture 
performance is defined by use cases extreme KPIs, therefore, the latencies and bandwidths required 
between use case microservices must be directly proportional in the elements of the CHARITY 
architecture to ensure adaptability to the performance required by the applications. The continuous 
monitoring of elements and the network that connects them is what allows us to anticipate 
performance failures that will affect the gaming experience, so monitoring, prediction and migration 
are the key cycle in the CHARITY project after the initial deployment of the applications. This is only 
possible with the continuous performance analysis of all the components and the available resources 
for the modification of the deployed architecture in order to achieve the best possible performance. 

 

 

USE CASE ELEMENT Links Latency RTT
Band-

width
CPU GPU Memory

Reso-

lution

Color 

bit 

depth

Frame 

rate

HTTP 

Endpoint 

Exposer

Exporter
Endpoint 

Status

Cockpit (flight stick, 

thrustor, pedals)

Flight Oracle, 

Scene 

Management

HG HG HG - - - H G G CUSTOM - To develop

Flight Oracle - edge 
Terrain 

Management
HG HG HG G - G - - - CUSTOM - To develop

Scene Management - 

edge
Device HG HG HG G G G - - - CUSTOM - To develop

Terrain Management - 

cloud

Scene 

Management
HG HG HG G G G - - - CUSTOM - To develop

Terrain DB - cloud

Terrain 

Management, 

Image Generator

HG HG HG G - G - - - EXPORTER
PostgreSQ

L
Ready

Arena Management - 

cloud

Scene 

Management
HG HG HG G - G - - - CUSTOM - To develop

Flight Dynamics

Flight Oracle, 

Cockpit, View 

Builder

HG HG HG G G G - - - CUSTOM - To develop

Image Generator
Flight Oracle, 

Terrain DB
HG HG HG G G G - - - CUSTOM - To develop

Frame Caché

View Builder, 

Resolution 

Upscaler, Image 

Generator

HG HG HG G G G - - - EXPORTER Redis Ready

View Builder

Flight Dynamics, 

Frame caché, 

WARP, web RTC 

Client

HG HG HG G G G - - - CUSTOM - To develop

WARP View Builder HG HG HG G G G - - - CUSTOM - To develop

web RTC Client PC-HMD HG HG HG G G G - - - CUSTOM - To develop

PC, HMD webRTC HG HG HG G - G H - G CUSTOM - To develop

Resolution Upscaler Frame Caché HG HG HG G G G - - - CUSTOM - To develop
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The elements of the CHARITY architecture that are under development will require the creation of custom exporters adapted to the work of the developers, since 
they are new services that are not based on existing solutions. These exporters will be developed in the languages of the services themselves and will be in charge 
of adapting formats to the metrics managed by Prometheus and offering an exposure point that will be consulted by the Prometheus monitoring server, as listed in 
Table 11 and Table 12. The initiation of the development of these exporters is planned for the coming period. 

Table 11: Architecture - elements and metrics monitoring and reaction plane 
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Table 12: Architecture - elements and metrics other planes 

 



D3.1: Energy, data and computational-efficient mechanisms supporting dynamically adaptive … 

Copyright © 2021 - 2022 CHARITY Consortium Parties  Page 26 of 91 

3 CHARITY Edge Storage (CHES) 

3.1 Component descriptions 

The CHARITY Edge Storage Component (CHES) is responsible for providing optimized edge storage 
services to the CHARITY framework and its hosted applications. These services include data storage, 
retrieval and migration tasks, security and privacy protection capabilities, QoS and QoE violation 
prevention and mitigation as well as other data-related services that serve the runtime requirements 
of CHARITY. In detail, the edge storage component has to provide a reliable, fast, stable and secure 
shared storage engine, accessible by all devices and users in an edge-cloud. Furthermore, it needs to 
be extremely lightweight since it is created for edge devices with extremely limited resources, like 
Raspberry Pies or other micro-computer devices. 

Edge nodes generally have limited computation, storage, network, or power resources. The 
distributed, dynamic and heterogeneous environment in the edge and the diverse application’s 
requirements pose several challenges. The edge storage component needs to overcome some inherent 
edge challenges like: 

• Coordination of unreliable devices and network 

• Hardware and software incompatibilities that arise due to the plethora of different devices 

• Mobility of the devices and the users (in some Use Cases) 

• Integration of different data storage formats and data types 

• Limited resources of the edge devices 

• Security and privacy concerns 

• QoE insurance 

CHES component is based on the Kubernetes (K3s)3, MinIO4 and Prometheus5 technologies, combining 
and optimizing them in order to better serve the needs of CHARITY. Kubernetes is an open-source 
system for automating deployment, scaling, and management of containerized applications. More 
specifically, a lightweight Kubernetes distribution built for IoT & edge computing is used, called K3s. 
K3s is a highly available, certified Kubernetes distribution designed for production workloads in 
unattended, resource-constrained, remote locations or inside IoT appliances. As a storage solution, an 
open-source framework created by IBM is utilized, called MinIO. MinIO is an inherently decentralized 
and highly scalable Peer-to-Peer solution, allowing us to deploy it freely on usable nodes. It is designed 
to be cloud native and can run as lightweight containers managed by external orchestration services 
such as Kubernetes. It supports a hierarchical structure in order to form federations of clusters and it 
has been proven as a valid candidate for an edge data storage system[1]. MinIO writes data and 
metadata together as objects, eliminating the need for a metadata database. In addition, MinIO 
performs all functions (erasure code, bitrot check, encryption) as inline, strictly consistent operations. 
The result is that MinIO is exceptionally resilient. Moreover, it uses object storage over block storage 
so it is in fact a combination of the two systems, preserving the lightweight distributed nature of block 
storage while providing the plethora of metadata and easy usage of the object storage. Unlike other 
object storage solutions that are built for archival use cases only, the MinIO platform is designed to 
deliver the high-performance object storage that is required by modern big data applications. In 
addition, MinIO provides both a web-based GUI and an AWS S3 compatible API library. The Kubernetes 
Dataset Lifecycle Framework provided by IBM’s Datashim6 is employed on top of MinIO, allowing the 
edge storage component to be used as a file system folder, which is useful for applications that we 

 

3 https://k3s.io/ 

4 https://min.io/ 

5 https://prometheus.io/ 

6 https://datashim.io/ 

https://k3s.io/
https://min.io/
https://prometheus.io/
https://datashim.io/
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cannot or do not want to integrate with the Restful API of MinIO. A detailed description of the 
Kubernetes Dataset Lifecycle Framework is provided in Section 3.1.1. Finally, Prometheus is 
responsible for collecting monitoring data about the real-time performance of the nodes and the 
component as a whole to analyze the behaviour of different applications and optimize the cluster 
architecture, the options, and the data distribution. 

Additionally, a Localized Docker Registry (LDR) is provided using CHES as its file storage backend, in 
order to move application images closer to the edge and limit network traffic and image download 
times. CHES Localized Docker Registry hosts the Docker images and employs Kubernetes 
containerization in order to provide its services, creating a new pod in the CHES namespace that is able 
to connect to the Minio storage backend. In addition, CHES registry creates a set of secrets that allows 
the secure communication between the registry and its clients using the HTTPS protocol and a basic 
authentication scheme. 

3.1.1 Kubernetes Dataset Lifecycle Framework 

Hybrid edge/cloud environment is rapidly becoming the new trend for organizations seeking the 
perfect mix of scalability, performance and security. As a result, it is now common for an organization 
to rely on a mix of on-premises data centers (private cloud), and cloud/edge solutions from different 
providers to store and manage their data. Nevertheless, many obstacles arise when applications have 
to access the data. On the one hand, developers need to know the exact location of the data and, on 
the other hand, manage the correct credentials to access the specified data-sources holding their data. 
In addition, access to cloud/edge storage is often completely transparent from the cloud management 
standpoint and it is difficult for infrastructure administrators to monitor which containers have access 
to which cloud storage solution. Even if containerized components and micro-services are widely 
promoted as the appropriate solution for efficiently deploying and managing storage over a hybrid 
edge/cloud infrastructure, containerization makes it more difficult for the workloads to access the 
shared file systems. Currently, there are no established resource types to represent the concept of 
data-source on Kubernetes. As more and more applications are running on Kubernetes for batch 
processing, end users are burdened with configuring and optimizing the data access [2].  

To tackle the aforementioned issues, the Dataset Lifecycle Framework (DLF) is employed, which is an 
open-source project that enables transparent and automated access for containerized applications to 
data-sources. DLF enables users to access remote data-sources via a mount-point within their 
containerized workloads and it is aimed to improve usability, security and performance, providing a 
higher level of abstraction for dynamic provisioning of storage for the users’ applications. By 
integrating DLF on Kubernetes pipelines, it is able to mount object stores as Persistent Volume Claims 
(PVCs), which are pieces of storage in the cluster, and present them to pipelines as a POSIX-like file 
system. In addition, DLF makes use of Kubernetes access control and secret so that pipelines do not 
need to be run with escalated privilege or to handle secret keys, thus making the platform more secure. 
 
In more technical detail, DLF orchestrates the provisioning of PVCs required for each data-source, 
which users can refer to their pods (the smallest deployable unit in Kubernetes), allowing them to focus 
on the actual workload development rather than configuring/mounting/tuning the data access. 
DLF is designed to be cloud-agnostic and due to Container Storage Interface (CSI)7, it is highly extensible 
to support various data-sources. CSI is a standard for exposing arbitrary block and file storage systems 
to containerized workloads on Container Orchestration Systems (COS) like Kubernetes. With the 
adoption of COS, the Kubernetes volume layer becomes truly extensible. Using CSI, third-party storage 
providers are able to write and deploy plugins exposing new storage systems in Kubernetes without 
interacting or changing the core Kubernetes code. This provides Kubernetes users more options for 
storage and makes the system more secure and reliable. On the infrastructure side, DLF also enables 
cluster administrators to easily monitor, control, and audit data access. 

 

7 https://kubernetes-csi.github.io/docs/ 

https://kubernetes-csi.github.io/docs/
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DLF introduces the Dataset as a Custom Resource Definition (CRD)8, which is a pointer to existing S3 or 
NFS data-sources. A Dataset object is a reference to a storage provided by a cloud-based storage 
solution, potentially populated with pre-existing data. In other words, each Dataset is a pointer to an 
existing remote data source and is materialized as a PVC. The Dataset is a declarative construct that 
abstracts access information and provides a single reference for data in Kubernetes. Users only need 
to include this reference in their deployments to make the data available in pods, either through the 
file system or through environment variables [3].  
 
Figure 4 illustrates an example configuration of a Dataset CRD for data stored in COS. The mandatory 
fields are the bucket, endpoint, accessKeyID, and secretAccessKey. The bucket entry creates a one-to-
one mapping relationship between a Dataset object and a bucket in the COS. The accessKeyID and 
secretAccessKey fields refer to the credentials used to access this specific bucket.  
DLF is completely agnostic to where/how a specific Dataset is stored, as long as the endpoint is 
accessible by the nodes within the Kubernetes cluster, in which the framework is deployed. 
 

 
 

Figure 4: An example of mounting a PVC created by the DLF integration 

Creating a CRD is just the first step to add custom logic in the Kubernetes cluster. The next step is to 
create a component that has embedded the domain-specific application logic for the CRD. Essentially, 
a service provider needs to develop and install a component which reacts to the various events which 
are part of the lifecycle of a CRD and implements the desired functionality. 
 
DLF utilizes the Operator-SDK, an open-source component of the Operator Framework9, which 
provides the necessary tooling and automation in the development of these components in an 
effective, automated, and scalable way. Operator-SDK is utilized to create the Dataset Operator in DLF. 
Its main functionality is to react to the creation (or the deletion) of a new Dataset and materialize the 
specific object. Specifically, when a Dataset gets created, the software stack invokes the necessary 
Kubernetes CSI plugin and creates a PVC that provides a file system view of the bucket in the COS.  
 
Figure 5 demonstrates in an abstract view, the Dataset Lifecycle Framework with the various 
components employed in an example of a two-node K3s cluster. 

 

8 https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions 

9 https://operatorframework.io/ 

https://kubernetes.io/docs/tasks/extend-kubernetes/custom-resources/custom-resource-definitions
https://operatorframework.io/
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Figure 5: Dataset Lifecycle Framework (DLF) 

3.2 Package information  

3.2.1 CHES Storage 

CHES is a package including Kubernetes deployment files in YAML format, installation scripts in bash 
script format and a configuration file in JSON format that contains all options needed to configure the 
component.  

All files of the package are available on the official CHARITY GitLab page10 and can be obtained with 
the following command:  

$ git clone https://gitlab.charity-project.eu/hua/edgestoragecomponent.git 

In detail, we have one YAML file called chesDeployment.yaml which is the Kubernetes deployment file 
for the storage server (master). This file will install all necessary services, authentication keys, roles 
and images on the Kubernetes cluster, reading information from the configuration file (.conf). It will 
use the Kubernetes architecture, deploying most services on the Kubernetes master. Of course, the 
actual MinIO instances that store the data will be deployed on the nodes having the label “ches-
worker” set to “true”. The second yaml file is called chesClientDeployment.yaml and it will allow nodes 
to use CHES as a file system folder by mounting the PVC that is connected to the CHES storage service.  

 
The bash scripts are again two, chesInstalldeploy.sh that configures and deploys the 
chesDeployment.yaml on the Kubernetes master, and chesClientDeploy.sh that configures and 
deploys the chesClientDeployment.yaml on the client nodes. These scripts are just applying the options 
selected in the configuration file to the YAML files and then run the necessary commands to deploy 

 

10 https://gitlab.charity-project.eu/hua/edgestoragecomponent 
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the YAML files on the Kubernetes cluster. There is a third bash script called InstallScript.sh which is 
configuring and deploying the chesDeployment.yaml file in a single K3s cluster node installation, 
without requiring any additional configuration steps. 
Finally, a yaml file called dlf_kube.yaml is used for the deployment of the Dataset Lifecycle Framework 
and a bash script named Undeployches.sh which undeploys the CHES containers and jobs. A complete 
list of the files included is presented in Table 13. 

Table 13: List of package files for Edge storage component 

Filename  Description 

chesDeployment.yaml Kubernetes deployment file for CHES master 

chesClientDeployment.yaml Kubernetes deployment file for CHES client(s)  

chesInstalldeploy.sh  Bash script for deploying the CHES servers 

chesClientDeploy.sh  Bash script for deploying the CHES client(s)  

InstallScript.sh 
Bash script for deploying the CHES servers on single 
node clusters 

configuration_file.conf 
JSON file containing the configuration options for 
CHES 

dlf_kube.yaml 
Kubernetes deployment file for the Dataset Lifecycle 
Framework 

Undeployches.sh 
Bash script for undeploying the CHES containers and 
jobs 

 

3.2.1.1 Kubernetes Dashboard 

Along with the CHES component, the Kubernetes dashboard is provided, which is a web-based 
Kubernetes user interface. In general, Kubernetes dashboard is used to deploy containerized 
applications to a Kubernetes cluster, troubleshoot the containerized applications, and manage the 
cluster resources. In addition, the dashboard can get an overview of applications running on a cluster, 
as well as for creating or modifying individual Kubernetes resources (such as Deployments, Jobs, 
DaemonSets, etc). Dashboard also provides information on the state of Kubernetes resources in the 
cluster and on any errors that may have occurred. The associated files are located in the same 
repository with CHES. 
 
In detail, the installation of Kubernetes dashboard includes four files, two deployment yaml files and 
two bash scripts. A bash script named InstallDashboard.sh is used for deploying the Kubernetes 
dashboard in a K3s cluster. A complete list of the files included, is presented Table 14. 

Table 14: List of files included in the Kubernetes Dashboard 

Filename  Description 

InstallDashboard.sh Bash script for deploying the Kubernetes Dashboard 

recommended.yaml 
Kubernetes deployment file for Kubernetes 
dashboard 

dashboard_account_roles.y

aml 

Kubernetes deployment file for creating a minimal 
RBAC configuration, i.e. a Service Account and a 
ClusterRoleBinding 

UndeployDash.sh 
Bash script for undeploying the Kubernetes 
Dashboard 
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3.2.2 CHES Localized Docker Registry 

CHES Localized Docker Registry is the second sub-component that realizes a localized registry in order 
to support the faster application deploying and limit the network flooding caused by large image 
downloads during deployment. This functionality acts as a proactive caching mechanism by optimizing 
the download delays and the network traffic. The port of the CHES LDR as well as its credentials are 
pre-configured using the generalized configuration file that is packed with the edge storage solution.  
Figure 6 illustrates the CHES LDR sub-component. The associated files are separated into a different 
folder, in order to separate them by functionality, make documentation and maintenance easier and 
decouple their installation process.  
 

 

Figure 6: CHES Localized Docker Registry 

CHES Localized Docker Registry can be downloaded by running the command: 

$ git clone https://gitlab.charity-project.eu/hua/edgestoragecomponent.git 

In detail, the installation of CHES LDR includes six files, four deployment yaml files and two bash scripts. 
The yaml files are deploying all the necessary containers and jobs that need to be executed to setup 
and configure the registry, in order to be functional and accessible by other containers hosted in the 
same K3s cluster. A complete list of the files included is presented in Table 15 . 

 

Table 15: List of files included in the CHES Registry repository 

Filename  Description 

add_certs.yaml 

Kubernetes deployment for a daemon job that 
adds the appropriate SSL certificates to new 

containers 

add_to_hosts.yaml  

Kubernetes deployment for a daemon job that 
adds the appropriate configurations to the 

hosts files of new containers 

deployment.yaml 
Kubernetes deployment for the Docker registry 

container 

registry_setup.sh 
Bash script for deploying the CHES LDR 

containers and jobs 

registry_uninstall.sh 
Bash script for undeploying the CHES LDR 

containers and jobs 

test_deploy.yaml  

Kubernetes deployment for a test container 
that loads a docker image from the deployed 

CHES LDR 
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3.2.3 Semi-automated Deployment and off-loading 

In the context of the presented solution, a set of bash and yaml scripts have been developed that 
handle all the configuration, installation and deployment processes that need to be contacted before 
and after the MinIO workers are deployed. These configurations include firewall rules, DNS settings, 
package installations and security checks that take into account the setup environment, the 
architecture and resources of the physical machines and the software involved. These tasks enable the 
semi-automatic deployment of the edge storage solution, forming complex pipelines that in most 
other cases are performed manually by a system administrator. This ensures that scaling can be 
performed seamlessly on each cluster, regardless of the underlying physical machines that act as 
nodes. In addition, off-loading of data can be achieved by "ordering" more instances of the MinIO 
worker to be deployed on more nodes and adding them in the same MinIO cluster in real-time.   

3.3 User Manual 

3.3.1 CHES Storage 

We have three ways to utilize CHES, the first way is through the MinIO Web GUI which is clearly 
described in detail on the official MinIO documentation11. A sample MinIO storage deployment can be 
seen in Figure 7. 
 

 

Figure 7: The MinIO web-based interface  

 
 
The second way is through the MinIO client which is a command line tool that is also documented in 
detail on the official MinIO website12. A connection to a remote host can be seen as an example in 
Figure 8. 
 

 

11 https://docs.min.io/docs/minio-quickstart-guide.html 

12 https://docs.min.io/docs/minio-client-complete-guide.html 

https://docs.min.io/docs/minio-quickstart-guide.html
https://docs.min.io/docs/minio-client-complete-guide.html
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Figure 8: An example connection with the command line MinIO client  

Additionally, using the integrated Datashim’s DLF, CHES can be accessed through the K3s deployment 
files by mounting the PVC it creates as a system volume. Detailed reference of the usage of PVCs can 
be found in the Kubernetes API documentation13. An example of the deployment is illustrated in Figure 
4. 

Moreover, the Kubernetes dashboard which is a web-based Kubernetes user interface is illustrated in 
Figure 9. 

 

Figure 9: Kubernetes Dashboard 

3.3.2 CHES Registry 

CHES LDR can be accessed through the Docker Registry APIs. These APIs are described in the official 
Docker documentation14. An example of the catalog API, which lists the available repositories, is 
illustrated in Figure 10. Catalog API is the simplest of the APIs provided, displaying a list of the available 
images pushed in a registry. In our case it is hosting an example hello-world image. 

 

 

Figure 10: Example of the catalog API for CHES LDR hosted in a local K3s cluster 

 

13 https://kubernetes.io/docs/concepts/storage/persistent-volumes/ 

14 https://docs.docker.com/registry/spec/api/ 

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://docs.docker.com/registry/spec/api/
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3.4 Licensing 

This component, including all originally created source files, scripts and other resources is going to be 
published as free software under the terms of the GNU General Public License version 3 or later, as 
published by the Free Software Foundation.  
 
MinIO is provided under GNU Affero General Public License version 3 which enables us to use it as an 
open-source component providing that we also use a GNU public License.  
 
Prometheus, Datashim and K3s are protected under Apache License which gives us full usability of 
their open-source components.  

3.5 Results obtained in relation to the objectives (KPIs) 

The work conducted in Task 3.2 aims in achieving the objectives along with the requirements and 
targeted KPIs. More specifically, the KPIs that will be met from Objective 2 (Provide holistic support for 
the orchestration of advanced media solutions) are: 

• KPI-2.2 Storage formats: at least one (block, file, object) 
o As already mentioned, as a storage solution, an open-source framework created by 

IBM is utilized, called MinIO. This framework uses object storage over block storage so 
it is in fact a combination of the two systems, preserving the lightweight distributed 
nature of block storage while providing the plethora of metadata and easy usage of 
the object storage. 

▪ Extensive research has been conducted in the field of storage solutions in edge 
computing infrastructures. A scientific journal entitled “A Lightweight Storage 
Framework for Edge Computing Infrastructures” [28] has already been 
submitted which presents the proposed new edge storage solution (CHES).   

• KPI-2.3 Edge storage hit rate: higher than 70% 
o The native “disk cache” feature of MinIO is investigated. Disk caching feature refers to 

the use of caching disks to store content closer to the tenants allowing users to have 
the following: i) object to be delivered with the best possible performance and ii) 
dramatic improvements for time to first byte for any object. 

o An online proactive caching scheme based on deep recurrent neural network models 
is investigated to predict time-series content requests and update edge caching 
accordingly. 

• KPI-2.4 Blockchain for edge storage transaction rate: more than 4 transactions per second 
o A blockchain database, namely BigchainDB15 is being explored. More specifically, 

BigchainDB supports both blockchain (decentralization, immutability, and owner-
controlled assets) and database properties (high transaction rate, low latency, 
indexing, and structured data querying). One design goal of BigchainDB is the ability 
to process a large number of transactions each second. Each BigchainDB instance is a 
virtual concept consisting of three parts: i) a MongoDB database, ii) a BigchainDB 
server and iii) a Tendermint communication node which uses a Byzantine Fault 
Tolerant middleware for networking and consensus. Preliminary results demonstrated 
that MinIO is able to achieve a higher transaction rate (4.3) compared to BigchainDB 
(3.2) for a specific class of experiments. The performance evaluation was executed 
through Locust16, an open-source load testing framework that enables the definition 
of user behaviour and supports running load tests distributed over multiple machines 

 

15 https://www.bigchaindb.com/ 

16 https://locust.io/ 

https://www.bigchaindb.com/
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and simulates millions of simultaneous user requests. Overall, the experimental 
results demonstrated that MinIO presents the best performance in both read and 
write operations. To further evaluate the storage systems, we also measured the RAM 
usage, the CPU usage, the disk latency and the disk IO time for a single user's request 
and for all users' request. Again, MinIO achieved the best performance. A scientific 
journal in the context of performance of storage systems in edge computing 
infrastructures entitled “Performance Analysis of Storage Systems in Edge Computing 
Infrastructures” has been published in Applied Sciences (MDPI) to the Special Issue 
Cloud, Fog and Edge Computing in the IoT and Industry Systems. However, we will 
investigate further the blockchain capabilities for increasing the edge storage 
transaction rate. 

 

3.6 Relation to research questions 

There are a number of research questions regarding the edge storage, which are actively being 
researched at the moment. These questions include the intelligent data placement in computing 
networks, the pro-active and intelligent caching of data, the minimization of resource waste and the 
maximization of resource efficiency and the harmonization of IoT network diversity. The present 
research work and the designed component provides solutions to most of these open research 
questions by providing a complete edge storage solution that takes into account the present issues in 
IoT edge networks and the vast number of data transactions that continuously happen between them. 

Pro-active and intelligent caching of data are two questions that also trouble the academic community 
and the industry for a very long time. It concerns the replication or migration of data before they are 
needed to have them ready for usage when they are finally needed. This minimizes the wait time of 
operations since the I/O and network operations, which usually take much more time to be completed 
than processing does, are performed before they are needed. In order to achieve that, an edge storage 
system needs to be able to predict the need for a specific data packet early enough to be able to 
complete the data operations before the need arises. Modern approaches are using machine learning 
in order to profile the applications and the users of a system, extracting patterns of behaviour that hint 
at the future data operations. The presented solution is using Kubernetes as an orchestrator, which 
enables us to define certain node affinity and node selection rules that aid the selection of storage 
workers and the placement of the data inside an edge cluster. The affinity rules are relaxed rules that 
are instructing Kubernetes to prefer nodes that are meeting most of the affinity rules specified. On the 
other hand, selection rules are strict and instruct Kubernetes to deploy the storage workers on nodes 
that fulfill all of the selection rules. These rules can be dynamically set either by a network 
administrator or by an automated mechanism such as an intelligent agent or a machine learning model 
that can estimate the most efficient placement of storage workers. 

Harmonization of IoT network diversity concerns the definition of a uniform way of handling the 
various IoT devices that can be a part of an edge cluster. An IoT edge network is like a living organism. 
The parts that comprise it can change at any given time either because they do not wish to be part of 
the network anymore, due to hardware or software malfunction, scaling out and in operations or for 
any other reason that removes or adds new devices over the device-edge-cloud continuum. The 
presented solution is using K3s as an orchestrator which is compatible with most devices that run 
windows or unix based operating systems. This enables the administrators to create generalized 
deployment scripts that handle the deployment, configuration, un-deployment and re-deployment of 
the storage workers. These generalized scripts are highly configurable and can be edited in real time 
by higher level scripts and automated mechanisms adding more layers of intelligence and automation 
to these deployment and configuration processes. In addition, DLF provides a uniform way of accessing 
the data, using the local file system of each device, eliminating the need of customized solutions for 
each new device that becomes a member of the device-edge-cloud continuum. 
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3.7 Evaluation of CHES 

The CHARITY Edge Storage Component aims at improving the Quality of Experience (QoE) of the end-
users by migrating data “close” to them, thus reducing data transfers delays and network utilization. 
To evaluate the effectiveness of the storage component, a number of resource utilization and Quality 
of Service (QoS) metrics are collected using the Prometheus system. The data are collected on the 
edge, by Prometheus agents running on edge nodes that handle the data storage. These data are 
stored in the Prometheus database of each edge cluster. More specifically, the data are collected at 
regular intervals of 5 minutes throughout the functional period of the component, i.e. for the whole 
duration that the edge storage component is active and waiting for serving data requests.  
 
The evaluation metrics employed are divided into two categories:  

• Resource consumption: CPU available (total, used), RAM available (total, used), HDD available 
(total, used), Network available (total, used)  

• Performance: Throughput, Data request response time, and Network time 
 
The resource consumption metrics of the first category are all being passively collected by the 
Prometheus agents placed on storage nodes. The performance metrics of the second category on the 
other hand, require a client-side approach so they are actively collected only during benchmarks and 
tests. 
 
The evaluation is conducted using two CHES deployments, one in a local and one in a remote edge 
cluster. The behaviour of CHES is evaluated using a collection of small to medium binary files ranging 
from 15KB to 10MB. All these files are forming the evaluation dataset that is stored in various MinIO 
buckets, created and managed by CHES in the local and remote edge cluster. These buckets are then 
mounted onto new pods, using the DLF, and these new pods are taking the role of clients, sending data 
requests to the CHES and recording performance metrics for these requests.  
 
Figure 11 illustrates the percentage change of various resource utilization metrics -CPU Usage, Memory 
Usage, Available Memory, Disk Write Latency, Disk IO time- during intense data transactions and 
during normal functionality of the node.  

 

Figure 11: Percentage change of various resource utilization metric  

As the results suggest, CHES is not overusing the RAM of the node, although it is slightly increasing the 
usage of the CPU and the disk operations, as expected. This proves that CHES is lightweight enough to 
be deployed on most edge devices. More specifically, the RAM related metrics are near to zero, 
meaning almost no change, the CPU metric is slightly increased while the disk metrics are increased by 
a larger degree, proving intense I/O activity. 

Client-side metrics collected to assess the impact of CHES on QoE, are presenting a clearer picture of 
how CHES improves the response times of various data requests. Figure 12 and Figure 13 demonstrate 
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the comparison between read, write and delete operations for the local and the remote CHES 
respectively.  

 

Figure 12: Read, Write and Delete operation response times in milliseconds for the local CHES deployment  

 

Figure 13: Read, Write and Delete operation response times in milliseconds for the remote CHES deployment 

Due to the object store nature of MinIO, it can be observed that write operations are more time 
consuming compared to read and delete operations. On the other hand, read and write operations do 
not differ much compared to each other, the only difference is the network delay for the final file 
transfer, which is pretty small taking into account that present evaluation tests were conducted using 
file transfers of multiple small to medium files. 

The comparison between the different operations are similar but at a different scale; for the local 
CHES, response times vary between 3 to 17 ms while for the remote CHES, response times vary 
between 84 to 450 ms. This is becoming more obvious when putting the response times into direct 
comparison, as illustrated in Figure 14. The request response time for the local CHES is under 20 ms 
for all file operations which is significantly lower than the remote CHES. In summary, all data operations 
were significantly enhanced during runtime when the data storage was placed near the edge devices. 
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Figure 14: Comparison of response times for various operations for the remote and local CHES deployments  

In conclusion, the above experiments prove two things: a) the lightweight nature of the edge storage 
component, making it a perfect fit for edge device deployments and b) the great reduction in data 
request response times, which on some edge use cases is a necessity for their basic functionality.   
 

Detailed results can be found at the scientific conference paper entitled “Towards a Distributed 
Storage Framework for Edge Computing Infrastructures” [29] presented at the 2nd Workshop on 
Flexible Resource and Application Management on the Edge (FRAME 2022). 
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4 Resource-aware Adaptation Mechanisms 

While the cloud offers extreme scaling opportunities through the dynamic allocation of physical 
resources to meet demand, it comes at a cost. Apart from the design challenges of engineering an 
elastically scalable architecture, the financial costs of cloud resources require careful monitoring. 
Although an application may be able to physically scale to meet demand, it may not be able to do so 
economically - unconstrained growth leads to unconstrained costs and if the returns do not exceed 
the investment, then cost can serve as a scalability brake.  Edge computing resources such as those 
increasingly offered through metropolitan points of presence by hyperscalers and the forthcoming 
rollout of hyper-local edge infrastructure throughout 5G radio networks, offer new architectural 
options for domains such as real-time media streaming which require the flexibility of the cloud with 
the low latency typically associated with locally dedicated hardware. In comparison to traditional cloud 
deployment, edge resources are far scarcer requiring a more measured approach to scalability as there 
may simply be insufficient physical resources available in proximity to the user for optimal operation. 

Across the cloud and edge, software engineers will increasingly find themselves challenged with 
designing software that needs to scale and dynamically adapt its tactics to suit the computational and 
network resources currently available within the environment in which it operates. With a Service 
Based Architecture approach increasingly favoured in modern architectures, there is a growing 
challenge with respect to how we equip services with sufficient adaptability to adjust their operation 
in line with the ebb and flow of physical resources available, and affordable, in their local environment. 

4.1 Dynamic Software Adaptation 

Software should be designed for change so that maintenance and reuse efforts can be minimised. 
Designing for variability has the significant advantage of enabling architects and engineers to delay key 
decisions until late in the development cycle or even until run time through site configuration. The 
longer we can accommodate a delayed decision, the more information we may have to hand when 
having to make the decision as requirements are adjusted in line with customer needs and 
environmental realities. These delayed design decisions are known as variability points [6] and the 
successful integration and curation of variability points has been the subject of intensive research for 
decades [7]. Variability points serve a key role in the design and construction of software product lines 
in which organizations seek to reassemble collections of reusable components into distinct members 
of a product family through leveraging a wide array of architectural, engineering and run-time 
variability point strategies ranging from abstract, interchangeable design stereotypes to run-time 
command line parameters [8].  

While there is much active research into Software Product Line Engineering (SPLE) to attain 
development and deployment reuse efficiencies at industrial scale [9], the approach necessitates a 
highly planned, rigorous, and disciplined approach to variability management throughout the software 
design and implementation phases. It facilitates the reuse of software across multiple products in the 
same family by carefully designing variability points that can be leveraged during the software build 
and deployment process. An extension of this approach, known as the Dynamic Software Product Line 
(DSPL) paradigm, merges SPLE with techniques to adapt software at runtime to produce a collection 
of variability points that may be manipulated through configuration or runtime binding to alter the 
behaviour of deployed software [7].  

Configurability lies at the heart of modern software development and it is rare for software to be 
developed to such a narrow purpose and exact set of parameter values that no deployment 
configuration is required. Indeed, configurability is desirable as it can improve the versatility of 
software and often enable functional behaviour or adaptation to environmental setups that were not 
envisioned at the time of initial software deployment. While some software is equipped with runtime 
dynamic configurability and zero downtime, the vast majority of software at least supports static 
configurability. This could be facilitated through environment variables, command-line parameters or 
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configuration held in a file or repository of some form. Such configurability essentially exposes a 
collection of variability points which can be manipulated to affect the behaviour of the software and 
the principle is the same irrespective of whether the software was developed in-house, open-source 
or closed-source acquired from a third party.  

The number and nature of variability points exposed will vary from one application to the next and can 
range from debugging trace activation to port numbers and timeout values, from sampling rates to 
thread numbers. In fact, the very configurability of software often results in a software configuration 
space explosion [10] that causes challenges for the testability of software (Linux has well over 10,000 
configurable features [11]). In the hands of a knowledgeable user however, configuration is a powerful 
tool to adapt and tune software to its environment and user needs.   

4.1.1 A structure for adaptation 

In [12], the authors put forth a vision of autonomic computing in which software systems could self-
manage according to specific goals. Each component would be designed as an autonomic element 
which would manage its own internal behaviour and relationships with other autonomic elements 
through integration of an autonomic manager in each element. This manager would take responsibility 
for monitoring the operation of the element and its interactions and adjust the operation of the 
element as required (e.g. enable/disable features).  

The autonomic manager comprises of what has come to be known as a MAPE-K loop – Monitor, 
Analyze, Plan and Execute (see Figure 15) according to available Knowledge. In DSPL, the autonomic 
manager becomes the adaptation manager as shown in the figure below. 

 

Figure 15: MAPE-K Loop [7] 

The Monitoring step is concerned with capturing data regarding the properties which will drive the 
adaptation choices. The Analysis step examines the monitored data and performs any necessary pre-
processing before making it available to the Planning step which decides, if adaptation is required, 
which variant of the system is more suited to the current conditions. Once the variant has been 
identified then the Execution step performs the adaptation. 

4.1.2 Context Monitoring & Analysis 

Applications and their environment need to be monitored to observe when the operation of software 
needs to be adapted. To record the properties being monitored, the adaptation manager can maintain 
flat context variables [13] or a more sophisticated hierarchical ontology [14] maintained as a 
dynamically updated property set that can be undergo analysis using pre-defined rules or queries to 
check for conditions that would warrant an adaptation.   
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4.1.3 Planning 

“Our claim is that a major reason for the lack of context-aware, adaptive mobile applications is the 
inherent complexity of building them. Not only need the developers understand the main functionality 
of the application and how this can be provided on a mobile device, but they also have to conceive 
different application variants, specify how applications are linked to the execution context variables, 
and consider which variant should be activated under which context conditions. This complexity may 
easily appear like an insurmountable barrier to the developer” [13]. 

As mentioned previously, the potential system variant explosion arising from variability points in a 
software application can overwhelm the testing efforts. If left to an adaptation manager to explore 
unbridled, automated manipulation of variability points at runtime can lead to operational profiles 
that were not tested or foreseen by the developers. In the field of DSPL, the approach of static goal 
evolution involves an approach in which a software system has a fixed adaptation policy and system 
variants [7]. In the event the system needs to adapt to a new goal (operate at a reduced media 
streaming resolution for example), then the system is stopped, modified and restarted. Verification of 
such systems is greatly simplified as the state space is highly constrained. This suggests a model in 
which the Planning step of the MAPE-K loop can collapse to the selection of a particular variant in 
response to a given goal.  

4.1.4 Execution 

To initiate adaptation, it is required to reconfigure the software using some form of runtime 
reconfiguration mechanism. How this may be accomplished naturally depends on the design and 
capabilities of the software. Approaches based on capabilities of the software architecture range from 
dynamic aspect weaving essentially rewiring the software assembly on the fly [15] to service re-routing 
in a service-oriented architecture. In [11], the authors examined self-adaptation within a micro-service 
architecture for a media streaming platform in which they proposed leveraging the rollout 
functionality available in the Kubernetes platform which can perform rolling upgrades of a given micro-
service without service interruption. 

4.2 Challenges 

In CHARITY we seek to enable the self-adaption of software systems to significant fluctuations in the 
resource availability within the execution environment. Based on an analysis of the state of the art and 
considering the particular needs of CHARITY, we identify a number of challenges. 

4.2.1 Avoid design time intrusions 

We seek to avoid prescriptive, opinionated approaches which step into the architecture and design of 
such systems requiring particular scaffolding and algorithms to be integrated. We adopt this position 
for a number of reasons. Firstly, most software is legacy software and seeking developers to modify 
this software retrospectively creates a significant barrier to adoption.  Secondly, updates to the 
adaptation design and capabilities places an onus on developers to integrate these changes into their 
software resulting, over time, in version mismatches and requiring constant vigilance to maintain 
backwards compatibility. Thirdly, not all the components and services employed in a given software 
system are modifiable. They may be commercial or otherwise unavailable for modification and, even 
when the source is available, it may have been written by a third party (e.g. open source) and difficult 
to modify without subsequent upgrade and maintenance concerns. 

4.2.2 Prevent platform instability 

CHARITY seeks to support a micro-service architecture which can involve chains of services working 
together. When performing an adaptation, we need to be careful that the integrity of the chain is 
maintained and that all services that need to be made aware of an adaptation are made aware – 
regardless of where they are deployed (device, edge, cloud). 
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4.2.3 Accommodate user-level adaptation 

CHARITY also aims to support media streaming software services that operate at scale. At any given 
point in time, there will be a mix of users using a particular service that may necessitate different 
priorities. For example, in a flight training simulation system, users co-operating in a key team 
operational training exercise may take priority over individual users experimenting with the controls 
of the flight simulator. Alternatively, we may want to maintain a high Quality of Experience (QoE) for 
existing users but lower the QoE for new users entering a resource-stressed environment. Supporting 
this model of operation will require that CHARITY supports a multi-tenant architecture where 
applications can simultaneously operate in different modes and priorities. 

4.2.4 Transparency & Tractability 

It is imperative that system adaptations are predictable and visible to avoid instability or loss of 
confidence. 

4.3 Adaptation Infrastructure 

As discussed previously, variability points are used in Software Product Line (SPL) engineering to delay 
decisions until such point as we are better informed as to how software needs to adapt to its use and 
environment. Run-time adaptation through manipulation of variability points at run-time is used in 
Dynamic SPL (DSPL). In CHARITY we propose to implement a DSPL model which utilizes existing 
variability points in a software application to provision a collection of service editions in which each 
service has a number of differently configured copies of itself deployed. In this model, the function of 
any given service edition does not change during its lifetime (i.e. the software itself is not expected to 
self-adapt) but rather different configurations of it are selected according to the environmental 
circumstances. This model is depicted below in Figure 16 in which we show three services – each with 
multiple editions – that exchange information to operate an overall software application. 

 

Figure 16: Service Editions used to satisfy different environment conditions 

In effect, we propose to use static goal evolution [7] in which we constrain the variability state space 
to explicitly configured variants and thus prevent the application from entering into unforeseen (and 
untested) states. There are a range of challenges involved here: 

• How do we enable multiple editions of a single service to operate alongside each other. 

• How do we decide which editions to use under given circumstances and wire these together 
into a safe and coherent service chain. 

• How do we route traffic between services without them needing to be made aware of multiple 
editions. 

• How do we monitor the environment. 
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As we will discuss in the following sections, we propose an evolution of the MAPE-K loop introduced 
previously for runtime adaptation in DSPL. In CHARITY we propose to position a Service Mesh between 
the Adaptation Management and Application Layers as shown below in Figure 17. 

 

Figure 17: MAPEK-K look modified to include a service mesh for monitoring and execution 

Based on the previously identified research and technical challenges, the following sections outline 

how we plan to meet these in CHARITY. 

4.3.1 Configuration Containment 

One of the fundamentally transformative benefits of Docker containers for software development has 
been the ability to create separate self-contained environments for experimentation and production. 
On a single host, we can deploy multiple containers hosting applications that, if run collectively outside 
the container confines on a single node, would come into conflict with each other – for example, 
conflicting version requirements of common software packages; conflicting requests to use the same 
ports, environment variables or journal files. Containers allow us to run multiple copies of the same 
application side by side without coming into conflict. This ability to contain the application’s 
environment to just that application allow us to painlessly run multiple copies of the same application 
side-by-side with different configurations. Configurability through feature flags and configuration 
options at application launch is a widely used technique in software development to offer a variety of 
deployment variations to suit the needs of the given environment (whether business or operational) 
[4]. Docker containers enable us to leverage the power of this configurability in a production 
environment.  
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Figure 18: Run differently configured copies of a single application simultaneously 

Given a particular set of environmental conditions (e.g., GPU availability, network latency, user request 
profile) then we may find that a change to the configuration of a given component to alter its mode of 
operation (e.g., disable feature, reduce sampling rate) may produce a more stable application that 
operates more in tune with the environment in which it finds itself. 

While some software is equipped with runtime dynamic configurability and zero downtime, most will 
support static configurability through environment variables, command-line parameters or 
configuration held in a file or repository of some form. Such configurability essentially exposes a 
collection of variability points which can be manipulated to affect the behaviour of the software - 
irrespective of whether the software was developed in-house, open-source or closed-source acquired 
from a third party. By leveraging the environment isolation properties of containers, we can launch 
multiple instances of a service in different configurations. As we shall see, coupled with the ability of 
Kubernetes to orchestrate the launch of groups of services, containers bestow a powerful ability to 
seamlessly replace whole subsets of a service-based application to deliver a coherent application 
variant – involving multiple individual service variants working in concert - in a safe and predictable 
manner. 

4.3.2 Service Routing 

With more focused and cohesive segmentation of responsibilities into separate services, service-based 
architectures rely extensively on inter-service communication to collectively perform their work. In 
Microservice-based architectures, the mechanics of enabling services to communicate with each other 
robustly requires careful and detailed design and planning. Apart from peer discovery, there are 
significant challenges involved in establishing and monitoring communication links. Transferring 
control from one process to another – irrespective of the distance between them – requires 
coordination in the event of link failure. We must facilitate failover between multiple copies of services 
and indeed decide on the efficient distribution of traffic when multiple peers are available to accept it.  

The Service Mesh concept [5] seeks to offer an overlay onto existing microservice architectures to take 
over many of the common operational and infrastructure responsibilities that would otherwise have 
to be engineered into the services themselves. Of particular interest within the context of application 
adaptation is inter-service communication and whether we can leverage a service mesh to deliver a 
frictionless means of dynamically routing traffic between peers such that we can swap a given service 
for a differently configured variant and update the routing so that other peers do not experience any 
collateral effects. 

The service mesh is manifested as a collection of proxy processes that sit between services. Each 
individual service in the application is deployed with a sidecar network proxy which operates as a 
mediator for all inter-service communication on the service’s behalf. Services do not require any 
knowledge or modification to operate with the sidecars which simply position themselves as highly 
efficient communication mediators.    
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 Figure 19: The Sidecar Pattern [22] and an architectural overview of its use in the Service Mesh [5]  

The Service Mesh [5] offers a powerful and unintrusive mechanism to introduce flexible and dynamic 
route configurability amongst a group of communicating services and we intend to leverage it for the 
runtime adaptation of service-based applications. 

4.3.3 Application Quality Modes 

Consider an application comprised of three microservices as shown below. The services deliver a 
response or perform a particular action in accordance with a request. We refer to the sequence of 
services involved in delivering on this response as a Service Chain. 

 

Figure 20: Simplified Application with Microservice Architecture 

For an interactive XR streaming application the Quality of Experience is typically measured according 
to the response or action performed in response to the triggering request on several dimensions. 

 

Figure 21: XR Application Quality of Experience is often multi-faceted 

 

The Round-Trip Time (motion-to-photon, glass-to-glass) captures how long it takes for the application 
to deliver updated imagery in response to the triggering user interaction. The Frame Rate captures 
how many frames per second the application is delivering to the user device. Resolution captures how 
many pixels per frame are being rendered. Just in Time (JIT) Correction is the term we will assign to 
processing carried out on the generated media stream to try and compensate for insufficient frame 
rates, delays or insufficient resolution. Such processing generally involves algorithmic guess work to 
repair incomplete media streams on the fly through pixel or frame rate upscaling. Features typically 
involve visual flourishes such as sophisticated weather effects, reflections and shadows but could also 
include some AI-driven augmentation such as object recognition and framing to assist the end user.  
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In an ideal world, we may want a sub-20ms RTT, 90 FPS, 4K resolution, no need for JIT correction and 
full feature set enabled. In an ideal world we have unlimited resources. The application provider knows 
that resources are not unlimited and that networks get congested. We propose to offer the application 
provider the facility to specify configurations of their application that would offer acceptable, but less 
than ideal, Quality of Experience specifications. The objective is to allow the application to remain 
operational in resource contested environments. To explore this concept, we present the application 
provider with the facility to specify three modes of target QoE – High, Medium, Low – representing the 
different levels of QoE we want to be able to deliver. We will term these QModes. While the objective 
of QModes is to capture different levels of physical resource consumption by the application running 
in a virtualized environment, what constitutes a given QMode only makes sense within the context of 
a particular application. QModes may be differentiated for example, by the set of rendered features 
(e.g., accurate weather effects, reflections, shadows), by the number of simultaneously active users, 
the resolution and/or frame rate delivered to the HMD, or even the placement and operation of service 
components across the device-edge-cloud. For a given application deployed on our platform, it’s 
QMode values map to distinct deployment configurations of the application.  

In the figure below we see three different configurations of an application and the introduction of a 
logical switch that can chose which deployment configuration to route traffic to.  

 

Figure 22: Logical QMode Switch and how it could be employed to divert traffic between different service 
configurations 

In the above model, we can see that a single service instance may be involved in multiple chains. We 
will return to this later. 

A multi-user application will likely be operating in multiple QModes simultaneously. We view QMode 
as being tied to a particular traffic characteristic. Different users may be assigned different QModes 
according to their circumstances (e.g., SLA, device capabilities, local network congestion levels, etc.)  

Conceptually, a QMode enables network routing in a similar fashion to a VLAN in that it allows us to 
segment and route traffic according to a tag.  

The choice of QMode to perform at can depend on a variety of factors. Application providers may elect 
to differentiate based on class of device (is it capable of high resolution, does it support frame 
interpolation17, etc.), speed of network, availability of edge resources, user contract, number of local 
active users, etc.18. To be able to make this choice, however, requires that we gather and monitor this 
information in a centralized monitoring framework. 

 

17 For example, SteamVR Motion Smoothing or Oculus Asynchronous Space and Time warping 

18 It is quite possible that three QModes would not be sufficient to capture the complexity of conditions and 
granularity of configuration options available to a given application provider. We have restricted ourselves to 
three modes to simplify concept evaluation and development.  
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Figure 23: Monitor for conditions that warrant changes to QMode 

4.3.4 Monitoring & Analysis 

Adaptation requires context. The drivers for adaptation can vary according to the business and 
resource environment but in general, applications must adapt to resource availability. An XR 
application distributed across device, edge and cloud resources can depend on a delicate, 
geographically dispersed, web of resources. Monitoring every leveraged resource individually, seeking 
to detect bottlenecks and deficiencies, can overwhelm our decision making. Without intimate 
knowledge of an application’s resourcing windows and inbuilt compensation mechanisms19, we may 
elevate disparate resource stresses (such as link delays, GPU overload, database response times) to 
high priority problems that require countermeasures while, in fact, the application is still able to 
operate as a whole and deliver an acceptable quality of experience to the end user. A more sensible 
approach would appear to be initiating action in response to a small number of high-level red flags 
that holistically capture underlying problems rather than monitoring a multitude of low-level warning 
indicators. 

The ultimate purpose of any application is to perform its work and deliver acceptable performance and 
experience to the end user. If the application is delivering an acceptable Quality of Experience (QoE), 
then we could deem the application to be performing adequately and not in need of adaptation.  

 

19 It may transpire, for example, that a well-resourced database equipped with advanced SSD disks can 
compensate for an underperforming cache relying on overly stressed RAM.  Such trade-offs and compensations 
are generally particular to each distinct application. In addition, application providers generally dimension some 
latitude into their resource requirement specifications to accommodate leg room and usage peaks that may not 
always be used. An over-eager adaptation mechanism may seek to fix a problem that does not need fixing. 
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Figure 24: Monitoring High level indicators reduces decision complexity 

In Figure 24 we see representative XR metrics we can monitor for conditions that capture the overall 
fitness for purpose of the application: 

• Round Trip Time:  the length of time between a user action and its reflection on the visual 
experience 

• Frame Rate: How many frames per second we are delivering to the user device 

• Resolution: the pixel depth of the frames we are delivering 

• AI Compensation: Rate of interpolation/extrapolation we need to do locally to ‘fix’ sub-
standard resolution or frame rate being delivered from the visual renderer. This may arise if a 
remote visual renderer generates lower quality media streams to reduce bandwidth needs 
from the cloud while it is up-scaled at the edge or on the device. 

By monitoring these metrics, we can assess the application’s fitness. Requesting the application 
provider to specify meaningful thresholds and operating windows for these metrics is reasonable – 
unlike requesting them to specify a combination of hardware resource availability deviations that could 
expose a problem. 

 

Figure 25: Monitoring the manifested user experience is more tractable and efficient 

While unacceptable levels of application fitness may highlight a problem, high-level indicators cannot 
inform us what the cause of it is. They inform us when to investigate a manifest problem rather than 
necessitating constant low-level monitoring and analysis to ascertain if we can deduce a problem. 
Root-cause investigation requires examination of far more detailed and lower-level metrics (such as 
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individual service performance, particular link latencies or bandwidth shortcomings, and queueing 
backlogs) as gathered by the CHARITY monitoring platform. The driver for this level of analysis is that 
applications may be adapted differently depending on the root cause of the problem. For example, a 
deficiency in the response time from a cloud-based service to an edge node may require different 
adaptation than experiencing resource stresses on the edge node itself. We seek to enable application 
providers to fully leverage the adaptation avenues they have available to them within their application 
design.   

This requires us to be able to retrieve metrics relevant to the application under investigation – an 
application that may be operating across multiple nodes over the device-edge-cloud continuum. 

In Figure 26, we see the role of monitoring in application adaptation. 

 

Figure 26: Monitoring high level metrics while supporting interrogation of low-level for adaptation 

We propose to use the Prometheus and its Alert Manager to trigger examinations of lower-level 
metrics when SLA-breaking conditions are observed with higher-level Fitness Measurements. The 
actual mechanics of how QMode updates are relayed to the Service Mesh is still under investigation 
and is a topic we will return to when discussing Early Investigative Work later in this section. 

4.3.5 Planning & Execution 

When analysis of ongoing monitoring reveals the occurrence of conditions warranting a QMode 
change then an alert is raised and relayed to the Prometheus Alert Manager. The Alert Manager in 
turn publishes the alert.  

The logical QMode Switch we referred to earlier routes to a particular application configuration based 
on the current value for the QMode associated with the application. Applied at the global system level, 
this would have a sledgehammer effect. We need to be lighter handed and enable QMode changes to 
apply to a subset of user sessions. 
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4.3.5.1 User-Level routing 

To support user/session level granularity then the switch needs awareness about the user associated 
with a given request.   

 

Figure 27: QMode Routing 

The proposed solution lies in associating a QMode tag with each user session and having a particular 
application configuration to be employed for a given QMode tag. Adapting an application 
fundamentally entails instantiating a variant of the application, having it run side by side with the 
original while it prepares itself to accept traffic, and then switching live traffic to the variant so that we 
can retire the original. Below we depict a snapshot in time when it has been decided to swap the user 
to a lower-resource-consuming variation of the application and are ready to switch the traffic over. 

 

Figure 28: Application about to switch over to application variation that consumes less resources  

Note in the scenario depicted above that not all services in the application are reconfigured. We can 
see that M2 is unchanged. There should be no need to start another copy of M2 and we should keep 
using the already running M2. The configurations of M1 and M3 have changed however and new 
instances of these services will be started and introduced. 

4.3.5.2 QMode Switching 

As introduced earlier when discussing Service Routing, we propose to use a Service Mesh for managing 
unobtrusive intra-application routing changes. Each service is deployed into a Kubernetes Pod along 
with a sidecar proxy that mediates all network traffic. Pods are tagged with the QModes that they 
support. In Figure 28 we depicted how our application instance was modified through reconfiguration 
of Services M1 (moving from Default Config to M1V1 Config) and M3 (moving from default to M3V1 
config). Table 16 summarizes the necessary reconfiguration required within our application to target 
differing QModes. 
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This Service Should be using this Configuration When we seek to offer this QMode 

M1 DEFAULT HIGH 

M1V1 MEDIUM 

M2 DEFAULT 

 

HIGH 

MEDIUM 

M3 DEFAULT HIGH 

M3V1 MEDIUM 

Table 16: Configuration changes mapping to QMode targets 

In Figure 29 the corresponding Kubernetes Pod layout in which we capture the point in time at which 
Pods have been launched to support both QModes and the sidecar proxies within each Pod select the 
next Pod to route based on the current value of QMode associated with the client and the tags 
attached to the Pods. 

 

Figure 29: Kubernetes Pods manage service variations and are threaded together through tagging and sidecar 
proxies 

4.4 Early Investigative Work 

4.4.1 Service Mesh Routing 

The sidecar proxies involved in a service chain need to have a common view of the current QMode 
value. 

 

Figure 30:  QMode synchronization and propagation 
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Initial approaches involved injecting the tag at the client ingress point and then piggybacking this tag 
along the service chain. While promising in a purely cloud native scenario in which all inter-service 
communication occurs using http, it became increasingly clear that the approach would prove lacking 
when having to deal with a wider range of communication protocols and payload formats.  Subsequent 
approaches moved away from the piggyback approach to one in which the sidecars could reference 
(or be updated by) an external service or repository from which it could obtain the current QMode 
value.  

Various strategies for injecting the QMode value have been considered: 

1. Istio header-based routing 
2. Envoy header-to-metadata filter 
3. Custom Envoy filters 
4. External Routing Logic 
5. WASM Plugins 

4.4.1.1 Istio Solution 

This approach utilizes Header-based routing, which entails defining routing rules to be activated 
depending on specific field values in a request’s header. Several Istio resources can be used to 
implement such a solution. A VirtualService is applied to route traffic to different subsets that match 
a value in the quality tag in the request header. A DestinationRule is used to define a subset for each 
configuration/version of each application. 

With an intuitive configuration scheme, this solution enjoys the benefit of being straightforward for 
providers to deploy applications. This solution is also manageable in large-scale scenarios as scaling 
doesn’t require any kind of canary deployments. 

This approach was evaluated with a rudimentary scenario in a Kubernetes environment, which 
contains: 

• A web server (httpbin) 
o httpbin-high – version optimized for high resource availability 
o httpbin-low – version optimized for low resource availability 

• A web client (sleep) 
 

httpbin is deployed as a single service but with two different instances, one for each configuration. 
Each instance is configured to have a quality label in the metadata field. This label will later be used by 
Istio’s resource to define the routing rules. The sleep application will be deployed with no special 
configuration. Subsequently, a VirtualService is configured to define routes to each version of the 
httpbin, based on a quality field set in the request’s header. The VirtualService will match the preset 
routing rules to the value in the quality tag, and thus route traffic to a defined subset. This subset is 
defined in the DestinationRule, which declares two subsets for the httpbinservice: high and low. To 
each subset, a label is assigned, which is the same label assigned to each httpbin configuration. 
Therefore, this collection of resources allows for traffic to be routed to the high version of the httpbin 
service when the request is tagged with the high-quality value and the same goes for the low version. 
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Figure 31: Header-based routing 

As seen in the figure above, both versions of the same application co-exist, but traffic is routed to each 
of them based on the value of the quality tag in the request’s header. This is configured in the 
VirtualService and DestinationRule resources. This solution is not restricted to only two routes or two 
versions of a single application and is extensible to any number. 

This form of routing algorithm can be coupled to a more intelligent system that is responsible for 
performing health checks, hence approximating a load balancer’s behaviour. Since these routing rules 
are unchangeable, traffic tagged with the low value must always be routed to the low version of an 
application, load balancing does not need to be considered in this implementation. The intelligent load 
balancing component is the one tasked with injecting the quality header, that will later be used for 
header-based routing. 

Initial experimentations included the creation of dummy services, that act as a front for real services 
and enable the routing traffic according to tag value. The following scenario was implemented: 

 

Figure 32: Scenario implemented with Istio header tagging 

In this type of architecture, service B will be able to route both pods B-X and B-Y, just depending on 
the value of the tag/header. Each is configured for different types of conditions (high and low resource 
levels), and the value on the header of the request performed by service is used by a VirtualService to 
route to subset high -> B-X or to subset low -> B-Y. 
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Figure 33: Configuration of routing logic 

Upon applying this configuration, we can see that traffic does indeed get routed according to the tag 
value as captured below in Figure 34. 

 

Figure 34: Communication with the httpbin service - high version of the app 
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Figure 35: Communication with the httpbin service - low version of the app 

Figure 34 and Figure 35 show the results of the experiment. As you can see, when inserting the tag 
“quality: low“, the traffic is forwarded to the low version of the app, and when inserting the tag 
“quality: high”,  traffic is forwarded to the high version. 

4.4.1.2 Standard Envoy Filters 

Early investigations explored using standard Envoy filters used to perform Load Balancing. Istio’s 
EnvoyFilter resources allow one to modify the configuration of the Istio proxy sidecars (Envoy). We can 
use Envoy’s Header to Metadata filter, which enables us to extract values from HTTP headers and 
attach them to a request’s dynamic metadata, which in turn can be used for matching endpoints. 

To accomplish this, we inject a header “quality” attribute into incoming HTTP requests. When 
traversing proxies, traffic will be routed to hosts whose associated metadata matches the value of the 
quality header, which is extracted and attached as request metadata. Hosts will be manually 
configured with specific metadata, in a sense, with the key-value pair: <quality, value>. 

 
 

Figure 36: Leveraging Envoy filters and Load Balancing functionality 
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A disadvantage of this approach is that it will not support dynamic traffic distribution schemes. It 
requires defining a set of routing rules or load balancing decisions, and therefore, configuration is 
hardcoded and static. In a sense, it’s only dynamic because traffic is not known until the tag is injected. 
If a particular application modifies the number of supported configurations, a new host must be 
configured along with its metadata. This further adds complexity and suffers from scalability 
limitations. 

If we also consider that routes can be set dynamically (not chosen from a preconfigured list), we must 
designate that task to a component of the framework. This requires support of the scenario in which 
hosted applications interact with the mesh configuration, which is not only increasingly complex, but 
also raises clear security concerns. 

This approach considers HTTP traffic only, not addressing the several other communication protocols 
commonly used within applications. Furthermore, we must not forget that Envoy may not provide 
configuration APIs for a range of protocols. As such, additional techniques and filters are being 
researched to assure compatibility with every protocol and to be used in conjunction with the filter 
Header-To-Metadata. 

4.4.1.3 Custom Envoy Filters 

This approach follows the same principle as the previous one but using custom, user-defined filters. 
This entails developing a filter that performs tag extraction in our specific, tailored fashion. This suffers 
from the same disadvantages as the standard Envoy filters discussed in the previous section but does, 
however, remedy one of its problems - the lack of a protocol-agnostic approach. With this approach, 
the custom filter can be developed in such a way that the tag extraction is performed differently with 
respect to the communication protocol. In this manner, we would only need this one filter for every 
situation, and not need to concern ourselves about compatibility issues and working with multiple 
features for the same task. We could avoid over-reliance on Envoy’s out-of-the-box capabilities. 

Integrating a custom filter requires close integration into the Envoy codebase and this is problematic. 
We would be burdened with maintaining a close watch on future Envoy releases to ensure that our 
own filter remains compatible and functional.  

4.4.1.4 External Routing Logic 

An external routing logic approach consists of delegating load balancing decisions. This approach takes 
inspiration in the way OPA20 is built, in which policy enforcement decisions are transferred from Envoy 
(and Istio) to an external entity. An external component could therefore be tasked with extracting a 
tag from ongoing traffic and possibly making a routing decision with respect to an internal list of hosts 
and respective metadata. This decision would be relayed back to the proxy and load balancing 
performed. 

This approach is summarized below and is still at an early stage of analysis. A number of variations are 
being considered. 

 

20 Open Policy Agent – opensource framework for managing policies in a cloud native architecture – 
openpolicyagent.org 
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Figure 37: Delegating decisions from proxies to external service 

4.4.1.5 WASM Plugins 

This approach consists of utilizing a Web Assembly plugin to perform the routing logic. WASM plugins 
allow us to extend Istio proxies’ (Envoy) capabilities. The core idea is to implement a plugin to extract 
the tag from ongoing traffic and in some way perform load balancing upon the extracted tag. 
Furthermore, it can also be considered as the underlying technology of the mechanism for injecting 
quality-regarding tags into the traffic payload. Initially, we started by implementing a WASM plugin for 
intercepting traffic and displaying information about it, and are currently investigating new iterations 
to this component. 

This approach is very similar to the custom envoy filter, although they differ in a very important aspect 
- dependencies. Because the WASM plugin does not depend on the Envoy source code, it’s completely 
independent and its development lifecycle will not interfere with Envoy’s release lifecycle. We also 
don’t have to worry about obscure configuration aspects and are properly decoupling responsibilities 
and concerns. 

4.4.1.6 Comments on current progress 

Much of our thinking has been formed around the principle of injecting some form of metadata into 
the client request and propagate this metadata through the service chain. This is conceptually rather 
clean as we avoid every proxy having to lookup some external source to check the QMode and we are 
guaranteed all services in a call chain for a given request see the same QMode setting. 

An alternative approach is also under consideration in which sidecar proxies act as QMode change 
consumers to a single Source of Truth associated with the user session a given application is operating 
in. In this model, proxies would subscribe to QMode changes. We avoid the propagation of metadata 
and, potentially, examination of protocol traffic leading to a more flexible and protocol agnostic 
approach. This approach entails some additional complexities (e.g., filters run on demand instead of 
constantly, where do we persist QMode value to avoid constant consults to the Source of Truth for 
every message, how does this work in a distributed topology).  
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Recent investigations carried out with the approaches of external routing logic and WASM plugins 
provide a highly promising avenue to pursue this model and work is continuing in this direction. 

4.4.2 Adaptation Tactics 

To tease out the kind of adaptivity space that may be available to an unmodified application we 
examined a use case in depth – the Collins Aerospace Flight Simulator (UC3-2 Manned-Unmanned 
Operations Trainer Application). We sought to discover whether purely configurational changes could 
be identified that would equip us with tactics that we could bring into play to deal with resource 
deficiencies observed from resource monitoring (see Figure 38). 

We can observe how the same tactic can be used in multiple scenarios. Tactics 1 and 2, for example, 
can be brought into play if we need to reduce bandwidth needs between the edge and cloud or free 
up compute resources on the cloud.  

It became clear during analysis that changing the configuration of one service regularly requires 
changes to others to compensate or adapt to the new execution landscape. We cannot just lower the 
resolution generated on the cloud in isolation as the end user would experience a catastrophic drop in 
their Quality of Experience. We must simultaneously enable resolution upscaling on the edge on 
compensate. We see this need to deal with collateral effects of changes to how a single service 
operates repeated elsewhere.  

Naturally, not all applications can lower their resolution on the cloud and have the necessary 
allowances in their design to compensate through upscaling elsewhere. Indeed, we expect other 
applications to have opportunities not offered by the flight simulator and we expect further insights 
into adaptability tactics as we continue our investigations with other use cases.   
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Figure 38: Configurability options to deliver adaptability tactics 
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5 Enabling XR technologies under development  

5.1 Migrating from on-premise to on-cloud 

For Collins Aerospace, the vision of CHARITY to enable highly efficient network slices spanning the 
domains of Cloud providers, Edge infrastructure and local resources inspired a radical re-imagining of 
what could be achieved in terms of real-time, interactive XR streaming on the cloud. The traditional 
approach to flight simulators has been to deploy sufficient compute and storage resources alongside 
2D fixed screens to deliver on the stringent quality demands of a certification-grade simulator. Scaling 
up or down is essentially constrained to vertical scaling in which we use more powerful or less powerful 
hardware as the deployment dictates. In Figure 39 below, we depict three sample deployment 
configurations  

 

Figure 39: Some deployment models for the existing flight simulator 

As presented in Figure 40, the traditional approach is somewhat monolithic in terms of deployment 
flexibility. Multiple flight simulators co-located on the same site have no interaction or resource 
sharing and each operates independently on its own dedicated hardware. 

 

Figure 40: Existing deployment options revolve around a monolithic approach 

The current deployment model presents a variety of challenges as outlined below in Table 17 . 

Table 17: Challenges presented by the traditional deployment model  

Challenges 

Each user requires their own full rig – dimension 
site hardware up front for max number of 
simultaneous users 

MS Windows focused 

No sharing of resources between rigs Strict latency demands 
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Software updates are problematic – especially 
tiles database which is very large 

Specialized scenery generator coupled with 
flight dynamics 

Hardware updates are problematic Difficult to scale 

Sense of immersion with low-end rig is poor Licensing complicates experimentation on third 
party edge/cloud 

No centralized monitoring (across users)   

At the outset, these considerations drove our decision to rethink the flight simulator architecture, to 
work in a distributed manner with the ability to leverage the CHARITY platform. We envisaged clear 
benefits that a redesign should bring as outlined below in Table 18. 

Table 18: Target benefits from redesign  

Benefits 

Greatly reduced local hardware footprint User & session management, simulator federation 

Edge and cloud resources shared between 
simulators 

Monitoring framework integration 

Tiles database and rendering engines can be 
updated on the cloud 

Improved versatility through Microservices with 
Docker containers 

Hardware upgrades simplified Caching with lookahead rendering to manage delays 

Improved sense of immersion Pluggable scenery generator -> flightgear 

Improved Scalability Headless remote rendering for remote computation 
and local display 

Pluggable upscaling Customizable latency compensation tactics available 

 

5.1.1 The Latency Challenge 

Operating a commercial Flight Simulator requires speed and consistency. The turnaround budgets are 
tight. In deploying to the cloud, we take an already demanding problem that is currently addressed 
using dedicated local hardware and network resources and exacerbate it by distributing resources 
across large distances as summarized below in Figure 41. 

 

Figure 41: Motion To Photon budgets become even more demanding with XR and the cloud 
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In 2018, Collins conducted internal experiments assessing the viability of cloud hosted flight simulation 
[23]. The findings revealed significant challenges that needed to be overcome with respect to network 
latency and jitter: 

• Network Latency is a significant obstacle “Transport delays vary widely based on network 
topology, provider, virtual private network, user-to-cloud distance, and other factors”  

• Sporadic variations in rendering times can result in stalls “cloud-based computing model will 
require stringent provisioning of shared resources to provide the kind of performance and 
determinism guarantees users expect”  

The experiments were predicated on the display of scenery on two dimensional monitors – not XR 
headsets which have far more demanding latency budgets. It was clear from the early stages of the 
CHARITY project that we were facing significant challenges that could be alleviated but not solved 
entirely by the CHARITY platform alone. The physics of distance needed to be tackled. 

5.1.2 Tackling XR Latency 

A key observation about latency budgets in XR is that there are different types – rotational and 
translational as shown below in Figure 42. The charts on the right portray how latency demands are 
dependent on the nature of the user activity [25] and we superimposed the position that scenery 
generation for a flight simulator would occupy.  

 

Figure 42: The latency budget available depends on the activity 

Updates caused by the user rotating their head need to be very fast (< 20ms) to prevent nausea for a 
significant proportion of the population. However, in [24] the authors note that translation motion 
delays of 100-200ms are “non-trivial to notice”. For the flight simulator scenario, we have a user that 
sits within a virtual cabin and is able to look out the window at synthetically generated scenery. If the 
user turns their head then the local view inside the cabin needs to update quickly. The outside view 
only changes with the movement of the simulated aircraft itself (which alters course slowly in response 
to user actions). We propose to leverage this dichotomy to move the generation of synthetic scenery 
seen through the cabin windows to the cloud while keeping the rendering of the cabin itself local. 

5.1.2.1 Prediction to extend the latency budget 

If we detach the world outside a simulated aircraft cabin from the world inside then an additional 
opportunity presents itself to further extend our latency budget. As pointed out previously, the out-
the-window view updates in accordance with movement of the aircraft. Aircraft possess nothing like 
the rapid freedom of movement of a human pilot. Its position within the seconds ahead should be 
predictable with a high degree of accuracy. This presents the opportunity to render what we need 
ahead of time on the cloud and cache it locally to enable what Google have referred to as Negative 
Latency [27] – a variation of which they employed in the Google Stadia platform. 
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Figure 43: Movement of an aircraft can be predicted to enable pre-rendering if scenery ahead of time 

By caching at the edge, our goal is to detach the cloud from the stringent motion-to-photon loop to 
reduce the latency and jitter that would otherwise be experienced with cloud rendering in the real-
time chain. 

5.1.2.2 The Frame Rate Challenge 

As witnessed by the steadily increasing refresh rates of XR headwear, high frame rates are seen as an 
essential component of an acceptable XR user experience. Regardless of what is deemed to be an 
acceptable rate of frames per second – 30, 60, 90, 120 – we assume that the originator of the media 
stream must generate that rate. If we want to attain 90FPS with flight scenery, then must we render 
90FPS in the cloud and ship back to the nearest cache? As with modern televisions, frame interpolation 
has become standard functionality in XR headsets. The manufacturers of such headset want to avoid 
inconsistent or below-par frame rates emanating from media sources to result in compromised 
experience for the user who may attribute blame to the headset itself. XR headsets need a consistent 
frame rate. If they don’t get it, then they use predictions cached locally on the headset to backfill any 
missing frames. We observe functionality termed Asynchronous Timewarp and Spacewarp [26] in the 
Oculus headsets and Motion Smoothing in SteamVR headsets.  

Instead of the XR experience imposing more stringent quality demands than conventional 2D monitors, 
we propose to explore using the stabilization technology built into XR headsets to our advantage. It 
gives us the option of generating a lower frame rate on the cloud when resourcing pressures preclude 
us from either rendering the required frame rate due to computational resource stresses or from 
delivering the required frame rate to the edge due to bandwidth stresses.   

5.1.2.3 The Pixel Resolution Challenge 

As consumer XR headsets evolve to target 4K or 8K resolutions, there is a growing imperative on the 
part of media stream producers to render higher and higher resolution imagery. This has significant 
repercussions for bandwidth as 4k resolution requires an order of magnitude more bandwidth than 
High Definition (approx. 15Mbps versus 1.5Mbps). As with frame rate, we assume that the originator 
of the media stream must generate the required resolution. Modern TVs and games consoles need to 
deliver a high-resolution viewing experience even when the source of frames is of low resolution. To 
accomplish this, they employ upscaling algorithms to ‘fill out’ the missing pixels. We propose to 
integrate a resolution upscaling component into our streaming pipeline to cater for scenarios in which 
we cannot render high resolution imagery on the cloud for reasons of resource availability (compute 
or network bandwidth). Lower resolution frames will be received at the Edge and upscaled as 
appropriate. 

5.1.3 Towards Cloud Native  

We began our journey with a monolithic platform that was not amenable to distributed deployment 
and execution. We proceeded to redesign the platform and move towards a cloud native architecture. 
As can be seen below in Figure 44, we decomposed the platform into self-contained microservices. 
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Figure 44: Flight Simulator redesigned as cloud native 

The new architecture better reflects modern application design and gives us the opportunity to 
leverage core features of the CHARITY platform that would have been difficult and far more restricted 
with the original design such as the CHARITY service mesh for application adaptation, monitoring and 
alerting, dynamic deployment and orchestration. Crucially, it brings options and mechanisms to 
explore distributed deployment across the edge and cloud. 

5.2 Dissection of the Unity3D Physics engine   

ORAMA’s commercial gamified multi-user VR medical training platform is built using the MAGES SDK 
on top of the Unity3D game engine. Exploiting Unity3D’s network layer, the MAGES SDK handles and 
synchronises in-game interactions, deformable object transformations and physics simulation by 
broadcasting transformation values over the network.  Under the hood, as part of the MAGES SDK, the 
custom Geometric Algebra interpolation engine is utilised for efficient network transmission and local 
interpolation of in-between positions/rotations for each end-device (HMD). The architectural design 
of ORAMA’s training applications involves a single application component, installed and run on 
untethered HMDs, that employ local processes for storage, rendering, and physics deformations.  

An experimental architecture, based on MAGES SDK, allows the transition to an Edge-Cloud 
application, upscaling to collaborative cloud VR training applications specially formulated for 
untethered HMDs. The goal of this R&D version of ORAMA’s training application is to optimize the 
status of the cooperative mode in terms of lower latency, higher performance on average network 
conditions, and, ultimately, higher number of CCUs. This new approach, realized through computation 
offloading of the entire ORAMA’s application in edge-cloud resources, requires interactions and data 
exchanges between the different modules placed on device, and services on Edge-Cloud.  

ORAMA is currently designing and developing the required technologies and solutions to support its 
advanced media applications by exploiting methods and techniques for the dissection of the Unity 
physics simulation engine as a separate VM microservice that will run on the Edge-Cloud. Methods and 
techniques regarding multi-threaded rendering and physics in Unity are also being investigated.  

5.2.1 Dissection of Physics Simulation Engine 

Currently, a typical Unity3D game engine pipeline involves simultaneous execution of CPU physics-
related calculations along with GPU calculations related to the rendering of the scene.  

In this section, we provide an overview of how a dissection of the physics and the scene-rendering 
pipeline can be achieved. Although a distributed application architecture usually decreases running 
times, an unoptimized dissection may lead to increased latency, since there are numerous inter-calls 
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between the physics engine and the renderer. In the case of a desktop-VR local network system setup, 
the dissection is feasible and almost straightforward. However, in the case of a mobile-VR edge-cloud 
setup the physics engine dissection is rather challenging. ORAMA is currently investigating methods 
and techniques that will assist such a potential dissection and allow the physics simulation engine to 
be run as a separate edge-cloud, possibly containerized, microservice.  

5.2.2 Methodology – Notation 

The dissected Unity3D pipeline involves two, bidirectionally communicating, components:  

• The Host (Game Logic and Graphics rendering), and 

• The Physics Server (Physics simulations). 

The Host includes the entire Unity3D pipeline, along with its own, local, physics engine. Main goal of 
the dissected Unity3D pipeline is to allow any GameObject on the scene to be fully simulated by the 
dissected Physics Server and not by the Host’s local physics engine.   
For the reader’s convenience, we define below some terms used throughout the dissection overview.   
  

• Graphics Object: A Game Object component, with no physics-related scripts and data residing 
within the Host. Any Game Object may be converted into a Graphics Object by detecting and 
removing all physics-related parameters (colliders, rigid bodies, etc.) attached to it. The 
removed parameters are stored temporarily in order to be sent to the Physics Server in the 
form of a Physics Object (see below).   

• Physics Object: A Game Object component, responsible for storing all physics parameters. It 
has attached a Rigid Body script, a Collider script, or a combination of the two. When initialised, 
however, it generates physics components based on this data and is responsible for updating 
these components whenever a change occurs. The data is not editable in the Physics Server, 
only by the host, since the Host side is responsible for manipulating physics parameters.   

• Remote Game Object: Since the above two components use different ways of storing their 
data (Physics or Graphics Objects) we need a way for them to communicate. The Remote Game 
Object, a data structure containing all shared data between Physics and Graphics objects 
(Transform, Collision Events), is used to forward  Graphics Objects updates to the respective 
Physics Objects, or vice versa.  

• Graphics/Physics Client: These services are listeners responsible for all communications and 
orchestration on either the Host or Physics Server side. They apply all incoming changes on all 
Graphics/Physics Objects and sends all outgoing changes in the form of Remote Game 
Objects.   

5.2.3 Methodology - Overview  

5.2.3.1 Communication of the two Components  

The main two components, i.e., the Host and the physics server, communicate via network using TCP 
and UDP connections, exchanging messages in JSON format. The TCP connection is used for the 
exchange of more critical information, such as the creation of an object or the modification of a critical 
parameter. The UDP connection is used to transmit real-time data, like the object transformations or 
time-critical data, such as collision events. For the convenience of the reader, we shall refer to these 
communication methods as Reliable (TCP) and Unreliable (UDP). Of course, these transmission 
protocols can be substituted for a more domain specific networking solution.   
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5.2.3.2 Splitting a Game Object into a Graphics and a Physics Object 

After a successful connection, the Host’s game objects are split into Graphics objects, which remain in 
the Host, and Physics Objects, which are created in the Physics Server. This is accomplished by 
transferring the physics attributes, such as Colliders and Rigidbodies, from each of the Host’s game 
objects, to the Physics server, that creates Physics objects with the same parameters. The Physics 
Server retains no knowledge regarding the Host’s scene, the game loop or the behaviours, and is only 
for simulating the physics of all Game Objects in the scene.  

During gameplay, the transformations of the Host’s Graphics Object are synchronized with the 
respective Physics Server Physics Object. The Game Object’s transformations can either be controlled 
entirely by the Physics Server, or by the Host. In the latter case, the Physics simulation continues and 
the controlled Physics Object interacts with the rest of the Physics Objects as expected.  

5.2.4 Implementation  

5.2.4.1 Initial Setup  

With the successful initiation of the Physics Server, the Physics Client starts listening for messages on 
specific ports. At this stage, any Host can connect to it and provide Game Objects for physics 
calculations.  

After the Host’s successful initialization, its Graphics Client scans all Game Objects in the scene for 
Physics objects and converts them into Graphics Objects. The Physics components, attached to those 
Game Objects, are subsequently collected and sent to the Physics Server as Remote Game Objects. 
The Physics Server then converts and instantiates them as Physics Objects.  

5.2.4.2 Game Object creation after Initialization  

A new Game Object,  spawned in the Host, is initially attached to all of its Physics components, and 
subsequently it goes through the same conversion process, to Graphics and Physics Object, described 
in the initialization subsection. 

5.2.4.3 Simulation and Gameplay  

After the Graphics Objects are successfully copied from the Host to the Physics Server, their 
transformations will be synchronised using unreliable transport. Depending on the developer’s choice, 
the transformations of a Game Object can be either controlled by the Host or the Physics Server. In 
both cases, the Physics simulation is always running, and no components are deactivated. When a 
Graphics Object is translated by the Host, the corresponding Physics Object is also translated using 
Physics calculations and not direct transformation changes so that the simulation is accurate and 
ensuring that no undesirable object clipping occurs. Besides simply changing the transformations, the 
Host can change all parameters of the Graphics Object which, depending on the type of data, are to 
be sent to the Physics Server using a reliable or unreliable transmission method. In that respect, time-
sensitive parameters are usually sent using the unreliable connection; those that must definitely reach 
the Physics Server (such as Gravity) are instead sent using a reliable connection.  

5.2.4.4 Collision Detection  

When collisions happen, the Physics Objects provide the Graphics Objects with the identifier of the 
collided Game Object. The well-known Unity3D events OnCollisionEnter, OnCollisionStay and 
OnCollisionExit are accessible via the Graphics Objects and can be subscribed to and used as expected 
on the Host side.   
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5.2.5 Lab Testing  

The testing process was performed in three stages: a) Initial testing, b) Synthetic testing and c) In-vivo 
testing.   

5.2.5.1  Initial testing  

The dissected pipeline was deployed and tested on two separate machines connected to the same 
network, one via Ethernet and one via Wi-Fi. Main objective of the tests was to measure the subjective 
and objective performance of the actual system based on different network quality. The initial testing 
scenarios involved one or multiple Physics objects, defined as GameObjects, with 1 Rigidbody and 1 
BoxCollider component. The conducted tests also involved the compression of the exchanged data 
between the two network components. For compression, the GNU GZip, which is based on the Deflate 
algorithm, is used. Following is the list of the used testing scenarios:  

1. Stress testing on the number of objects able to be synchronised using no compression.  
2. Stress testing on the number of objects able to be synchronised using compression.  
3. Random transformation of 1 Physics object using no compression.  
4. Random Transformation of 1 Physics object using compression.  
5. Random Transformation of 10 Physics objects using no compression.  
6. Random Transformation of 10 Physics objects using compression.  

Stress testing with no compression, showed that the system is able to synchronise the simultaneous 
transformations of at most 28 Physics objects. Beyond that, the internal network buffer is overflown. 
Overcoming this limitation without reducing the packet size is not currently feasible. 

On the other hand, when data compression is used, the system is able to synchronize over 480 
simultaneously transformed Physics objects. The system’s performance started degrading for cases 
with over 200 Physics objects and, in cases with over 480 Physics objects, it was almost unusable. The 
internal network buffer did not overflow in any case.  

Table 19 provides the results of tests 3-6.  

Table 19: Testing scenario – results 

    
1 object 

compressed  
1 object 

uncompressed  
10 objects 

compressed  
10 objects 

uncompressed  

TCP   
 

 

 

 

Average Packet 
Size (bytes)  

1114  2850  1705  16105  

Maximum Packet 
Size (bytes)  

1288  4240  2256  23946  

Minimum Packet 
Size (bytes)  

912  2062  912  2062  

Average Packet 
Delay (ms)   

0.0988  0.0981  0.1003  0.0734  

Packet Loss (%)   0  0  0  0  

UDP   
 

 

 

 

Average Packet 
Size (bytes)   

1175  2252  2643  22364  

Maximum Packet 
Size (bytes)   

1204  2264  2740  22435  

Minimum Packet 
Size (bytes)  

1132  2240  2248  22299  

Average Packet 
Delay (ms)  

0.0842  0.0842  0.0504  0.0363  

Packet Loss (%)   0.15  0.15  0.26  0.23  

Based on above results, we can safely conclude that compression reduces the size of the packets such 
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that more simultaneously Remote Game Objects are allowed. This reinforces our findings, regarding 
the limit of simultaneous physics objects and the effectiveness of compression.  

The network usage, when synchronizing 10 simultaneously transforming virtual Objects, without 
compression, was at an average of 22.4KB/s. This metric is further improved when using compression, 
averaging at 2.6KB/s.  

5.2.5.2  Synthetic testing  

To test the dissected Unity3D pipeline against network conditions and evaluate the visual impact on 
the gameplay, we performed a synthetic testing process, where the dissected pipeline testing is 
conducted in emulated network conditions. These testing results and the subjective system’s 
performance will be used as reference for the actual integration testing in the selected testbed. To 
eliminate any additional overhead in the emulated network conditions, that would tamper our results, 
we deployed the two servers on the same machine. For the generation of synthetic network 
conditions, we emulated the major network factors that mostly affect the visual performance and QoE 
in real-time VR applications: a) packet loss and b) latency.  

Packet Loss  

Packet loss occurs in unstable network conditions, causing unsuccessful packet delivery. During testing, 
packet loss of over 20% resulted in choppy movement in VR. In such cases, the visual and subjective 
performance of the system depended on the object transformation rate. When the interacted object 
is moved slowly by the user within the Virtual Environment, the visualized transformation result is 
satisfying, even at higher package losses. When the virtual objects are transformed fast and abruptly, 
the visualized transformation is noticeably jittery.  

Most GameObjects in UC2-1 are interactive, representing surgical tools, whose normal use does not 
involve very high transformation speeds. As such, a maximum packet loss of at most 50% is visually 
acceptable. This value is the upper limit, as in real situations many other factors may impact network 
conditions, that would affect negatively the system’s QoE. In any case, a packet loss of less than 20% 
would provide a stable QoE. Table 20 provides a summary of the visual feedback results against the 
used synthetic packet loss.   

Table 20: QoE vs Packet loss   

Packet Loss  Visual Feedback  

5%  Good QoE.  

20%  Intermediate QoE when the user moves virtual objects fast and abruptly; marginal good 
QoE during a normal gameplay.  

50%  Intermediate QoE during normal gameplay, but acceptable for short periods of time; for 
longer periods of time QoE can get annoying or distracting.  

80%  Bad QoE; the training scenario is unplayable. Objects feel like they teleport randomly 
instead of moving in the scene.  

 

Latency  
Network latency is defined as the time that takes a packet to be transmitted to the target client, often 
causing a significant delay projecting the visual output of the system. Increased latency in distributed 
VR systems, like the one in UC2-1, may cause bad synchronization in the VR HMD, between user 
hand/head actions and the respective image projection. This delay is not constant, causing packets to 
be possibly received out of order, resulting in a jittering visual effect. Introduced latency during testing 
sessions, caused a significant visual impact even at smaller latency values. Table 21 provides a summary 
of the visual feedback results against the used synthetic latency.   
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Table 21: QoE vs Latency  

Latency Visual feedback  

50ms Intermediate QoE; Slightly noticeable jittering - when user moves virtual objects 
slowly, intermediate jittering can be more obvious.  

100ms Bad QoE; Jittering very noticeable - the object jitters a lot and feels unstable.  

200ms Unplayable and very annoying to use.  

5.2.5.3  In-Vivo testing  

In order to prepare the system for testbed deployment, we conducted tests over the internet with a 
remote computer.   

Initially, the system could not be deployed due to the large number of UDP packets exchanged by the 
two servers, causing the ISP’s firewall to block all outgoing and incoming connections. This was solved 
by sending packets less frequently compared to a local network setup. As such, many packets were not 
transmitted, introducing additional perceived latency and packet loss to the system.   

The packet send-rate was initially set to 100ms, which is the maximum playable latency determined 
during synthetic testing, producing similar visual results, without generating anymore the jitter caused 
by out-of-order packets. Although, this slightly improved QoE  caused less distraction to the user, the 
virtual objects movements lagged behind significantly, producing extremely jittery movements. The 
firewall issue and its resolution, kept the aggregated perceived latency permanently over 20ms. After 
thorough experimentation, we determined that the ideal send-rate is 50ms, which provided the most 
stable experience with average QoE and without overloading the connection. Table 22 summarizes the 
data gathered using the UDP connection and its stability.  

Table 22: UDP connection results  

Packet Loss  Average Latency  Average Packet Size  

6.5%  237ms  12452 bytes  

 

The large network latency recorded in the in-Vivo testing is the main reason for the significant delay in 
user’s actions. Packet size was relatively small, with room for improvement using compression, 
however it was well within reason, as network usage remained under 10Mb/s.  

Due to the unstable network conditions, in-Vivo testing of the entire medical training session was 
impossible. The TCP connection often dropped and the current implementation does not anticipate 
failed TCP connections. Further in-Vivo testing will be conducted after the respective modifications are 
applied.  

5.2.6 QoE Subjective remarks   

During gameplay, whenever the network quality falls below a threshold, there were two issues that 
were especially noticeable. First, when directly interacting with objects in VR, the network latency 
causes the objects to feel “squishy”, since the user’s hand that pushes the object would initially 
penetrate inside the object and after some milliseconds the object would react to the push and move 
away. Secondly, when there is a high amount of packet loss, some objects tend to “flicker” between 
two positions. This issue is not very common as it is not experienced every time network conditions 
deteriorate. The first issue, however, is rather common, but not distracting from the gameplay in a 
severe way.  

5.2.7 How Compression affects performance  

We can measure the impact of the compression algorithm on the system’s performance by utilising 
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the Unity3D profiler. The scenario to measure the system’s performance, included the random 
translation of 10 Physics Objects. 

When compression is not used, the generation of a frame takes approximately 20ms to be 
executed, sometimes spiking up to 33ms. On the other hand, when compression is used, a frame takes 
an average of 21ms to be generated, with some higher spikes at 34ms. These spikes occur since 
sending/receiving packets happens asynchronously. We conclude that both compressing and 
decompressing packets adds around 1ms to frame rendering times. 

When more Physics Objects were used, the compression/decompression had a linear performance 
impact (20 objects added 2ms to no compression, 30 objects added 3ms). 

The compression method used is not a domain specific solution for game engines so, in a more realistic 
scenario where one would make use of third-party solutions (such as Oodle Networking), it is expected 
that the average frame-time will not be severely impacted. 

5.2.8 Conclusions - Future Work  

The work in this section has shown that the dissection of the Unity3D pipeline is feasible, yet 
dependent on the network characteristics between the Host and the Physics server. The conducted 
tests helped the derivation of the network latency and packet loss thresholds, below which we can 
achieve a pleasant QoE to the VR medical training application. These thresholds should not be 
exceeded by the provided testbed network. 

Although docker containers outperform VMs in the case of space and processing overhead, they are 
rather immature in graphics acceleration processes. In this case, the use of VMs is far more 
advantageous since they have highly optimized graphics drivers and kvm passthrough support. 
Additionally, docker containers have limited graphics drivers support, since only experimental versions 
(for all vendors) for Linux are currently available. As such, the porting of the Host, that exploits GPU 
resources for rendering, into docker container is a rather error prone procedure. 

On the other hand, the Physics engine, exploits CPU resources for the physics computations. In the 
next period, we will work towards porting the Physics engine into docker container. Additionally, to 
improve the computational latency of the Physics server, we will investigate optimizing the physics 
computations in Unity3D. 

5.3 Investigating Multi-threaded rendering in the Unity3D game engine 

Multi-threading exploits a CPU’s capability of processing many threads concurrently across many 
cores. A multi-threading program always starts in one main thread, which subsequently creates new 
threads that run in parallel. Upon completion, these threads usually synchronise their results with the 
main thread. 

The generation of more concurrent threads than the available CPU cores, leads to a concurrent sharing 
of CPU resources among the threads, which causes frequent, resource-intensive, context switching. As 
such, the multi-threading approach always suits cases with a few long-life tasks. Game Engine pipelines 
mostly deal with many short-life unrelated tasks that execute at once. Multi-threading in such systems 
often results with a large number of short-life threads that challenge the CPU’s and operating system’s 
processing capacity, due to frequent creation and destruction of threads for short-lived tasks. The 
employment of a pool of threads, often mitigates this issue, increasing performance and avoiding 
latency in execution. However, even this solution does not always prevent a large number of 
concurrent active threads.  

Multi-threaded programming faces high risks for race conditions which often produce significant 
challenges. A race condition occurs when the output of one task depends on the timing of another 
process outside of its control. This issue may be a source of crashes, deadlocks, incorrect output, and 
generally non-deterministic behaviour that produce non accurate rendering or simulations. As the 
cause of these problems depends on timing, the recreation of the issue could happen on rare 
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occasions, making debugging a cumbersome process. Debugging tools, such as breakpoints and 
logging, often change the timing of individual threads, causing the problem to falsely disappear. 

In the frame of taking advantage of the edge-cloud resources parallel processing, methods and 
techniques for parallel/multi-threading Rendering and Physics in Unity3D will be explored.  Unity3D 
supports multi-threaded math calculations and, in this regard, we will seek to exploit parallelization 
techniques for various sub-tasks, such as the skinning algorithms. Furthermore, Unity3D supports a 
limited form of multi-threaded rendering by utilising specific graphics API implementations or through 
the utilisation of Graphics Jobs System.  

5.3.1 Single-threaded Rendering 

Unity3D mainly features a single client occupying the main thread with the execution of the high-level 
rendering commands. The client also owns the real graphics device GfxDevice and performs the actual 
rendering through the underlying graphics API (GCMD) on the main thread. 

5.3.2 Unity3D Multi-threading Built-in System 

Multithreaded rendering in Unity, provided its graphics API permits it, is implemented as a single client, 
single worker thread. This works by taking advantage of the abstract GfxDevice interface in Unity3D. 
The different graphics API implementations, such as Vulkan, Metal and GLES, inherit from the 
GfxDevice. 

When this system is enabled, rendering calculations are performed on a separate thread, called the 
RenderThread, while the rest of calculations are performed on the main game thread, namely the 
MainThread. 

 

Figure 45: Unity3D multi-threading Built-in System 

5.3.3 Graphics Jobs System 

The Unity3D Jobs system is not the traditional kind of multi-threading system as it manages multi-
threaded code by creating jobs instead of threads. In that frame, a game is split into small units of work 
where each is responsible for one specific task. These units of work are called jobs. The Graphics Job 
system manages a group of worker threads across multiple cores. It usually has one worker thread per 
logical CPU core, to avoid context switching. Some cores may also be reserved for the operating system 
or other dedicated applications. As the job system enqueues the generated jobs in the job queue, the 
Worker threads take items from the job queue and execute them.  

A job may receive parameters and operate on data in a similar way to a method call. As such they can 
be self-contained, or they can depend on other jobs to complete before they can run. Once scheduled, 
it cannot be interrupted. In complex systems, such as those required for game development, it is 
unlikely that a job is self-contained. All jobs are usually dependent on other jobs as they prepare data 
for them. The Graphics Job system supports dependencies across jobs, as it is responsible for managing 
them, ensuring job execution in the appropriate order. The Unity3D C# Job System is able to detect all 
race conditions, protecting the programmer from potential bugs. 
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Writing multithreaded code can provide high-performance benefits, such as significant gains in frame 
rate. Using the Burst compiler with C# jobs gives you improved quality, which also results in substantial 
reduction of battery consumption on mobile devices. 

Graphics Job System integrates Unity’s native job system. As such, User-written code and Unity3D 
engine code share the same Worker threads, avoiding the creation of more threads than CPU cores, 
which would cause contention for CPU resources.  

Using the Job system, multiple native command generation threads take advantage of the graphics 
APIs that support recording graphics commands (GCMD) in a native format on multiple threads. It is 
implemented as multiple clients, no worker thread. This removes the performance impact of writing 
and reading commands in a custom format before submitting them to the API. 

 

Figure 46: Graphics Jobs System 

Note: Currently, Graphics Jobs do not have a RenderThread to schedule jobs, causing a small amount 
of overhead on the main thread for scheduling. 

5.3.4 Vulkan Graphics API 

By enabling Graphics Jobs and the use of the Vulkan graphics API for Windows on Unity3D, we tested 
the potential increase of performance of Unity3D for our VR offloaded solution. In most cases, the 
positive performance impact was minimal: 

Table 23: Potential increase of performance of Unity3D using Vulkan graphics API for Windows 

 Direct3D-11 Vulkan 

Average Frame rate 45.47 fps 46.16 fps 

 

As an additional remark, Vulkan on Unity3D proved to be more unstable than Direct3D11; in some 
cases, performance dropped significantly to ~30 fps when Vulcan was enabled. 

5.3.5 Conclusions 

In our research we noticed that, regarding multi-threaded rendering for 3D applications, one rendering 
thread is used, while many other work threads can parallelize other jobs such as physics, logic, AI, etc. 
To the best of our knowledge, there is no other multi-threaded rendering solution or any other 
alternative solution within Unity. 
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5.4 Adaptive rendering algorithms for low latency immersive applications 

Virtual Reality (VR) applications have gaining importance and interest over the last few years in various 
fields, like as manufacturing, training, entertainment, and so on. Moreover, modern wireless 
lightweight powerful Head Mounted Display (HMD), reach a high level of maturity and provides a more 
immersive experience. Despite these, a high-quality level of experience is still challenging to have when 
using HMD, also modern ones, because ultra-low latency (<20 ms) and high-bandwidth are required 
for a comfortable, satisfying, and convincing immersive experience [30]. 

Several solutions have been developed by the VR research community to achieve this goal.  A lot of 
effort has been spent to reduce the computational burden related to the rendering. In fact, rendering 
for immersive devices require at least the rendering from two different viewpoints, and in some cases 
to generate a 360-degree panoramic image/video to stream accordingly to the position and orientation 
of the gaze of the user. The computation of the rendering can be alleviated in different ways. Some 
approaches exploit the fact that the best visual acuity is around the fovea, and exploit eye tracking to 
optimize the rendering, obtaining the so-called foveat rendering. Many other solutions exploit how the 
Human Visual Systems (HVS) works to reduce the quality of the rendering ensuring the same visual 
perceptual quality. For example, in [31], modify the standard primitive rasterization considering some 
perceptual effects to make the rasterization pipeline more efficient for HMD. Some other approaches 
take into account that distant object does not require to be rendered with different disparities to be 
perceived correctly. For example, in [32], a of mix stereoscopic and standard rendering is used to 
generate the images to display, according to the fact that disparities are reduced for distant objects. 
The experiments conducted demonstrate that this simple solution can give a satisfying experience in 
many cases. Other approaches work by super-sampling the temporal line, so they create/interpolate 
new frames in-between other ones to reduce the total number of images to generate. The state-of-
the-art of this type is ExtraNet [33], a deep learning network capable to double the speed of the frame 
generation by extrapolating the new frame for the previous ones. The new frame is generated by 
minimizing the visual artefacts that typically happen in view-dependent parts of the images (e.g. 
specular reflection).  

Recently, with the main goal of obtaining the VR experience for mobile devices, solutions that takes 
advantage of computing the rendering at the edge are explored [34]. In this case, the total end-to-end 
latency is given by the time to transmit sensor data from HMD to the edge computing node, plus the 
time to render (and encode) the views on the edge node, plus the time to transmit rendered 
images/video from the edge computing node to HMD, and time to (decode and) display the view on 
the HMD. The encoding and decoding phases are optional and depends on the specific application. In 
this setting, different strategies can be used to optimize the rendering, caching, and streaming of the 
different views.  

FlashBack [35], is a VR system which pre-renders all possible views on a 3D grid of suitable size, and 
delivers frames according to the position and orientation of the viewers. Obviously, this is not optimal 
from a caching point of view. In [36], a parallel rendering and streaming mechanisms is adopted. 
Streaming latency is reduced by re-using rendering parts that remain the same during the interaction. 
Long-Short Term Memory (LSTM) ([37], [38]) model and Recurrent Neural Networks (RNN) ([39], [40]) 
are used to estimate the head/body movements. The prediction of these movements is useful to 
optimize the view generation, reducing the overall computational and improving performance. 

In CHARITY, we aim to develop and integrate in one or more UCs an adaptive rendering solution to 
obtain high-quality low-latency VR applications. The UCs under investigation are the UC2-1 VR Medical 
Training Simulator (ORAMA) and the flight simulator, i.e. the UC3-2 Manned-Unmanned Operations 
Trainer Application (CAI). The current activity has regarded the study of the state of the art to identify 
the method/technique that can be easily integrated in the architectures of the UCs just mentioned.  

In the next period we will study in detail the adoption of a frame extrapolation/interpolation method, 
and the various correlations with UC2-1 and UC3-2 architectures, as its characteristics imply a 
promising solution. After that, the implementation will start immediately. In this context a goal is to 
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keep the integration efforts as small as possible yet without compromising the quality of the results to 
be achieved.  

5.5 Point Cloud Encoding / Decoding 

5.5.1 UC1-3 Holo Assistant  

The CHARITY UC Holo Assistant (Figure 47) adopts the physical principles "diffraction and interference 
of light" to enable real 3D holography, based on sophisticated custom optical components and 
algorithms. This lays the foundation for showing a butler-like avatar in 3D space on a holographic 3D 
display with true depth and true eye focus - for your eyes it is like natural viewing. The butler shall 
react to natural language and assists by providing information gathered from the cloud or the internet. 
Beside the 3D holographic presentation, this use case enables a lot of challenging services and new 
technology to be developed and implemented in the CHARITY cloud. 

The use case is focusing on a cloud-based application rendering a virtual holographic 3D assistant 
including additional information and transferring / streaming the content to a local client system in a 
format compatible to interference-based holography. On the client system, the content is computed 
into a real-time 3D hologram and is presented on a holographic 3D display from SeeReal Technologies 
(SRT). By using eye-tracking, the observer always sees the correct perspective of the holographic 
assistant 3D scene. The hologram enables natural viewing for correct eye focusing and convergence to 
experience true depth and natural viewing. So, the well-known accommodation convergence conflict 
known from classic 3D stereo does not apply here. 

 

Figure 47: The Holo Assistant User Case 

The preferred format is a Point Cloud (PC) based format which provides following advantages over an 
image-based data format like 2D+depth: 
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• Multiple views can be encoded acting as a cache on client side - if many views are available, 
there is no missing data when data coming from the cloud is delayed 

• The format becomes more effective over image based 2D+depth the more different views are 
encoded 

• Multiple points on one "line of sight" allow for looking around an object within one and the 
same data set, but also enable transparency effects 

• compared to typical point cloud formats, here is targeted to only include certain views or a 
certain view range, thus the point cloud scene must not be viewed correctly from all sides 

The use case thus requires the following modules to be developed: 

• Point cloud (PC) generation module (which is dependent on the rendering engine) 

• PC compression 

• Data transfer of compressed PC data 

• PC decompression 

We underline that the R&D activity in CHARITY regards the aspects just mentioned, and no other 
aspects involved in the fruition of the holographic content, such as the interaction modalities between 
the user and the avatar or the design of the user interface.  

5.5.2 First point cloud encoder/decoder (PC E/D) design considerations 

The overall process that we have to take into account for the development of the PC E/D is the 
following:  

Step 1: We need to generate a point cloud from a generic 3D scene created with a game engine 
like Unity 3D. This point cloud contains all the 3D scene points to be seen from different views 
- at least two for the two eyes of the observer looking at the holographic 3D display. The 
generation could be based for instance on rendering multiple views of the Unity 3D scene, but 
the point cloud can be generated also in other ways. An advantage of this method is that it 
relies on a very generic approach, easy to be applied to any 3D content and any 3D engine.  

Step 2: the 3D point cloud needs to be compressed. As stated in the previous section, 
additional algorithms and heuristics like detecting changes from frame to frame can be applied 
in order to reduce the amount of data to transfer. Network quality adaption is also done here, 
reacting to indicators and control mechanisms from the CHARITY Cloud. For example, the 
resolution of the 3D point cloud could be adapted dynamically and/or the number of encoded 
views could be reduced.  

Step 3: the data is transferred over the network. Some feedback about network quality is 
provided by the receiving client to the CHARITY cloud. The receiving client decompresses the 
received point cloud data and applies it to the existing data model - i.e. applies scene point 
changes for the case that only changes in the 3D point cloud have been transmitted. In the last 
step, depending from the actual observer’s eye location at the holographic 3D display, the 
views needed to generate the hologram are extracted from the local 3D point cloud and the 
hologram is computed and presented to the observer. 

To start, we need to define a data format suitable for data compression / decompression algorithm. 
The idea is to use a volumetric format, i.e. a voxel, and store in each cell of the voxel a 3D points plus 
additional information such as: 

• Location in space → defined by position in the grid 

• Color + optional alpha + material tag to define transparency behaviour 

• material tag could be something like: fog/smoke, clear glass, distorting glass, coloured glass 

• Viewability - definition from where the point or a certain list of points can be seen → certain 
eye boxes in space are needed to be defined 
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• If no eye boxes are defined, we assume this is not a reduced PC and could not be seen from all 
sides, in this case no viewability attributes are provided. 

For the overall PC we need: 

• Eye boxes / ranges for which this PC is valid → in 3D space we define the PC cuboid's location 
and size + multiple eye boxes 

• Resolution in X/Y/Z → number of voxels / definition of the 3D grid 

• Information about globally contained attributes → alpha and / or material tags, viewability 
information. 

Figure 48 explains what is meant with eye boxes and 3D point viewability. Certain 3D points would be 
seen only from certain eye boxes while most points are visible from all eye boxes. 

 

Figure 48: Relationship between the eye boxes and visibility of the 3D points 

Regarding the existing standards for point clouds, we analysed the recently published MPEG Point 
Cloud Compression (MPEG PCC) standard [21]. 

From the viewpoint of official standardization, good progress was made by the MPEG Point Cloud 
Compression project (MPEG PCC). It was initiated in about 2014. A call for proposals in 2017 resulted 
in a first draft of the standard at the end of 2018. Until today the standard is under development and 
there is an actively maintained reference implementation. Basically, the standard proposes two types 
of 3D point cloud compression - video based (V-PCC ISO/IEC 23090-5) and geometry based (G-PCC 
ISO/IEC 23090-9). 
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Figure 49: Example data sets used for comparing V-PCC (image taken from paper in Ref MPCC-1). 

The V-PCC variant uses classic image-based processing (color + depth + occupancy maps). By applying 
common image-based compression methods (HEVC in the reference implementation), quite good 
compression rates can be achieved. The method is based on projection of the 3D source scene or point 
cloud on multiple 2D maps from different perspectives. These projections or patches are then mapped 
into the frame - the "atlas" - to be encoded / decoded by means of video compression. Here multiple 
maps are generated, attribute maps (can be RGB color but also something else), depth maps 
(representing the distance from the according perspective) and an occupancy map (representing valid 
pixels). Within a (lossless encoded) meta data channel, information about how to reconstruct these 
patches back into the 3D point cloud are provided within the multiplexed data stream. Within the 
process of generating the patches and atlas, some improvements on the data are done, i.e. detection 
and removal of duplicate 3D points or improvement of quality esp. on the regions between patches 
(seams). As a result, very good compression rates are achieved. The MPEG PCC research group defined 
some reference data sets (see Figure 49), where the rates and quality of different algorithm versions 
and parameter variants could be measured and compared. For example, a scene with 100k 
points @30fps corresponds to 360Mbit/s uncompressed data rate. With V-PCC a compression to about 
1 MBit/s can be achieved using version TMC2v8.0 while achieving good quality. 

The G-PCC variant is based on compressing the 3D points directly one by one. Here the 3D points 
structure (point locations) is encoded lossless by using an octree approach (divide a cube into 8 cubes 
iteratively until we are at point level – noting down if there is something inside the cube or not – 
represented with 8 bit per cube). For encoding point attributes (i.e. RGB color), three compression 
methods have been developed. These methods basically make use of similarity / redundancy between 
colors down the octree graph. The algorithm also allows for different level of details - usable e.g. to 
adapt for variations in available data rate or to adapt for current detail requirement in rendering 
process. Currently the algorithm does not use temporal compression approaches, that would enable 
lower data rates in situations where the 3D scene does not change much from frame to frame – as 
compared to MPEG video compression where this approach is employed and is extremely effective. 
However, some work in this direction may be done for the next version of the standard.  

 Preliminary analysis 

For G-PCC some of the above data sets have been compared. For example, in a scene with 100k points 
at 10 fps, corresponding to 110 MBit/s uncompressed data rate, a compressed rate down to about 24 
MBit/s could be achieved with good quality. 

Further tests are required, but from this preliminary analysis, we can conclude that the V-PCC encoding 
time is too much high for our target requirements, while G-PCC approach would be a better starting 
point. Anyway, G-PCC has no support for taking into account visibility of the 3D points. Hence, the key 
steps of the development are:  
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• to exploit the visibility information to reduce the amount of data required by the edge device  
the viewpoint information can be used also to make the generation of views more efficient 

• to do more accurate tests about the performance of the G-PCC, since many parameters can be 
tuned 

• to evaluate if the compression scheme investigated in section 5.5.3 (the ones considered 
promising) are a valid alternative to the MPEG standards due to their light computational 
complexity 

5.5.3 PC generation module and first prototype of the algorithm 

Before a point cloud can be compressed, it needs to be generated. Typically, one creates a point cloud 
from a static 3D scene/3D model, which then can be watched from different angles at different level 
of details. In this case the point cloud is often directly generated from triangles or 3D-mesh.  

In the context of the UC1-3 Holo Assistant a different approach was chosen. The main goal is to convert 
the visual output of any 3D-application with any content including animations, complex materials and 
lighting into a video based, streamable 3D point cloud. The advantage is that such a point cloud enables 
to generate the required views from certain directions locally at the end user device, while the actual 
3D-content is managed and rendered somewhere else, e.g. in the cloud. This has following advantages: 
first the certain views required by the output device, e.g. a holographic 3D display, are generated with 
very low delay independent from actual network performance. Secondly, the end user device could be 
something like a thin client, thus it needs only to output the required views and does not need to 
render high fidelity 3D-content. This is comparable to actual 2D based game streaming services 
commercially available. These approaches cannot be used for XR or holographic devices where the 
observer needs different views dependent from his own (head-) location (cf. VR/AR headsets or 
holographic 3D devices with head- or eye-tracking). 

Thus, in this case, the point cloud is generated from GPU renderings of the 3D scene in Unity 3D from 
different viewpoints (one RGB and depth image per view, see Figure 50) and then merged into a single 
or multiple point clouds. Compared to typical point cloud data sets where the data provides 
information from all watching directions, full details are in this case visible only from certain angular 
ranges. These limited valid viewing ranges or zones are generated from the different provided views 
mentioned above. This concept has the advantage to dramatically reducing overall amount of required 
3D points in the point cloud to enable more efficient compression and frame by frame-based transfer 
of point cloud-based video. Frame by frame-based point cloud data will also enable the opportunity to 
make use of differences between point cloud frames, so for quite static 3D scenes with limited changes 
from frame to frame, a lower number of changing 3D points is to be expected so this can be used for 
efficient compression and transfer of video-based point cloud data. 

 

Figure 50: Example of three slightly different views (depth + RGB data). These views can be merged together to 
form the point cloud 

Nevertheless, this step is costly simply due to the large number of views and 3D points to be processed. 
One approach is to use an octree technique to reduce the number of 3D points by applying hierarchical 
3D rasterization however octree implementation suffers for the number of lookups and poor memory 
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coherence.  
The point cloud resulting from merging depth maps from slightly different views, can be more 
efficiently represented as a 2D depth map with colour information and additional points whenever a 
jump in depth occurs: (see Figure 51). 

 

Figure 51: (Left) Depth+RGB, central view (Right) Hidden points revealed through the others views 

For these reasons, a more suitable data structure is a 2D grid where each element is the start of a 
linked list (usually containing zero or one element). A similar structure is a hash map with linked lists 
to resolve conflicts, but in our case an ‘identity’ hash already guarantees very few collisions, optimal 
memory coherence and O(1) access time. 

To extract this merged mesh from the several depth maps+RGB generated from different viewpoints, 
we can start from one of the views (V0) depth map, then for each pixel of the following views (V1) we 
un-project in world space and re-project in V0 space, compare the depth to determine if the point is 
already present and if not add it to the merged point cloud (see Figure 52). 

 

 

Figure 52: Depth map can be used to find the hidden points using projection between different views. In green 
and red the points revealed by this operation. 

We can process each depth map line by line and exploit the extreme memory coherence. 

We can move the bulk of these computations in GPU: Instead of saving depth map and RGB, we project 
each point in a common final voxel space saving x y and z as additional attributes. While data size 
increases, we save matrix multiplication per pixel in CPU. 

We tested this strategy and we can process 25 views 800x600 in CPU in 30ms, including rendering and 
transfer of the views depth maps from GPU to CPU for a simple dataset. 

An additional optimization is to use the first depth-map as a texture and the following renderings can 
directly compare each pixel with the corresponding (projected and in the first view space) pixel in the 
texture and write the ‘hidden’ pixels only if the depth does not match. 
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Finally, the few ‘hidden’ pixels can be directly written to an array or compacted in a second pass, to 
minimize the amount of data transferred back to the CPU.  

The final data to be compressed consists of a depth+rgb map, where depth is quantized accordingly to 
the precision needed by the hologram projector, and a small array of xyz+rgb points. 

Figure 53 shows an example of the merged point cloud visualized from a different, invalid perspective, 
so one can see the missing data. In addition, the result of rendering the point cloud from a valid angle 
is shown. 

 

Figure 53: (Left) Example of a 3D Point Cloud visualization; (Right) Rendered final result after reconstructing into 
an image 

5.5.4 Point cloud compression – first evaluations 

Data compression trades CPU computation and latency for reduced network bandwidth usage: the 
effectiveness of a compression algorithm depends both on compression ratio which determines the 
bandwidth reduction and on compression and decompression speed. However, long computational 
time might negate the bandwidth advantage. 

Compression and decompression speed of an algorithm have always played a crucial role in 
determining its success, where good compression performances are especially difficult to obtain. 
Historically, in Computer Graphics, geometry compression algorithm competition has been focused 
mainly if not almost exclusively on compression ratio, and consequently widely used compression 
algorithm has become available only very recently when good performances combined with fast 
decompression have become possible, (Draco [15], Corto [18], Potree [19]) especially on the Web 
where the limited performance of JavaScript prevented a solution for a long time, while at the same 
time, bandwidth limitations made the problem more pressing. 

We performed an initial evaluation of the performances of the available open-source libraries on a 
sample point cloud containing 20K points with colour information, weighting 570KB in raw binary 
format. All tests were performed using the same attribute and position quantization and a single 
thread processing. Results are reported in Table 24. 

Table 24: Evaluation geometry compression algorithm 

Algorithm Compression time in seconds Compressed size 

Quantization < 0.001s 140KB 

gzip  -1 0.004s  100KB 

gzip: -7  0.018s 90KB 

Corto  0.005s 71KB 

Dracol 0.030s 71KB (missing colours!) 

Tmc13 0.138s 53K 
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All geometry compression algorithms perform some form of quantization on the vertex position and 
attributes. Due to the limited size of the dataset, drastic quantization can be performed on the 
positions (from 32 bits to 11 bits per coordinate) at a negligible cost in quality. Larger datasets can be 
easily cut into blocks so the numbers from this experiment remain significant. 

As a comparison we tested a zip library (actually zlib), a general-purpose compression algorithm. The 
low compression ratio is mainly due to the fact that it cannot exploit the geometric coherence of the 
point cloud. Due to the relatively low compression ratio, there is a small difference in compression 
ratio when changing the dictionary length of the algorithm. On the other hand, large dictionaries 
become a large penalty in decompression time (4 times here) mostly due to the fact that the dictionary 
will not fit in the L2 cache generating many cache misses. Other entropy compression algorithms (LZ4 
for example) have been tested, with much faster compression timings but worse compression ratio. 

Corto [18] adopts a very simple Morton-code based geometry compression with a difference encoder 
for the attributes (colours in this case).  

Tunstall [20] (which is basically a reverse Huffman) is used as an entropy coder due to its extreme 
speed in decompression while still being fast enough in compression and having compression ratio 
similar to Huffman. Corto is able to encode five million vertices per second, while decoding at around 
25M vertices per second. Adopting Huffman instead would probably reverse the speeds. Other entropy 
coders could be used and offer different trade-off between speed and compression ratio. 

Draco [15] adopts a similar approach based on differences combined with arithmetic entropy coding. 
Surprisingly the compression ratio is worse while colour information has not been encoded (command 
line software does not support it). Unsurprisingly, due to more sophisticate entropy coding, the 
compression timing is 5 times worse. Draco offers much better trade-off for meshes. 

Tmc13 [21] offers the best compression ratio (1:10), at the cost of a long processing time 0.14s, 142K 
triangles per second.  This software offers a very large set of parameters to be tuned, coupled with a 
lack of a decent documentation or guidance. We tested a (very) large number of configurations with 
mixed results. We are confident that marginally better results can be obtained, the picture is not going 
to change substantially. 

For each compression algorithm, speed and compression ratio defines a bandwidth above which it 
makes no sense to compress as it would take more time to compress/decompress the data than to 
send raw, quantized (11 per coordinate 8 per colour channel, for small datasets, in total 58 bits) data. 

Tmc13 becomes useful when the network bandwidth is smaller than (58/8)*142K/s ~ 1MB/s, while 
Corto keeps being competitive up to 58*5M/8 = 36M/s. For bandwidth lower than ~1.3MB/s higher 
compression ratio of Tmc13 allows to better make use the limited bandwidth. 

Since it is relatively easy to perform point data compression in parallel, adding computational power 
allows Tmc13 to remain competitive with higher available bandwidth. 

The compression algorithm could be very easily swapped for a different one at any time in the 
streaming depending on bandwidth or CPU limitations, and the most promising algorithms to adopt 
for geometric compression, according to these preliminary investigations are Corto, Tmc13, and also 
the simple quantization is competitive. 

In the case of limited bandwidth, a more aggressive compression strategy is used on video codecs 
(h264 for example) where the depth+rgb maps can be treated as a video stream, and the array of 
‘hidden’ points compressed as before. The main point is that this codec can take into account 
differences between consecutive frames and drastically cut the bandwidth needed. 

Preliminary tests on the backpack dataset shows 20ms are needed for the h264 compression strategy, 
enough for 30fps, but the ability to only encode differences shows the savings in bandwidth are very 
promising (10x on a few tests, but obviously depends on the dataset, camera movement, animations 
etc.). 
Tweaking the compression parameters allows also to control the trade-off between computational 
cost and compression ratio. 
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5.5.5 Conclusions 

From the set of tests we concluded that the most promising approach is to use a 2D map + collision 
data structure, process the different views directly in GPU and use H264 for the 2D map and the extra, 
conflicting points encode the differences between successive points using a simple entropy coding 
(being too sparse to really take advantage of octree based point cloud compression algorithms). 

The implementation of the first prototype is ongoing. We expect to have the working version of the PC 
E/D available for the end of January 2023. 

5.6 Video streaming and platform development 

Cyango Cloud Studio is the name of one of the software platforms related to the UC2-2 VR Tour Creator 
Application in CHARITY. Cyango Cloud Studio allows any user to create virtual experiences that can be 
used for all industry verticals, especially education and tourism. It is a web-based platform and the 
main goal is to host the micro services inside CHARITY cloud to provide a better performance and 
better user experience. There are many problems that CHARITY allows us to address, mainly related 
to the livestreaming, and to the editing in real time of media content. 

Cyango Cloud Studio development is progressing. We have been focusing in many features and making 
sure the user interface and user experience are according to the feedback we gathered via meetings, 
calls and demos at events showing our software. 

One important progress was the migration of the 3D Web engine framework from Aframe21 to the 
more modern and compatible framework with React.js, which is called React-Three-Fiber22. This 
change of framework required an extensive code re-factoring, as its logic was different from Aframe. 
Some months have been spent for the migration. This guarantee better for the scalability of the use 
case. Basically, we built the already made features again like placing 360 videos on VR, interactive 
hotspots and other UX features. Additionally, with this new framework we can now have a smooth 
coding always inside React environment. We also re-designed the UI of the platform using Adobe XD, 
and in the following months we will start implementing this new design. 

 

Figure 54: New design of Cloud Studio (screenshot 1) 

 

21 https://aframe.io 

22 https://github.com/pmndrs/react-three-fiber 
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Figure 55: New design of Cloud Studio (screenshot 2) 

The images above (Figure 54 and Figure 55) are some screens of the whole platform redesign. We also 
made important research about how to achieve a important feature the users requested, which is the 
online video editor, that allows the user to edit the video and audio. This video editor tool will be based 
on the FFMPEG+WASM23, a pure web assembly port of FFMPEG, that allows to edit video, audio and 
stream inside the browser. We also designed a screen of how this video editor tool would be like in 
Cyango Cloud Studio, shown in Figure 56. 

 

Figure 56: Video editor tool 

 

23 https://github.com/ffmpegwasm/ffmpeg.wasm 
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DOTES implemented also the first livestreaming feature that is under optimization.  

Regarding the performance, a series of livestreaming tests using a high quality 360 camera and a server 
of the company has been conducted. These tests allow to understand what factors are preventing a 
good user experience. 

The setup used in such tests were: 360 camera streaming in Lisbon, Portugal and the consumer user 
located in Évora, Portugal. The 360 camera was streaming to a service inside a docker container hosted 
in our Synology NAS 918+24 . This container is built on:  

• Nginx 1.17.5 (compiled from source) 

• Nginx-rtmp-module 1.2.1 (compiled from source) 

• FFmpeg 4.2.1 (compiled from source) 

and allows to stream to a RTMP url using a server public IP address, and then the front-end app 
consumes the url called https://live.cyango.com . This url points to the docker container in a server of 
the DOTES. This docker container receives a video stream from the 360° camera via RTMP and then 
uses ffmpeg to convert the video in real-time to the HLS format so we can consume it on the front-
end. 

The network parameters of each endpoint are the following: 

 

Figure 57: Camera end network settings 

 

Figure 58: End user network settings 

We did some tests with different parameters as detailed below. These tests were conducted to 
understand the performance of the algorithm and protocols we are using in Cyango Cloud Studio.  

 

24 https://www.storagereview.com/review/synology-diskstation-ds918-review 

https://live.cyango.com/
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Test 1 

In the first test the camera was streaming video at 4k 3840x2160 with a bit rate of 10MB/s. In this first 
test we experienced an high number of video stops during playing, approximately 10 times per 20 
seconds of streaming. An accurate perceptual measure of this problem is under evaluation but the 
streaming quality has shown to be clearly insufficient. 

 

Figure 59: Screenshot of the livestream test 

Test 2 

In this test we lowered the camera settings to 1440P 2560x1440 with a bit rate of 10MB/s, and still 
experienced video stops similar to test 1. 

Test 3 

We lowered the camera settings to 1080P 1920X1080 with a bit rate of 10MB/s, and still experiencing 
the same as test 1 and test 2. 

Test 4 

In this test we used the camera settings as 960P 1920x960 with a bit rate of 5MB/s. And in this test the 
video plays without stops, but we noticed about a 3 minutes delay. We could confirm this delay, 
because we had a phone call between the two DOTES collaborators confirming the delay. 

Test 5 

In this test we lowered the camera settings to 720P 1440x720 and a bit rate of 5MB/s. In this case the 
video plays without stops and with a delay of about 45 seconds, using the same process as test 4. 

From these preliminary tests, we conclude that the server we used is the major factor of the delay, 
because it does not have good hardware resources to quickly transcode the video coming from the 
stream to HLS. In the next, we exploit resources made available by CHARITY partners to make 
additional tests. Also, some tweaks could be done on the algorithm approach.  In the next tests 
iteration, we will research about Low latency HLS25 to assess the latency reduction using this protocol.  

 

25 https://developer.apple.com/documentation/http_live_streaming/enabling_low-latency_http_live_streaming_hls 
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5.7 Mesh Merger  

Initially, UC3-1 Collaborative Gaming Application, required Mesh Collider service. This service is based 
on the point cloud data gathered on the mobile devices through RGB cameras and it creates a set of 
well-defined polygons to allow a clean and clear interaction with the environment. We found out, in 
the course of the research, that in many cases, 3D points reconstructed through RGB cameras cannot 
reach high quality to obtain such clean geometry in in many cases (as shown in Figure 60). Main issues 
when scanning using this method are: 

• Noise/phantom data: point generated in random locations not connected to the environment 
features. 

• No point generated at flat surfaces: flat surfaces was treated as empty space. This happens 
also for other featureless surfaces.  

• Low precision: sometime low precision of feature points localisation. 

 

Figure 60: Environment scanning using RGB method on Android device 

To overcome the aforementioned problems, and to take into account that future mobile devices will 
be more and more equipped with 3D sensors, we will move on this type of smartphone. LiDAR is 
nowadays available on selected Apple devices (iPhones and iPads Pro), for this reason it has been 
decided to test it along with ARKit available for Apple devices. The benefit of using ARKit is that it offers 
additional functionalities like Mesh Collider (see Figure 61). The results of some reconstruction tests 
were very promising: the quality of scanned data is very high and mesh colliders generated 
automatically by ARKit have good geometric properties: continuity (no gaps) and simplicity (low 
number of triangles) (see Figure 61). 
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Figure 61: Environment scanning using LiDAR with instant mesh collider building 

Since ARKit provides proper mesh collider generation functionality, it has been decided to switch the 
focus on merging mesh colliders coming from different acquisition devices. The idea is to merge mesh 
colliders that are scanned and built in the same game session (and physical location) by the gamers. 
This functionality will significantly enrich the immersion of all participants of the game. 

Each participant equipped with smartphone with LiDAR scans a fragment of the environment, ARKit 
builds a mesh collider from the scanned data and all mesh colliders are sent to the Mesh Merger service 
(see Figure 62) developed in the ambit of the Task 3.4. This service merges all mesh colliders into one 
common mesh collider. The merged version of the collider is then sent back to all devices. This way all 
participants will be able to interact with a continuously update version of the mixed environment. The 
Mesh Merger is in its first stage of the development and, at the moment, we do not have preliminary 
results to show.  

 

  

  

Figure 62: Merging mesh colliders 
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6 Conclusions  

The description of the research and development work conducted in the WP3 and the results reported 
in this deliverable, demonstrate the big effort put in developing innovative solutions for XR 
applications, both from a scientific and a technological point of view. In fact, we do not only propose 
and design new technical solutions, but we also develop novel algorithms. Regarding the prototypes, 
even if some implementation activities are experiencing some delays, in general the direction is well 
established, and the prototypes of some components are not far to be achieved. The monitoring 
framework and the Mesh Service for applications adaptation have been carefully designed, spending 
a lot of work to fulfil the needs and the requirements of the CHARITY project, and it will be ready in a 
short time (the monitoring framework, in particular). The CHES is going to be released as open-source 
software soon. Some of the XR-enabling technologies that we are developing, like the adaptive 
rendering solutions and the Mesh Merger are still in the first implementation stage but, reasonably, 
the first prototypes will be available in about 3-4 months. The first working prototype of the Point 
Cloud E/D is planned to be released before the end of January 2023.  
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